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We investigate the thermodynamical stability of the interaction between two clusters at thermal equilibrium
using classical molecular-dynamics~MD! and Monte Carlo~MC! simulations. The intercluster distanceZ is
fixed as a parameter in the microcanonical and canonical ensembles. We use and develop several techniques to
calculate the fundamental quantities of interest in these ensembles, namely, the density of statesV(E,Z) and
the partition functionQ(T,Z), yielding respectively, the microcanonical entropyS(E,Z) and the Helmholtz
free energyF(T,Z). The multiple histogram method is used to estimate the variations ofS with E and ofF
with T, both extracted from either constant energy MD or constant-temperature MC simulations. The thermo-
dynamic perturbation and the displacement-vector methods are used to provide the variations of the free energy
along theZ coordinate. These methods are applied to the interaction of Ar131Ar 13 and Na81Na8 clusters.
The Lennard-Jones~Ar 13) 2 cluster dimer has a locally mechanically stable structure atZ58.6 Å, which
appears to remain thermodynamically stable untilT.25 K. The temperature effects also stabilize two inter-
mediate compact configurations, nearZ55 and 6.6 Å. On the other hand, the interaction between Na81Na

8, modeled by a distance-dependent tight-binding Hamiltonian, does not exhibit a stable structure except in its
compact shape Na16. The entropic effects, favored by the thermal phenomena, do not occur to induce any
thermodynamical local stability for a dimerized~Na8) 2. In other terms, the stability of Na16 does not seem to
be governed by the underlying two Na8 magic-number units.@S0163-1829~96!00939-3#

I. INTRODUCTION

On both experimental and theoretical sides, the interest of
chemists and physicists in small clusters of atoms or mol-
ecules has increased constantly in the last decades. In par-
ticular, a great deal of attention was paid to their structural
and thermodynamical properties. Among the different spe-
cies of clusters, special interest has been paid to homoge-
neous rare-gas systems as prototypes of van der Waals clus-
ters, and also to alkalis as the simplest example of metallic
clusters.

Those two kinds of systems offer very different types of
physics. Indeed, in rare-gas clusters, the electrons remain
localized on the atoms, and no chemical bond is established
~only weak van der Waals bonding!. Conversely, the elec-
trons in metallic clusters are strongly delocalized. Thus the
rare-gas systems are well described with simple pair additive
energy functions such as the Lennard-Jones~LJ! potential,
whereas metallic systems must receive treatments allowing
for electron delocalization, namely, more or less sophisti-
cated explicit quantal treatments. Despite this strong physical
difference, it occurs that the equilibrium geometrical con-
figurations may present some common general features. The
most stable isomers have generally compact shapes, and in
both cases show arrangements around pentagonal or icosahe-
dral patterns, at least in the range of a few tens of atoms.1–4

However, several studies have conjectured, in particular
in the case of metallic clusters, the existence of clusters
dimers. The existence of such deformed clusters was first

investigated using the two-center jellium model,5 and re-
sumed by Knospeet al.6 These authors calculated the
potential-energy evolution with the intercluster distance for
Nan1Nan , n58, 9, 19, and 20. Na81Na8 was shown to
exhibit a stable local minimum for a separation of 13.5 bohr
between the centers of mass of the two subunits. This corre-
sponds to a very prolate structure. The more sophisticated
results of cylindrically averaged pseudopotential scheme
~CAPS! ~Ref. 7! calculations of Na16 also reveal a ‘‘super-
deformed’’ structure consisting of two Na8 subunits. How-
ever, all of these studies assume or constrain a cylindrical
symmetry. As a matter of fact, all three-dimensional calcu-
lations for Na16 tend to establish that it most probably ex-
hibits a triaxial structure.4,8,9

The possibility of creating clusters dimers has also been
investigated using a collisional approach,6,10–12 necessarily
dynamical. However, it is clear that, in a two-cluster colli-
sion, even if the incident cluster has a very small relative
velocity, the system cannot be permanently stabilized due to
the total-energy conservation. Thus it was concluded that a
prolate Na81Na8 cluster dimer may appear only as a tran-
sient species at the beginning of the collision, but that it
decays into a compact form through a thermalization pro-
cess. The lifetime of such a prolate complex seems to be
more likely described by a continuous dissipation process
resulting from a redistribution of relative collisional energy
into thermal degrees of freedom, rather than a trapping in a
well of the potential-energy surface~PES! corresponding to a
stable dimerized deformed isomer. In fact no evidence of a
barrier between a prolate structure and a compact isomer was
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found along the reaction path in the work of Zhang and
co-workers.11,12In any case, the stabilization of a cold cluster
in a collision between two subunits requires an energy re-
lease through evaporation or fragmentation. Therefore it is
difficult in such processes to probe the PES topography ac-
curately.

