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We investigate the thermodynamical stability of the interaction between two clusters at thermal equilibrium
using classical molecular-dynami@®lD) and Monte CarldMC) simulations. The intercluster distanZeis
fixed as a parameter in the microcanonical and canonical ensembles. We use and develop several techniques to
calculate the fundamental quantities of interest in these ensembles, namely, the density ¢f(&Eaf9sand
the partition functionQ(T,Z), yielding respectively, the microcanonical entropfE,Z) and the Helmholtz
free energy=(T,Z). The multiple histogram method is used to estimate the variatiof®svath E and of F
with T, both extracted from either constant energy MD or constant-temperature MC simulations. The thermo-
dynamic perturbation and the displacement-vector methods are used to provide the variations of the free energy
along theZ coordinate. These methods are applied to the interaction pf+A&r .3 and Ng+ Nag clusters.
The Lennard-Jone$Ar 13) , cluster dimer has a locally mechanically stable structur@-aB.6 A, which
appears to remain thermodynamically stable uhti25 K. The temperature effects also stabilize two inter-
mediate compact configurations, n&#5 and 6.6 A. On the other hand, the interaction betweepNda
g, modeled by a distance-dependent tight-binding Hamiltonian, does not exhibit a stable structure except in its
compact shape Ng. The entropic effects, favored by the thermal phenomena, do not occur to induce any
thermodynamical local stability for a dimerizéNag) ,. In other terms, the stability of Ng does not seem to
be governed by the underlying two Banagic-number unitd.S0163-182@06)00939-3

I. INTRODUCTION investigated using the two-center jellium modeind re-
sumed by Knospeet al® These authors calculated the
On both experimental and theoretical sides, the interest dotential-energy evolution with the intercluster distance for
chemists and physicists in small clusters of atoms or molNan+Na,, n=8, 9, 19, and 20. Nat+ Nag was shown to
ecules has increased constantly in the last decades. In p xhibit a stable local minimum for a separation of 13.5 bohr

ticular, a great deal of attention was paid to their structural etween the centers of mass of the two subunits. Th!s corre-
and thermodynamical properties. Among the different spe-S ponds fo a v.ery'prolate structure. The more S0 phisticated
. T ' ) results of cylindrically averaged pseudopotential scheme
cies of clusters, special interest has been paid to homog

CAPS (Ref. 7) calculations of Ngg also reveal a “super-
neous rare-gas systems as prototypes of van der Waals clUsssormed” structure consisting of two Nasubunits. How-

ters, and also to alkalis as the simplest example of metallig,er 4| of these studies assume or constrain a cylindrical
clusters. _ _ symmetry. As a matter of fact, all three-dimensional calcu-

Those two kinds of systems offer very different types of ations for Na tend to establish that it most probably ex-
physics. Indeed, in rare-gas clusters, the electrons remaipits a triaxial structuré?

localized on the atoms, and no chemical bond is established The possibility of creating clusters dimers has also been
(only weak van der Waals bondipgConversely, the elec- investigated using a collisional approdt!?;*? necessarily
trons in metallic clusters are strongly delocalized. Thus thelynamical. However, it is clear that, in a two-cluster colli-
rare-gas systems are well described with simple pair additivgion, even if the incident cluster has a very small relative
energy functions such as the Lennard-Jofled potential, velocity, the system cannot be permanently stabilized due to
whereas metallic systems must receive treatments allowinthe total-energy conservation. Thus it was concluded that a
for electron delocalization, namely, more or less sophistiprolate Ng+ Nag cluster dimer may appear only as a tran-
cated explicit quantal treatments. Despite this strong physicalient species at the beginning of the collision, but that it
difference, it occurs that the equilibrium geometrical con-decays into a compact form through a thermalization pro-
figurations may present some common general features. Theess. The lifetime of such a prolate complex seems to be
most stable isomers have generally compact shapes, and rimore likely described by a continuous dissipation process
both cases show arrangements around pentagonal or icosalesulting from a redistribution of relative collisional energy
dral patterns, at least in the range of a few tens of atbths. into thermal degrees of freedom, rather than a trapping in a
However, several studies have conjectured, in particulawell of the potential-energy surfa¢BES corresponding to a
in the case of metallic clusters, the existence of clusterstable dimerized deformed isomer. In fact no evidence of a
dimers. The existence of such deformed clusters was firdtarrier between a prolate structure and a compact isomer was

0163-1829/96/54.5)/1094910)/$10.00 54 10949 © 1996 The American Physical Society



10 950 F. CALVO AND F. SPIEGELMANN 54

found along the reaction path in the work of Zhang andtial energy as a function of the intercluster separaton.g.,
co-workerst*2In any case, the stabilization of a cold cluster the mechanically stable clusters with the holonomic con-
in a collision between two subunits requires an energy restraintZ= const. Both globalsimulated annealing and regu-
lease through evaporation or fragmentation. Therefore it itar quenching along a collisional trajectorgnd local(con-
difficult in such processes to probe the PES topography agugate gradient or steepest desgaxploration methods are
curately. involved.