It is possible to develop purely static approaches (T50)
to explore reaction paths or least-energy paths between iso-
mers ~chain algorithms or quenching procedures along the
dynamical trajectory!. However, in order to be exhaustive,
these methods require an extensive sampling of the initial
conditions, in particular the relative orientations of the ve-
locities. Moreover, at finite temperature it is likely that not
all the numerous local minima on the PES are very signifi-
cant and need to be recorded. The entropic effects should
also be taken into account in a consistent way. This is also to
be related to the studies of phase changes and general ther-
modynamical behavior of such systems.13–16A pertinent de-
scription of the problem may consist in keeping the interclus-
ter separation coordinateZ as an explicit deterministic
parameter, while the other degrees of freedom receive a sta-
tistical treatment. In this line, the thermodynamical free-
energy functionF(T,Z) seems to provide a relevant frame-
work to describe the system.

In this paper, we address the general problem of the ther-
modynamical study of theXp1Xq approach between two
clusters ~here p5q and the total number of atoms is
N52p). Our purposes are~i! to establish the ability of dif-
ferent methodologies for computing the thermodynamical
functions with a constraint parameter~here, the intercluster
distanceZ); and~ii ! to examine the stability or unstability of
cluster dimers at finite temperatures with respect tofree en-
ergiescalculated from a known reference state~here the two
clusters atZ5` andT50).

The various theoretical and computational methods used
and developed in this work are presented in Sec. II. In Sec.
III, we discuss the results obtained with these methods ap-
plied to the stability of the Ar131Ar 13 problem as a direct
application, taking advantage of the simplicity and computa-
tional efficiency of the Lennard-Jones pairwise potential
modeling to achieve rather exhaustive sampling and signifi-
cant statistics.

The same techniques are then applied to the thermody-
namical study of the Na81Na8 interaction with a distance-
dependent tight-binding~DDTB! model. Although more so-
phisticated methods have been used in the literature to
describe alkali-metal clusters, quantum chemistry
calculations17 and the local-density approximation~LDA !,18

those techniques are too computer-time consuming to be
handled in quantitative thermodynamical sampling, even the
LDA in the Car-Parrinello formulation. The present DDTB
model was shown to provide energetic and geometrical prop-
erties in quantitative agreement withab initio calculations
when available. The application for Na81Na8 is presented
in Sec. IV. We finally compare the methodologies and dis-
cuss the results in Sec. V.

II. METHODS

As a preliminary step, we examine the situation atT50.
We systematically search the global minimum of the poten-

tial energy as a function of the intercluster separationZ, e.g.,
the mechanically stable clusters with the holonomic con-
straintZ5 const. Both global~simulated annealing and regu-
lar quenching along a collisional trajectory! and local~con-
jugate gradient or steepest descent! exploration methods are
involved.

The methods for computing the free energy used or de-
velopped in the present paper can be sorted into two major
categories:

~i! The first category is a finite temperature or finite en-
ergy search. It consists, at fixedZ5Z0, of calculating the
fundamental quantity of interest in the microcanonical and
canonical ensembles, that is either the entropyS(E,Z0) or
the free energyF(T,Z0). This was done with the multiple
histogram method. This practically requires, for this given
Z, to achieve microcanonical simulations in a range of ener-
gies or canonical simulations in a range of temperatures.

~ii ! The second category is also a finite temperature cal-
culation of the free energyF(Z,T0), but at fixed temperature
T0. It consists of estimating free energy differences along the
Z coordinate, keeping the temperature at fixed valueT0.

We assume that theN-atom cluster dimer is described
with a potential energy functionV only dependent on the
atoms or nuclei coordinatesRW 5$xi ,yi ,zi%. We also assume
that both clusters center of mass~c.o.m.! are aligned on the
z axis, so that the intercluster distanceZ, also considered as
a functionj of the coordinates, is calculated by

Z5j~RW !5
1

M
B

(
iPB

mizi2
1

M
A

(
iPA

mizi ~1!

whereM
A
andM

B
are the total masses of the clustersA and

B for the configurationA1B, and$mi% the individual atomic
masses.

In general thermodynamical simulations, the choice be-
tween general algorithms like Monte Carlo~MC! or molecu-
lar dynamics~MD! is not of any special importance, since
both MC and MD methods are known to be equivalent from
the thermodynamical equilibrium point of view,19 which is
essential here. However, MD methods present several draw-
backs from a practical point of view. First, they require the
determination of the energy gradient along the simulation,
which is time consuming, particularly with a quantal-type
Hamiltonian. Moreover, MD simulations of geometrically
constrained systemsat fixed temperaturemust be imple-
mented with intricate algorithms,20,21 whereas MC methods
are always more straightforward to handle. Following the
evolution with real time is not crucial in the purpose of de-
termining thermodynamical functions.

For the present application, the implementation of simu-
lations with a holonomic constraint is made with two main
methods. On the one hand, one can introduce an artificial
constraint to keepZ at an initial value, via an extra potential
Ṽ(Z) added to the potential-energy function. This is theum-
brella samplingmethod,22,23whereṼ(Z) is often harmonic.
On the other hand, one can really constrain in time~or in
Monte Carlo pseudotime! the system to remain on the hyper-
surfaceZ5 const. This last technique~the so-calledblue-
moon ensemble sampling24! introduces some correcting
terms in the free energy when sampling this biased distribu-
tion of the phase space with molecular dynamics.25 Actually,
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a recent work by Depaepeet al.26 showed that these two
methods were equally valid and produced the same quantita-
tive results. When choosing MC rather than MD sampling,
one gets rid of extra calculations along the simulation~with
respect to an unconstrained simulation! by preferring the
blue-moon method to the umbrella sampling method, be-
cause the latter one is especially simple to implement in a
MC framework.

To avoid the evaporation processes which may occur as
soon as the temperature is high enough, we enclosed the
dimer into an ellipsoid trap and added to the potential energy
an extra harmonic term

Vrep~RW !5(
i

H k~r
A

i 1r
B

i 2d!2/2, r
A

i 1r
B

i .d

0, r
A

i 1r
B

i <d
~2!

with RW 5$xi ,yi ,zi%. r A
i and r

B

i are the respective distances

between the atom or nucleii and the centers of mass of the
clustersA and B, and d52Z1s. k and s are numerical
constants, chosen in practice, respectively, as 100 times the
atomic dimer energy and 2.3 times the interatomic averaged
distance in the compact cluster. This ellipsoid wall was also
used in MD simulations for argon, in order to be able to
compare the results between MD and MC constrained simu-
lations. In the following, the potentialV implicitly includes
this repulsive term.

A. Optimization methods at T50

As a preliminary step toward the calculation of thermal
quantities such as the free energy, the systematic search for
locally stable structures with fixedZ constitutes an attempt to
explore as exhaustively as possible the configurational space
of the cluster dimer. In fact, here we deal only with a hyper-
surface at fixedZ of this space.

The global algorithm for finding at fixedZ the absolute
minima on the PES is a simple Monte Carlo simulated an-
nealing, forcing the constraint by keeping the c.o.m. of each
subcluster unit fixed at each step, when performing indepen-
dently collective MC moves. We have thus generally used
the MC sampling. However, when applying the multiple his-
togram method~ii ! in Sec. II B, we also compare MC and
MD simulations.

For eachZ, after the simulated annealing process was
achieved and to avoid artifacts, we further locally optimized
the obtained structure with a quenching procedure, based ei-
ther on steepest descent or conjugate gradient algorithms.27

The usual steepest descent quenching method minimizes the
potential energy by carrying on consecutive steps along the
gradient direction, and thus solves the equationdrW i /dt
52a¹W iV(RW ), with a a numerical parameter. With theZ
constraint, one adds a Lagrange multiplierl so that the po-
tential energy becomes

Vl,Z~RW !5V~RW !1l@j~RW !2Z#. ~3!

The artificial resulting ‘‘forces’’~as part of the gradient! will
insure the intercluster distance to remain fixed. By writing

]Vl,Z

]l
50, ~4!

]Vl,Z

]Z
50, ~5!

we easily find propagation equations for theZ-constrained
quenching procedure:

dxi
dt

52a
]V

]xi
, ~6!

dyi
dt

52a
]V

]yi
, ~7!

dzi
dt

55 2a
]V

]zi
1a

mi

M
A

]V

]Z
iPA

2a
]V

]zi
2a

mi

M
B

]V

]Z
iPB.

~8!

The calculation of]V/]Z with respect to the clusters coor-
dinatesRW 5$xi ,yi ,zi% is made explicit in Ref. 28, and gives
the following equation:

]V

]Z
5

M
A

M
A
1M

B

(
iPB

]V

]zi
2

M
B

M
A
1M

B

(
iPA

]V

]zi
. ~9!