It is possible to develop purely static approach&s-Q) The methods for computing the free energy used or de-
to explore reaction paths or least-energy paths between iseelopped in the present paper can be sorted into two major
mers (chain algorithms or quenching procedures along theategories:
dynamical trajectory However, in order to be exhaustive, (i) The first category is a finite temperature or finite en-
these methods require an extensive sampling of the initiargy search. It consists, at fixét=Z,, of calculating the
conditions, in particular the relative orientations of the ve-fundamental quantity of interest in the microcanonical and
locities. Moreover, at finite temperature it is likely that not canonical ensembles, that is either the entr&i,Z,) or
all the numerous local minima on the PES are very signifithe free energyr(T,Zg). This was done with the multiple
cant and need to be recorded. The entropic effects shoukistogram method. This practically requires, for this given
also be taken into account in a consistent way. This is also tZ, to achieve microcanonical simulations in a range of ener-
be related to the studies of phase changes and general thgies or canonical simulations in a range of temperatures.
modynamical behavior of such systetis®A pertinent de- (i) The second category is also a finite temperature cal-
scription of the problem may consist in keeping the interclus-culation of the free energly(Z,T,), but at fixed temperature
ter separation coordinatZ as an explicit deterministic T,. It consists of estimating free energy differences along the
parameter, while the other degrees of freedom receive a st& coordinate, keeping the temperature at fixed valye
tistical treatment. In this line, the thermodynamical free- \We assume that th&l-atom cluster dimer is described
energy functionF(T,Z) seems to provide a relevant frame- with a potential energy functio¥ only dependent on the

work to describe the system. atoms or nuclei coordinaté®={x;,y;,z}. We also assume
In this paper, we address the general problem of the thet ¢ hoth clusters center of magso.m) are aligned on the

modynamical study of th&,+X, approach between two ; 4yis 5o that the intercluster distangealso considered as
clusters (here p=q and the total number of atoms is 4 function¢ of the coordinates, is calculated by
N=2p). Our purposes ar@) to establish the ability of dif-

ferent methodologies for computing the thermodynamical - 1 1
functions with a constraint parametévere, the intercluster Z=&R)= M EB Mizi— i% m;Z; @
distanceZ); and(ii) to examine the stability or unstability of A
cluster dimers at finite temperatures with respedrée en- WhereM andM_ are the total masses of the clustérand
ergiescalculated from a known reference stétere the two B for the configuratiolA+ B, and{m;} the individual atomic
clusters aZ=o andT=0). masses.
The various theoretical and computational methods used In general thermodynamical simulations, the choice be-
and developed in this work are presented in Sec. Il. In Seaween general algorithms like Monte CafC) or molecu-
I, we discuss the results obtained with these methods agar dynamics(MD) is not of any special importance, since
plied to the stability of the Afs+Ar 5 problem as a direct both MC and MD methods are known to be equivalent from
application, taking advantage of the simplicity and computathe thermodynamical equilibrium point of viet¥,which is
tional efficiency of the Lennard-Jones pairwise potentialessential here. However, MD methods present several draw-
modeling to achieve rather exhaustive sampling and signifipacks from a practical point of view. First, they require the
cant statistics. determination of the energy gradient along the simulation,
The same techniques are then applied to the thermodywhich is time consuming, particularly with a quantal-type
namical study of the Ngt Nag interaction with a distance- Hamiltonian. Moreover, MD simulations of geometrically
dependent tight-bindingDDTB) model. Although more so- constrained systemat fixed temperaturemust be imple-
phisticated methods have been used in the literature tmented with intricate algorithn$;?! whereas MC methods
describe alkali-metal clusters, quantum chemistryare always more straightforward to handle. Following the
calculation$” and the local-density approximati¢hDA),*®  evolution with real time is not crucial in the purpose of de-
those technigues are too computer-time consuming to begrmining thermodynamical functions.
handled in quantitative thermodynamical sampling, even the For the present application, the implementation of simu-
LDA in the Car-Parrinello formulation. The present DDTB lations with a holonomic constraint is made with two main
model was shown to provide energetic and geometrical propmethods. On the one hand, one can introduce an artificial
erties in quantitative agreement wittb initio calculations  constraint to kee@ at an initial value, via an extra potential
when available. The application for ié& Nag is presented \/(Z) added to the potential-energy function. This is the-
in Sec. IV. We finally compare the methodologies and dis{yrg|la samplingmethod?2 whereV(Z) is often harmonic.