This quenching procedure appears to be a very efficient and
powerful tool for locating the bottoms of the PES wells with
theZ constraint. It also allows the implementation of general
dynamical algorithms such as conjugate gradient or classical
molecular dynamics with this constraint, since the same
Lagrange multiplier may be added to the Hamiltonian in-
stead of only its configurational part.~For a general descrip-
tion on molecular dynamics with holonomic constraints, see
Ref. 29.!

Starting either from the separated systems configuration
Xp1Xq with largeZ, or from the known compact structure
Xp1q with minimalZ, the internuclear distance is changed to
intermediate values, and simulated annealing is performed
followed with local quenching. The resulting structures are
the constitutive basis for the aftercoming thermal studies.

When starting from an initial long distance, the prelimi-
nary minimization of the energy with respect to the relative
orientation of the~almost! separated clusters was solved spe-
cifically by performing several Monte Carlo simulations on
the fourfA , cA , fB , andcB spherical angles associated
with the two clusters. This occured to be more practical in
the case of argon, for which the uncut LJ potential is still
active at long range.

Finally, a third method was employed to explore the
small-Z region better, using periodic quenching along clas-
sical MD collision trajectories with thermalized initial ve-
locities. We sometimes found some structures with this pro-
cedure which were lower than those obtained by artificially
imposing the distance and then achieving optimization. This
situation occured more frequently for sodium clusters.

The classical Metropolis algorithm30 was used in MC
simulations, and a fourth-order Runge-Kutta procedure
propagated Hamilton’s equations in MD simulations.
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B. Constrained multiple histogram method

From now on we wish to estimate the microcanonical
density of statesV(E,Z) and the canonical partition function
Q(T,Z), which lead directly to the microcanonical entropy
S(E,Z)5k

B
lnV(E,Z) and to the free energy of the cluster,

F(T,Z)52k
B
TlnQ(T,Z), wherek

B
is Boltzmann’s constant.

The procedure for computingV(E,Z) andQ(T,Z) at fixed
Z is a multiple histogram method, adapted in the following
for theZ constraint.

First used for clusters in a work of Labastie and Whetten
who studied the solid-liquid transition in Mackay icosahedra
argon clusters,31 this method extracts from simulations the
fundamental quantity from which all the thermodynamical
data can be deduced; that is, the microcanonical density of
states. The cluster community has used with benefit this
method for studying thermal phenomena, mainly phase
changes,15,31,32and evaporation in clusters.33 Up to a recent
work,19 the histogram methods were restricted to constant-
temperature simulations~either Monte Carlo15,31,32or Nosé
molecular dynamics33!. The extension of the method to
isoenergetic MD simulations provided an efficient way to
treat the thermodynamical equilibrium of an isolated cluster.
Nevertheless, we also propose to calculate the density of
states with theZ constraint, in the microcanonical ensemble.
We describe successively the implementation of the formal-
ism to MD and MC simulations. In MD simulations, the
constraint is imposed through a Diracd function:

V~E,Z!5E
G
d@j~RW !2Z#dFdj~PW !

dt
Gd@H~RW ,PW !2E#d3N26RW

3d3N26PW , ~10!

Q~T,Z!5E
G
d@j~RW !2Z#dFdj~PW !

dt
G

3exp@2bH~RW ,PW !#d3N26RW 3d3N26PW ~11!

HereG is the phase space and 3N26 is the total number of
independent degrees of freedom of the cluster dimer.
H(RW ,PW ) is the Hamiltonian.

Let us now describe a system of coordinates
$Z

G
,Z,xi ,yi ,zi8%, whereZG

is the coordinate of the dimer

c.o.m., andzi8 is an atom or nucleus coordinate with respect
to the c.o.m. of the cluster it belongs to. Since the global
translation and rotation of the dimer do not influence the
value of V(E,Z), we assumeZ

G
of no importance in the

following. We then have

V~E,Z!5E
GZ8
Jd@j~RW 8,Z!2Z#dFdj~PW 8,P

Z
!

dt
G

3d@H~RW 8,PW 8,Z,P
Z
!2E#dGZ8 . ~12!

RW 85$xi ,yi ,zi8% is the representative configuration in the
3N27 manifold, and J is the Jacobian of the
G5$RW ,PW %
GZ85$RW 8,PW 8,Z,P

Z
% transformation.P

Z
is the

conjugate momentum ofZ, and the integration is performed
with dGZ85d3N27RW 83d3N27PW 83dZ3dP

Z
. It can easily be

shown that

P
Z
5

M
A

M
A
1M

B

(
iPB

pzi2
M

B

M
A
1M

B

(
iPA

pzi5
M

A
M

B

M
A
1M

B

j~PW !

~13!

with pzi the conjugate momentum ofzi . Since this transfor-

mation is linear in the coordinates,J is a constant. The inte-
gration onZ andP

Z
can be performed, and finally leads to

V~E,Z!5J
M

A
1M

B

M
A
M

B

E
G8

d@K~PW 8!1V~RW 8,Z!2E#d3N27RW 8

3d3N27PW 8 ~14!

with K(PW 8) andV(RW 8,Z) the respective kinetic and potential
energies of the system, and whereG8 denotes the restricted

$RW 8,PW 8% phase space. In the following, we do not take into
account the factorJ(M

A
1M

B
)/M

A
M

B
, since its contribution

to the density of states is only a multiplicative constant. The
following multiple histogram procedure is used to extract the
V(E,Z) quantity from isoenergetic MD simulations.

We start from Eq.~14!, which we write as

V~E,Z!5E
0

E

V
C
~V,Z!V

K
~E2V!dV, ~15!

whereV
K
(E) is the kinetic density of states,

V
K
~E!5

d

dEEK~PW 8!<E
d3N27PW 8, ~16!

andV
C
(V,Z) is the configurational density of states,

V
C
~V,Z!5

d

dVEV~RW 8,Z!<V
d3N27RW 8. ~17!

The fact thatV
K
does not depend on theZ coordinate is

indeed due to the linearity of the transformation, as discussed
by Paci et al.25 and by Depaepeet al.26 Since this kinetic
term has a simple expression asV

K
(E)5aE(3N29)/2, Eq.

~15! suggests a MD multiple histogram application to extract
V

C
(V,Z) at fixedZ. We say that, if a simulation at constant

total energyE5V1K is ergodic, the normalized probability
distribution ofV is

r
Z
~V,E!5

V
K
~E2V!V

C
~V,Z!

V~E!
. ~18!

So, if the simulation is performed with energyEi , the prob-
ability density to have the potential energyVj is given by

r i j5a iV j~Ei2Vj !
~3N29!/2 ~19!

with V j5V
C
(Vj ,Z) anda i51/V(Ei).

The multiple histogram method can then be applied to
such an equation. It makes the extraction ofV(E,Z) possible
~for full details, see Refs. 15 and 19! from a series of simu-
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lations at constantE, for the same value ofZ. The only
requirement is that the distributions of energies must overlap,
in a similar way than in the umbrella sampling method.22

FromV(E,Z), one directly hasS(E,Z), up to a global ad-
ditive constant corresponding to the freedom in choosing the
entropy reference. This scheme can be used to calculate the
configurational entropy of the separated configuration
Xp1Xq , as a function of the total energy.

We now examine the case of the MC simulation scheme.
In the canonical ensemble, the fundamental quantity is the
partition function, Eq.~11!. In the system of coordinates

$RW 8,PW 8,Z,P
Z
%, one has

Q~T,Z!5E
G8
exp„2b@K~PW 8!1V~RW 8,Z!#…dRW 83dPW 8.

~20!

SinceK(PW 8) does not depend onZ, Q can be factorized into
its kinetic and configurational parts. The configuration inte-
gralQ

C
(T,Z) is defined as

Q
C
~T,Z!5E

L8
e2bV~RW 8,Z!dRW 8, ~21!

with L85$RW 8% the restricted configurational space. As in the
microcanonical ensemble, Eq.~21! has another expression in
terms of the configurational density of statesV

C
(V,Z):

Q
C
~T,Z!5E

0

`

V
C
~V,Z!exp~2bV!dV. ~22!

To computeV
C
(V,Z), we say that the probability of finding

the Z-constrained cluster dimer in a configuration with en-
ergyVi and at temperatureTj is given by the canonical dis-
tribution

r i j5V
C
~Vi ,Zj !exp~2b jVi !/Q~Tj ,Zi !. ~23!

In the canonical ensemble, the multiple histogram method is
applied to such an equation.V

C
(V,Z) can then be calculated

from a series of simulations at constantT, for the same value
of Z. Again, the only requirement is that the distributions of
energies must overlap. One then easily computes the con-
figurational free energyF

C
(T,Z), up to a global additive

constant. We chose the reference asF
C
(T50, Z5`)50.

Once the density of statesV(E,Z) is known either from
MC or MD simulations, one can easily calculate the canoni-
cal partition functionQ(T,Z) by

Q~T,Z!5E
0

`

V~E,Z!expS 2
E

k
B
TD dE, ~24!

and a similar expression to calculate the configuration inte-
gral Q

C
(T,Z) from V

C
(V,Z). Both MD and MC methods

described above were used to compute both the configura-
tional entropyS

C
(V,Z) and the partition functionQ

C
(T,Z).