cuss the results in Sec. V. On the other hand, one can really constrain in tifoein
Monte Carlo pseudotiméahe system to remain on the hyper-
Il METHODS surfaceZ= const. This last techniquéhe so-calledblue-

moon ensemble sampliff) introduces some correcting
As a preliminary step, we examine the situationfat0. terms in the free energy when sampling this biased distribu-
We systematically search the global minimum of the potention of the phase space with molecular dynamtcactually,
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a recent work by Depaepet al?® showed that these two NV, 5

methods were equally valid and produced the same quantita- &Z' =0, %)
tive results. When choosing MC rather than MD sampling,

one gets rid of extra calculations along the simulatiith o easily find propagation equations for tAeconstrained
respect to an unconstrained simulajidsy preferring the quenching procedure:

blue-moon method to the umbrella sampling method, be-
cause the latter one is especially simple to implement in a

MC framework. % = aﬂ (6)
To avoid the evaporation processes which may occur as dt X
soon as the temperature is high enough, we enclosed the
dimer into an ellipsoid trap and added to the potential energy dy; E\Y;
an extra harmonic term qa Yy (7)
I
A k(rl4ri—d)?2, r+ri>d
Vrep(R):E, 0 ri+risd (2) _ ﬂ—F ﬂﬂ ieA
i ! A B dz| aé’Zl a MA oz le
with R={x;,y;.z'. r' andr are the respective distances at oV m oV ®
between the atom or nucleiand the centers of mass of the AT o7 ieB.
clustersA and B, andd=2Z+o¢. k and o are numerical ! B

constants, chosen in practice, respectively, as 100 times t . .
atomic dimer energy and 2.3 times the interatomic average € calgulatlon 0lV/JZ with respect to the clusters coor-
distance in the compact cluster. This ellipsoid wall was als#linatesR={x;,y;,z;} is made explicit in Ref. 28, and gives
used in MD simulations for argon, in order to be able tothe following equation:

compare the results between MD and MC constrained simu-

lations. In the following, the potential implicitly includes Vv M Vv M,

A%
this repulsive term. . 2 .

ZOM M oz MM a9
A B A B

A. Optimization methods at T=0 This quenching procedure appears to be a very efficient and

As a preliminary step toward the calculation of thermalpowerful tool for locating the bottoms of the PES wells with
quantities such as the free energy, the systematic search fgite Z constraint. It also allows the implementation of general
locally stable structures with fixed constitutes an attempt to dynamical algorithms such as conjugate gradient or classical
explore as exhaustively as possible the configurational spagfiolecular dynamics with this constraint, since the same
of the cluster dimer. In fact, here we deal only with a hyper-Lagrange multiplier may be added to the Hamiltonian in-
surface at fixed of this space. stead of only its configurational paffor a general descrip-

The global algorithm for finding at fixed the absolute tion on molecular dynamics with holonomic constraints, see
minima on the PES is a simple Monte Carlo simulated anRef. 29)
nealing, forcing the constraint by keeping the c.o.m. of each Starting either from the separated systems configuration
subcluster unit fixed at each step, when performing indepen)(p+ Xq With large Z, or from the known compact structure
dently collective MC moves. We have thus generally usedX , with minimal Z, the internuclear distance is changed to
the MC sampling. However, when applying the multiple his-intermediate values, and simulated annealing is performed
togram methodii) in Sec. II B, we also compare MC and followed with local quenching. The resulting structures are
MD simulations. the constitutive basis for the aftercoming thermal studies.

For eachz, after the simulated annealing process was When starting from an initial long distance, the prelimi-
achieved and to avoid artifacts, we further locally optimizednary minimization of the energy with respect to the relative
the obtained structure with a quenching procedure, based edrientation of thelalmos} separated clusters was solved spe-
ther on steepest descent or conjugate gradient algorthms.cifically by performing several Monte Carlo simulations on
The usual steepest descent quenching method minimizes thige four ¢, ¥, ¢g, and gz spherical angles associated
potential energy by carrying on consecutive steps along th@ith the two clusters. This occured to be more practical in
gradient direction, and thus solves the equat'nbﬁ/dt the case of argon, for which the uncut LJ potential is still

=—aV,V(R), with @ a numerical parameter. With tig  active at long range.

constraint, one adds a Lagrange multiplieso that the po- Finally, a third method was employed to explore the

tential energy becomes s_maII—Z region _better,.usmg. perlqdlc quenchmg gl(_)ng clas-
sical MD collision trajectories with thermalized initial ve-

V, »(R)=V(R)+\[&(R)—Z]. (3) locities. We sometimes found some structures with this pro-

' cedure which were lower than those obtained by artificially

The artificial resulting “forces”(as part of the gradientvill imposing the distance and then achieving optimization. This

insure the intercluster distance to remain fixed. By writing situation occured more frequently for sodium clusters.
The classical Metropolis algorithth was used in MC
simulations, and a fourth-order Runge-Kutta procedure
(4) Lo X . . X
propagated Hamilton's equations in MD simulations.