C. Direct calculation of F
C
„T,Z… at fixed T

We now present two methods to estimate directly con-
figurational free-energy differences along theZ coordinate,
keeping the temperature at fixed value. A first method cho-
sen for this purpose is very general, and consists of thether-
modynamic perturbationmethod.34 We start from Eq.~21!,
and we writeQ

C
(T,Z) for Z1dZ:

Q
C
~T,Z1dZ!5E

L8
exp@2bV~RW 8,Z1dZ!#d3N27RW 8

5Q
C
~T,Z!^exp2b@V~RW 8,Z1dZ!

2V~RW 8,Z!#&Z , ~25!

where the canonical average^&
Z
is made with the constraint

Z, at temperatureT. This last equation immediately gives the
derivative]FC /]Z,

]FC

]Z
~T,Z!5 K ]V

]Z
~RW 8,Z!L

Z

. ~26!

The building of the functionFC is then allowed by a simple
integration,

FC~T,Z!5FC~T,Z0!1E
Z0

Z K ]V

]Z L
Z

dZ. ~27!

The quantity]V/]Z, calculated with Eq.~9!, is recorded and
averaged for several values ofZ, andFC(T,Z) is then evalu-
ated. This method is imprecise for two reasons. The averag-
ing obviously introduces an error, and also the integration
itself, since it is carried out with a limited amount of points
~each of them requires a simulation!. An alternative method
for computing free-energy differences is the approach of
Voter,35 also known as the ‘‘displacement vector’’ method,
or also the ‘‘acceptance ratio’’ method, from the precursor
work of Bennett.23,36 It is especially designed for the Monte
Carlo scheme. To take account of the holonomic constraint
Z in this procedure is theoretically easy, but practically not
straightforward ~some other formulations have been
proposed37!. Our presentation is close to the original formu-
lation of Voter. The Metropolis function for a canonical en-
semble is the acceptance probability for a Monte Carlo move
causing an energy changeDE; that is, Mb(DE)
5min„1,exp(2bDE)…. For anyE andE8, we have

exp~2bE!Mb~E82E!5exp~2bE8!Mb~E2E8!.
~28!

Let us considerE andE8 as functions of the coordinatesRW in
the configurational space, and assume thatE5V(RW 2DW /2),
E85V(RW 1DW /2), whereV is a potential-energy function,DW a
constant vector of the configurational space. We have, for
anyRW andDW , the following identity:

exp@2bV~RW 2DW /2!#Mb@V~RW 1DW /2!2V~RW 2DW /2!#

5exp@2bV~RW 1DW /2!#Mb@V~RW 2DW /2!2V~RW 1DW /2!#

~29!
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We multiply both left- and right-hand sides by the constraint
d@j(RW )2Z#, and we integrate over the configuration space
L5$RW %,

I25E
L
e2bV2~RW !Mb@V1~RW !2V2~RW !#d~j~RW !2Z!dRW

5E
L
e2bV1~RW !Mb@V2~RW !2V1~RW !#d~j~RW !2Z!dRW 5I1 ,

~30!

where we used the notationV6(RW )5V(RW 6DW /2). We shift
the integration variable inI2 ,

I25E
L
e2bV~RW !Mb@V~RW 1DW !2V~RW !#

3d@j~RW 1DW /2!2Z#dRW . ~31!

Now j is linear in RW ; thereforej(RW 1DW /2)5j(RW )1DZ/2
with DZ5j(DW ). Hence

I25E
L
e2bV~RW !Mb@V~RW 1DW !2V~RW !#d@j~RW !2Z

1DZ/2#dRW , ~32!

and a similar form forI2 . Our aim is to calculate the con-
figurational free-energy differenceDF

C
5F12F2 , with

F652k
B
T ln^d @j(RW )2(Z6DZ/2)#&52k

B
TlnQ6 . One has

Q1

Q2
5

I2

Q2

Q1

I1
5

^Mb@V~RW 1DW !2V~RW !#&2

^Mb@V~RW 2DW !2V~RW !#&1

, ~33!

with the notation

^A&65
*LA~RW !e2bV~RW !d@j~RW !2~Z6DZ/2!#dRW

*Le
2bV~RW !d@j~RW !2~Z6DZ/2!#dRW

, ~34!

the average of the observableA(RW ) over a canonical sam-
pling with the constraintj(RW )5Z6DZ/2. Finally we can
write the configurational free-energy difference between two
configurations, held, respectively, with the constraint
Z1DZ/2 andZ2DZ/2:

FC~T,Z1DZ/2!2FC~T,Z2DZ/2!52k
B
Tln~Q1 /Q2!.