Naz

I\ 0.
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B. Constrained multiple histogram method conjugate momentum &, and the integration is performed

From now on we wish to estimate the microcanonicalwith dI';=d3N""R’xd*N" 7P’ xdZxdP_. It can easily be
density of state$)(E,Z) and the canonical partition function shown that
Q(T,Z), which lead directly to the microcanonical entropy

S(E,Z) =k InQ(E,Z) and to the free energy of the cluster, M, M, MM,
F(T,2)=—k,TInQ(T.2), wherek_ is Boltzmann’s constant. P,= M +M_ ;B Pz~ M M i% pZi_mg(P)
The procedure for computin@ (E,Z) andQ(T,Z) at fixed (13

Z is a multiple h_|stogram method, adapted in the followmgWith b, the conjugate momentum af. Since this transfor-
for the Z constraint. i

First used for clusters in a work of Labastie and Whettenmation is linear in the coordinated,is a constant. The inte-
who studied the solid-liquid transition in Mackay icosahedragdration onZ andP, can be performed, and finally leads to
argon clusters! this method extracts from simulations the
fundamental quantity from which all the thermodynamical M, +M, . . N7
data can be deduced; that is, the microcanonical density OQ(E'Z):JWJF,5[K(P )+V(R',Z)—E]d R
states. The cluster community has used with benefit this AB
method for studying thermal phenomena, mainly phase X d3N-7p’ (14)
changes?3!32and evaporation in cluste?s.Up to a recent
work,'® the histogram methods were restricted to constantwith K(P’) andV(R’,Z) the respective kinetic and potential
temperature simulationgither Monte Carl&3*?or Nose  energies of the system, and whdié denotes the restricted
molecular dynamicS). The extension of the method to (R’ B phase space. In the following, we do not take into
isoenergetic MD simulations provided an efficient way t0 5ccount the factad(M +M )/M M_, since its contribution
treat the thermodynamical equilibrium of an isolated clus;ter,[P the density of states is only a multiplicative constant. The

Neverthgless, we also.pro.pose to. calculate_ the density %IIowing multiple histogram procedure is used to extract the
states with th& constraint, in the microcanonical ensemble.Q(E 7) quantity from isoenergetic MD simulations

We describe successively the implementation of the formal- . :
ism to MD and MC simulations. In MD simulations, the We start from Eq(14), which we write as

constraint is imposed through a Diracfunction: E
Q(E,Z)=f Q.(V,2)Q (E-V)dV, (15)
o 0
= df( P) > 2 3N—-6R . . . .
QO(E,Z)= F5[§(R)—Z]5 —gr |ALH(RP)—E]d™""R  whereQ (E) is the kinetic density of states,
Xd3N76|5, (10 Q (E):i d3N—7|5/, (16)
K dEJk@p')<e
- dé&(P) andQC(V,Z) is the configurational density of states,
ar.2)- | aar -2 0
d -
- 3AN-7p7
X ex — BH(R,P)]d™N ORx d*™N 65 (11) Qc(V’Z)—deV(FE,VZ)SVd R'. (17

Herel is the phase space an#3- 6 is the total number of The fact that(), does not depend on tf& coordinate is
independent degrees of freedom of the cluster dimerindeed due to the linearity of the transformation, as discussed
H(R,P) is the Hamiltonian. by Paciet al?® and by Depaepet al?® Since this kinetic

Let us now describe a system of coordinatesterm has a simple expression s (E)=«ECN™9% Eq.
{Z.,Z,x,yi,z/}, whereZ_ is the coordinate of the dimer (15) suggests a MD multiple histogram application to extract
c.0.m., andz/ is an atom or nucleus coordinate with respect{2_(V,Z) at fixedZ. We say that, if a simulation at constant
to the c.o.m. of the cluster it belongs to. Since the globatotal energyE=V+K is ergodic, the normalized probability
translation and rotation of the dimer do not influence thedistribution ofV is
value of Q(E,Z), we assumezG of no importance in the

following. We then have Q(E=V)Q (V.Z)

o (18)

p,(V.E)=

aED=| 3 B 7)— 718 dg(P"Pz) So, if the simulation is performed with energy, the prob-
(E.2)= ry A¢(R"2)=Z] dt ability density to have the potential energy is given by
X S[H(R',P".Z,P )—E]dI';. 12 pij = i (B — V) BN (19)

) with ©;=0Q_(V;,2) and @, = LIQ(E).
R'={x;,y;,z} is the representative configuration in the  The multiple histogram method can then be applied to
3N—7 manifold, and J is the Jacobian of the such an equation. It makes the extractiof){E,Z) possible
I'={R,P}=I;={R',P",Z,P } transformation.P_is the (for full details, see Refs. 15 and 1Bom a series of simu-
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lations at constanE, for the same value of. The only C. Direct calculation of F (T,Z) at fixed T
requirement is that the distributions of energies must overlap,
in a similar way than in the umbrella sampling metHéd.

Frme(E,Z), one directly_ hasS(E,Z), up to a global ?d' keeping the temperature at fixed value. A first method cho-
ditive constant corresponding to the freedom in choosing th%en for this purpose is very general, and consists offtae
entropy reference. This scheme can be used to calculate ”ﬁ?odynamm perturbatiomethod® We start from Eq(21),
configurational entropy of the separated conflguratlonand we writeQ (T,Z) for Z+ 6Z:
Xpt+ Xy, as a function of the total energy. '

We now examine the case of the MC simulation scheme.
In the canonical ensemble, the fundamental quantity is the Q (T.Z+ 52)_f exp[—,BV(Ii’,ZnL 52)]d3N*7F§'

partition function, Eq.(11). In the system of coordinates
{R',P",Z,P }, one has =Q.(T.Z)(exp- BLV(R',Z+62)

We now present two methods to estimate directly con-
figurational free-energy differences along thecoordinate,

-V(R',2)])z, (25)

where the canonical averagp, is made with the constraint

Z, at temperatur@. This last equation immediately gives the
derivativeoF - /9Z,

Q(T,2)= L/exp(—ﬁ[K(ﬁ'HV(ﬁ',Z)])dﬁa' XdP'.
(20

SinceK (P’') does not depend aB, Q can be factorized into

its kinetic and configurational parts. The configuration inte- oF ¢ oV
gral Q (T,Z) is defined as —(T,Z)=<—(§',Z)> . (26)
c aZ aZ 5
PRy - The building of the functiori¢ is then allowed by a simple
Q.(T.2)= fA,e PIRC2dR, 2D integration,
: L2 : ' . . z[ov
with A’={R’} the restricted configurational space. As in the Fc(T,Z)=Fc(T,Zo)+f < > dz. (27)
microcanonical ensemble, E@Q1) has another expression in 74

terms of the configurational density of states(V,Z): , ) )
c The quantitygV/dZ, calculated with Eq(9), is recorded and

averaged for several values of andF (T,Z) is then evalu-
ated. This method is imprecise for two reasons. The averag-
ing obviously introduces an error, and also the integration
itself, since it is carried out with a limited amount of points
To Computd} (V Z) we say that the probabmty of f|nd|ng (eaCh of them reql.”res a SlmulatDOIAn alternative method
the Z- constramed cluster dimer in a configuration with en- for computlng free-energy differences is the approach of

ergy V; and at temperaturg; is given by the canonical dis- Voter,® also“known as the _d,lysplacement vector” method,
tribution or also the “acceptance ratio” method, from the precursor

work of Bennet?>* |t is especially designed for the Monte

Carlo scheme. To take account of the holonomic constraint
Pij =QC(Vi Zpexp(— BViIQ(T;, Zy). (23 Z in this procedure is theoretically easy, but practically not

straightforward (some other formulations have been
In the canonical ensemble, the multiple histogram method iproposed’). Our presentation is close to the original formu-
applied to such an equatloﬁ (V,Z) can then be calculated lation of Voter. The Metropolis function for a canonical en-
from a series of simulations at constantfor the same value Semble is the acceptance probability for a Monte Carlo move
of Z. Again, the only requirement is that the distributions of causing an energy changeAE; that is, Mg(AE)
energies must overlap. One then easily computes the corE Min(1,exp(-BAE)). For anyE andE’, we have
figurational free energ;Fc(T,Z), up to a global additive

constant. We chose the referenceFagT=0, Z=)=0.

Once the density of statd3(E,Z) is known either from R
MC or MD simulations, one can easily calculate the canonidet us consideE andE’ as functions of the coordinat&sin

cal partition functionQ(T,Z) by the configurational space, and assume tatV(R—D/2),

=V(I§+ I5/2), whereV is a potential-energy functiom a
constant vector of the configurational space. We have, for

anyR andD, the following identity:

Q(T.2)= fowQC(V,Z)exp(—BV)dV. (22

exp(— BE)M 4(E’ —E)=exp( — BE' )M 4(E—E').
(28

= E
Q(T.2)= Jo Q(E,Z)exp( —~ ﬁ)dE (24)

and a similar expression to calculate the configuration inteeXQ—BV(ﬁ—5/2)]Mﬁ[V(§+ D/2)—V(R-D/2)]
gral QC(T,Z) from QC(V,Z). Both MD and MC methods _ S o I s
described above were used to compute both the configura- =ex — BV(R+D/2) M4 V(R=D/2) =V(R+D/2)]

tional entropySc(V,Z) and the partition functioch(T,Z). (29
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We multiply both left- and right-hand sides by the constraint

! I
8[&(R)—2], and we integrate over the configuration space g |- e ]
A:{ﬁ}v : ‘,.,n» :
L e & :
|,:f efﬁv_(ﬁ)Mﬁ[Vﬂﬁ)_Vf(li)]5(§(§)—Z)dli 95 - -
A - | |
- fAe*BVJ,(R)M,B[Vf(ﬁ)—V+(|§)]5(§(I§)—Z)d|§:|+, o0f ]
(30 105 L ’ 1 7
where we used the notatiovi. (R)=V(R+D/2). We shift | el ]
the integration variable ih_, - | | g