~35!

The configuration integralQ1 (Q2) is calculated by per-
forming a Monte Carlo simulation governed by the potential
function V(RW ) with the constraint over Z1DZ/2
(Z2DZ/2), and by accumulating the average probability that
a step fromRW to RW 1DW (RW to RW 2DW ) would be accepted.
These displacements, which make the system jump from a
Z1DZ/2 constraint to aZ2DZ/2 constraint~or vice versa!,
are never really performed; only the acceptance probability is
stored.

Thus, by carrying out several simulations at various inter-
cluster distances$Zi%, and by takingDZ5Zi112Zi as a con-
stant, we can evaluate step by step directly~and not by inte-

gration! the free-energy differences FC(T,Zi11)
2F

C
(T,Zi). When the simulation with constraintZi is actu-

ally being performed, we store the three averaged following
quantities:Q1 by steps towardZi1DZ5Zi11 to calculate
the numerator of the right-hand side of Eq.~33!, Q2 by steps
from Zi towardZi2DZ5Zi21 to calculate the denominator
at Z5Zi21; and ^]V/]Z&Z to achieve the thermodynamic
perturbation formula.

The resulting curvesFC(T,Z) at fixed T still have an
undetermined additive constant, which is provided here by
the multiple histogram simulations at fixedZ. Therefore a
complete determination of the (T,Z) map of the free energy
can be achieved with differents sets of methods, employing
the algorithms developed in the present and previous sec-
tions.

III. RESULTS FOR Ar 131Ar 13

The testing of the methods presented in Sec. II was first
performed on the Ar131Ar 13 dimer. The argon clusters were
modeled by simple classical Lennard-Jones 6–12 potential,
with parameterss53.4 Å and«/k

B
5119.8 K:

V~$rW i%!5(
i, j

4«F S s

r i j
D 122S s

r i j
D 6G . ~36!

The use of reduced units«5s51 in the following allows us
to describe these systems as well as other rare gases, though
with different parameterss and «.38 The time step in MD
simulations was chosen asDt50.01 LJ units. Such a time
step leads to the conservation of the total energy within
1025 ~relatively! for simulations of 23105 time steps.

Each Ar13 cluster has theI h ground geometry of a perfect
icosahedron with a central atom, and a binding energy
V135244.327«, whereas the compact Ar26 is known to ex-
hibit a C2v structure, with an energyV2652108.316«.1,39

The reference curve of the energy minima versus the inter-
cluster separation Z is plotted on Fig. 1, for
1.2<Z/s<4.0. One interesting feature is the existence of a
long-distance minimum@named isomer~e!# at Z52.53s
separated by a small barrier from a series of minima corre-

FIG. 1. Reference curveV(Z)5F
C
(T50,Z) for the Lennard-

Jones system Ar131 Ar 13. The distance and energy units are LJ.

10 954 54F. CALVO AND F. SPIEGELMANN



sponding to more compact configurations. The geometries of
the asymptotic configurationsZ51.2s andZ54.0s, named
isomers ~a! and ~f!, as well as the geometry of the long
distance minimum, are plotted in Fig. 2. This reference curve
also shows three particularly stable structures, the first one
@isomer~b!# being located atZ51.49s, the second one~iso-
mer c) at Z51.67s, and the last one@isomer ~d!# at
Z51.95s. These isomers are shown on the same figure as
isomers~a!, ~e!, and~f!.

The existence of an energy barrier between both clusters
nearZ.2.43s which separates the compact structures from
the stable prolate Ar131Ar 13 can be investigated further
with an adequate search of the saddle point configuration on
the PES. This configuration was investigated by systemati-
cally searching for the maximal value ofV and minimal
value of u]V/]Zu after relaxation of all others degrees of
freedom. Its energy is about210.0 units with respect to
V(Z5`)50, so one could certainly not hope to locate the
dimer in the prolate structure with a frontal collision process.
The numerous irregularities of theV(Z) curve forZ,2.5s
are mainly due to that one can explore numerous discrete
minima compatible with the constraint which may be sepa-
rated by higher saddle points, and also to the fact that we did
not practically let both clusters mix together, the atoms of
each cluster always remaining connected to their respective
c.o.m.