1 2 3 1

Z

I,=fAe’BV(R)Mﬁ[V(§+5)—V(§)]
FIG. 1. Reference curv&!(Z)=Fc(T=0,Z) for the Lennard-

X 5[§(I§+ [3/2)—Z]d§. (31 Jones system Ag+ Ar,;. The distance and energy units are LJ.
Now ¢ is linear in R; therefore&(R+D/2)=¢(R)+AZI2  gration  the free-energy  differences Fo(T,Zi.y)
with AZ=¢(D). Hence —F (T.Zi). When the simulation with constraid is actu-
i ally being performed, we store the three averaged following
|7=J efﬁwR)MB[V(ﬁJr [3)—V(I§)]6[§(I§)—Z quantities:Q, by steps toward;+AZ=27;,, to calculate
A

the numerator of the right-hand side of Eg§3), Q_ by steps
from Z; towardZ;—AZ=2Z;_, to calculate the denominator
at Z=2Z;_q; and (dV/9Z), to achieve the thermodynamic

and a similar form foi _. Our aim is to calculate the con- Perturbation formula. _ _
figurational free-energy differencdF _=F,—F_, with ('jrhte fe?“';fj'ngd;!i_fVech(Tt,Z)t at rfll_Xid_T St"'_ga:j/ehan A
- undetermined additive constant, which is provided here by
Fo=—k,T IN(6[&R)—(2+AZ/2)])=—k,TINQ... One has o myitiple histogram simulations at fixé@l Therefore a
complete determination of thél(Z) map of the free energy
can be achieved with differents sets of methods, employing
the algorithms developed in the present and previous sec-
tions.

+AZ/2]dR, (32)

&z'_f&JMB[V(FHﬁ)—V(ﬁ)]L -
Q- Q- Iy <MB[V(§_5)—V(§)]>+'

with the notation

(A)e= 5 = (34 The testing of the method ted in Sec. Il was first
* “BVR ST £(R)— (Z+ AZ/2)1dR e testing of the methods presented in Sec. Il was firs
Ine [6(R) = /2)1d performed on the Ays+ Ar 13 dimer. The argon clusters were
the average of the observabk{li) over a canonical sam- Mmodeled by simple classical Lennard-Jones 6—12 potential,

pling with the constraint(R)=Z=AZ/2. Finally we can with parametersr=3.4 A ande/k,=119.8 K:
write the configurational free-energy difference between two 1 6
g g
Rl

configurations, held, respectively, with the constraint Zy
Z+AZ/2 andZ— AZ/2: var 2 4e
Fo(T,Z+AZ/12)—F(T,Z—AZ/2)=— kBTIn(Q+ 1Q_). The use of reduced units= =1 in the following allows us
(35)  to describe these systems as well as other rare gases, though

, o _ with different parameters- and .3 The time step in MD
The configuration integraQ. (Q-) is calculated by per-  gimylations was chosen ast=0.01 LJ units. Such a time

forming a Mopte Carlo simulation governed by the potentialstep leads to the conservation of the total energy within
function V(R) with the constraint over Z+AZ/2  107° (relatively) for simulations of 2<10° time steps.
(2—AZ/2), and by accumulating the average probability that  Each Ar,; cluster has thé,, ground geometry of a perfect
a step fromR to R+D (R to R—D) would be accepted. icosahedron with a central atom, and a binding energy
These displacements, which make the system jump from §3= —44.32%, whereas the compact A¢is known to ex-
Z+AZ/2 constraint to & — AZ/2 constraint(or vice versy  hibit a C,, structure, with an energy,s= —108.316.1%°
are never really performed; only the acceptance probability iShe reference curve of the energy minima versus the inter-
stored. cluster separation Z is plotted on Fig. 1, for
Thus, by carrying out several simulations at various inter-1.2<Z/0<4.0. One interesting feature is the existence of a
cluster distancefz;}, and by takingA\Z=27; ,;—Z; as acon- long-distance minimumnamed isomer(e)] at Z=2.53r
stant, we can evaluate step by step diretlyd not by inte- separated by a small barrier from a series of minima corre-

(36)
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FIG. 2. Six snapshots of locally stable Arwith the Z con- r ]
straint, on the reference curv&@=0. Isomer (a) Z=1.200, 20 B i
V=-19.6& (C,, compact structupe Isomer (b) Z=1.4%, L 1
V=-18.0%. Isomer (c) Z=1.670, V=—18.4Z. Isomer (d) i ]
Z=1.95, V=-16.7&. Isomer(e) Z=2.53r, V=—11.4%. Iso- 0L l ‘ | | =
mer (f) Z=4.00, V=—0.3&. All structures exceptf) are stable o 01 o0z 03 oz o5
without theZ constraint. T

sponding to more compact configurations. The geometries of

the asymptotic configuratior=1.20 andZ=4.0o-, named F'G- 3. Reference curve3 (V,Z) andF (T,Z) both calculated
isomers(a) and (f), as well as the geometry of the long with the constrained multiple histogram methodZat 4.00. Three
distance minimum ' are plotted in Fig. 2. This reference curvéurves are plotted, extracted from MC and MD simulations and in
also shows three particularly stable structures, the first ong'e harmonic origin approximatiofHA). (a) Microcanonical con-
[isomer(b)] being located aZ = 1.49, the second onéso- igurational entropy5_(V,Z). (b) Canonical configurational free en-
mer c) at Z=1.67s, and the last ondisomer (d)] at €9 Fc(T.2).

Z=1.95%. These isomers are shown on the same figure agartition function of this system. At the lowest temperatures
isomers(a), (), and(f). T<0.05, the obtained curve was extended and fitted to a
The existence of an energy barrier between both clustersinT function, as would be obtained in the harmonic ap-
nearZ=2.43r which separates the compact structures fromproximation. The added points were then discarded, leaving

the stable prolate Ag+Ar,; can be investigated further just the original curve with now the referenég(T,0)=0.
with an adequate search of the saddle point configuration oWe have also calculated the microcanonical configurational
the PES. This configuration was investigated by systematientropy S _(V,Z) with both methods, which was fitted to a
cally searching for the maximal value &f and minimal  (3N—8)InV function for the lowesV. The results for both
value of |dV/dZ| after relaxation of all others degrees of methods are plotted in Fig. 3 and are nearly superposed,
freedom. Its energy is about 10.0 units with respect to which warrants us on the quality of the performed sampling.
V(Z=x)=0, so one could certainly not hope to locate the In Fig. 4, we plotted severd (T,Z) curves at finite tem-
dimer in the prolate structure with a frontal collision process.perature calculated with both thermodynamic perturbation
The numerous irregularities of thé&(Z) curve forZ<2.50  and displacement-vector methods. The agreement between
are mainly due to that one can explore numerous discretihese two techniques is very good in the whole range
minima compatible with the constraint which may be sepa-0.01=T=0.5. The completeT,Z) map of the free energy
rated by higher saddle points, and also to the fact that we didith the referencd-(0,)=0 is plotted on Fig. 5. For tem-
not practically let both clusters mix together, the atoms ofperatures less than about 0.2 LJ units, isonibys(d), and
each cluster always remaining connected to their respectivie) remain metastable, b(¢) has clearly the greater basin of
c.0.m. attraction. Wherl reaches 0.2, the barrier which separates
The reference curv&(T,Z) at fixed Z was calculated (e) and the more compact shapes disappear, and(bpgnd
with the constrained multiple histogram method describedd) are metastable, untif~0.3. At last, only the compact
above, for the maximalZ=4.00, and in the range shape(a) is stable wherT goes over 0.3. Moreover, in the
0.01=T=0.5 LJ units. Both MD and MC algorithms were range 0.2 T<0.3, isomernb) seems to be slightly stabilized
used to extract the configurational density of states and thas compared td <0.2.
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FIG. 4. Finite-temperaturEC(T,Z) curves calculated with the
thermodynamic perturbatiofisolid lineg and the displacement-

vector (dashed lines methods. The free-energy reference is

Fo(T=0, Z=»)=0. (@) T=0.05. (b) T=0.10. (c) T=0.15. (d)
T=0.20.(e) T=0.25.(f) T=0.30 LJ units.
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FIG. 6. Four snapshots of locally stable Navith the Z con-
straint, as part of the reference cur¥e=0. Isomer(a) Z=6.25
bohr,V=—1.3586 eV. Isometb) Z=9.25 bohr,V=—1.1367 eV.
Isomer(c) Z=14.25 bohr,V=—-0.4446 eV. Isomefd) Z=26.25
bohr,V=—8.2x10"5 eV. The first structuréa) is theC ; compact
structure.

The global effect of the temperature on the free energy

curves is a general smoothing of the potential-energy curv

Figure 5, which represents titgT,Z) surface, allows us to

visualize this effect better. In the present case, one can o
serve the vanishing of the stability of the various metastabler

isomers at lowT, but also the stabilization of an isoméy)

in a particular range of temperatures. The quasidisappearan

of the Z structuration of theF(T,Z) surface around

T=0.3-0.4 is to be related to the known melting temperature

of argon clusters in this size range, namdlys 0.30%°

IV. RESULTS FOR Nag+Nag

The potential energy of sodium clusters was calculated

using a distance-dependent tight-bindid@DTB) Hamil-
tonian developed by Poteau and Spiegelnfaand which
can be written as

(37

H:izj hija;raj,

FIG. 5. Fc(T,Z) map of the configurational free energy with the
reference~(0,0) =0 for the Ar;3+ Ar 5 dimer. The units are LJ.

E?/\/hereafr anda;, respectively, are creation and annihilation

operators corresponding to arorbital on sitei andj of the

luster. Not only are the atomic orbitals taken into account
n this Hamiltonian, but also the effect pforbitals which is

Enecluded as a perturbation to the matrix elements:

atoms t2 (rk)
{od |
hi=h{®+h{? = E psdTiKk) — % , (38
k#i €3p~ €3s
hij=h{’ +h{?
i N >
~ tso (N tse(Fji)  TijeTik
=tss(rij)_ E — R )
K#1] €3p~ €3s il il
(39

with pg(r), ts(r), andtg,(r), respectively, ion-ion repul-
sion, s—s, ands—p,, transfer integrals taken as functions of
the internuclear distance. These functions were fitteclon
initio curves for Na and Na,.* Being given a geometrical
configuration of the cluster nuclei, the ground-state potential
energy is calculated as the sum of the one-electron energies

V=2 ng,

ieocc

(40)

whereg; are the eigenvalues of the DDTB Hamiltonian, and
n; the occupation numbers. Due to the larger computer time
needed to compute this energy function, we had to reduce the
amount of statistical sampling points by a factor 10 with
respect to the simulations of LJ clusters. Only the MC simu-
lations scheme was used here to calculatéT,Z).

The Ng and Nag ground structures according to this
energy function are represented in Fig. 6.gNw&ith the en-
ergy —4.95 eV, had y symmetry, whereas Ng, in its com-
pact triaxial shapeaxial ratios X,=0.27, Y,=0.33, and
Z,=0.40), has a binding energy 6f11.26 eV andC; sym-
metry. The reference curve @0 is plotted in Fig. 7. Con-
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FIG. 7. Reference curv&/(Z)=F (T=02Z) for the sodium FIG. 8. Finite-temperatur& (T,Z) curves calculated with the
dimer Na+Nag, with respect to infinitely distant clusters. The displacement-vector method. The free-energy reference is
distance units are bohr, the energy units are eV. Fo(T=0, Z=%)=0.

trary to the rare-gas case, it does not clearly exhibit anyyC scheme. Here we have shown that the thermodynamic
metastable prolate structure or local barrier between such gerturbation method can also be very efficient when com-
structure and a more compact isomer. Also, the irregularitiepined with the MC method. From the methodological point
at smallZ do not seem very apparent here, and rather moref view, the present study is not only concerned with appli-
smooth with respect to the argon case. This might be due teations in cluster physics, but should also stimulate similar
the use of a quantal Hamiltonian and to the physically nonstudies in the field of finite-temperature reactivity, particu-
local character of the interaction in metal clusters. larly for biomolecules.

The agreement between the thermodynamic perturbation However, it is to be noted that the implementation of the
and displacement-vector methods was again rather goo@resent algorithmgespecially the multiple histogram meth-
Several curves (T,Z) of the configurational Helmholtz odg was made practical due to the linear character of the
free energies are plotted in Fig. 8, with the referencenvolved constraint. Its extension to the general case of non-
F(T=0, Z=x)=0, at different temperatures 10 K linear constraints still demands further analytical work.
<T<300 K. There is no evidence on this plot for any ap- As concerns the present applications to the interaction be-
pearance of a locally stable isomer at sodeThe only tween cluster entities, the results clearly indicate in the case
stable isomer is the compact Na and no intermediate Of Ari5+Ar 5 that possible metastable dimerlike configura-
structure is stabilized by either temperature or entropic eftions, like local minima of the free energy, exist at low tem-
fects. We did not see any qualitative difference at higheiperature, although they are not likely to be stabilized in a
temperatures 300 K T<600 K. two-body frontal approach. At higher finite temperature,
however, those minima tend to vanish, and a single stable
compact isomer remains. Beyond the frontal approach, it
should be interesting to extend the present study to include
centrifugal contributions, which is not quite straightforward

We have implemented and checked several methods to the Monte Carlo schenfé.
determine the Helmholtz free-energy function in constrained As concerns the interaction between twogNdusters, the
problems, corresponding here to the mutual approach of twow-temperature free energy does not present any evidence
clusters. We have tested on this problem the convergency aff a dimerized isomer of Ng, and this result is almost
both Monte Carlo and molecular-dynamics simulations,independent of temperature. Independently of theon-
which was found to be quite satisfactory as in a previousstraint considered here, the present work can also be viewed
study*® dealing with phase transitions in clusters. Again, asas a contribution that incorporates entropic effects for study-
already mentioned above, we observe that, for the same r@g the stability and structure of clusters and other complex
sult and equivalent sampling, MC-based algorithms appeamolecular systems at finite temperature.
to be more efficient when considering the computer-time cri-
terion.

Also, a good stability of the results was obtained when
comparing the thermodynamic perturbation algorithm versus Support by the CNRS, the ‘B®n Midi-Pyrenees, the
the displacement-vector approach. However, whereas theniversite Paul Sabatier, and the MESR is gratefully ac-
thermodynamic perturbation method had been up to now esnowledged. The authors are especially grateful to J. Durup
sentially combined with MD, the formalism of the and P. Labastie for helpful discussions. F. C. also thanks
displacement-vector method makes it directly suited for theeNSL for supporting research possibilities.
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