The reference curveFC(T,Z) at fixed Z was calculated
with the constrained multiple histogram method described
above, for the maximalZ54.0s, and in the range
0.01<T<0.5 LJ units. Both MD and MC algorithms were
used to extract the configurational density of states and the

partition function of this system. At the lowest temperatures
T,0.05, the obtained curve was extended and fitted to a
TlnT function, as would be obtained in the harmonic ap-
proximation. The added points were then discarded, leaving
just the original curve with now the referenceFC(T,0)50.
We have also calculated the microcanonical configurational
entropyS

C
(V,Z) with both methods, which was fitted to a

(3N28)lnV function for the lowestV. The results for both
methods are plotted in Fig. 3 and are nearly superposed,
which warrants us on the quality of the performed sampling.

In Fig. 4, we plotted severalF(T,Z) curves at finite tem-
perature calculated with both thermodynamic perturbation
and displacement-vector methods. The agreement between
these two techniques is very good in the whole range
0.01<T<0.5. The complete (T,Z) map of the free energy
with the referenceF(0,̀ )50 is plotted on Fig. 5. For tem-
peratures less than about 0.2 LJ units, isomers~b!, ~d!, and
~e! remain metastable, but~e! has clearly the greater basin of
attraction. WhenT reaches 0.2, the barrier which separates
~e! and the more compact shapes disappear, and only~b! and
~d! are metastable, untilT;0.3. At last, only the compact
shape~a! is stable whenT goes over 0.3. Moreover, in the
range 0.2,T,0.3, isomer~b! seems to be slightly stabilized
as compared toT,0.2.

FIG. 2. Six snapshots of locally stable Ar26 with the Z con-
straint, on the reference curveT50. Isomer ~a! Z51.20s,
V5219.66« (C2v compact structure!. Isomer ~b! Z51.49s,
V5218.09«. Isomer ~c! Z51.67s, V5218.42«. Isomer ~d!
Z51.95s, V5216.78«. Isomer~e! Z52.53s, V5211.47«. Iso-
mer ~f! Z54.0s, V520.38«. All structures except~f! are stable
without theZ constraint.

FIG. 3. Reference curvesS
C
(V,Z) andF

C
(T,Z) both calculated

with the constrained multiple histogram method atZ54.0s. Three
curves are plotted, extracted from MC and MD simulations and in
the harmonic origin approximation~HA!. ~a! Microcanonical con-
figurational entropyS

C
(V,Z). ~b! Canonical configurational free en-

ergyFC(T,Z).
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The global effect of the temperature on the free energy
curves is a general smoothing of the potential-energy curve.
Figure 5, which represents theF(T,Z) surface, allows us to
visualize this effect better. In the present case, one can ob-
serve the vanishing of the stability of the various metastable
isomers at lowT, but also the stabilization of an isomer~b!
in a particular range of temperatures. The quasidisappearance
of the Z structuration of theF(T,Z) surface around
T.0.3–0.4 is to be related to the known melting temperature
of argon clusters in this size range, namely,T.0.30.40

IV. RESULTS FOR Na81Na8

The potential energy of sodium clusters was calculated
using a distance-dependent tight-binding~DDTB! Hamil-
tonian developed by Poteau and Spiegelmann,4 and which
can be written as

ĥ5(
i , j

hi j ai
†aj , ~37!

whereai
† andaj , respectively, are creation and annihilation

operators corresponding to ans orbital on sitei and j of the
cluster. Not only are thes atomic orbitals taken into account
in this Hamiltonian, but also the effect ofp orbitals which is
included as a perturbation to the matrix elements:

hii5hii
~0!1hii

~2!5 (
kÞ i

atomsFrss~r ik!2
tss
2 ~r ik!

«3p2«3s
G , ~38!

hi j5hi j
~0!1hi j

~2!

5tss~r i j !2 (
kÞ i , j

atoms F tss~r ik!tss~r jk!

«3p2«3s
3

rW i j •rW jk

irW ikiirW jki
G ,

~39!

with rss(r ), tss(r ), and tss(r ), respectively, ion-ion repul-
sion, s–s, ands–ps transfer integrals taken as functions of
the internuclear distance. These functions were fitted onab
initio curves for Na2 and Na4.

4 Being given a geometrical
configuration of the cluster nuclei, the ground-state potential
energy is calculated as the sum of the one-electron energies

V5 (
iPocc

ni« i , ~40!

where« i are the eigenvalues of the DDTB Hamiltonian, and
ni the occupation numbers. Due to the larger computer time
needed to compute this energy function, we had to reduce the
amount of statistical sampling points by a factor 10 with
respect to the simulations of LJ clusters. Only the MC simu-
lations scheme was used here to calculateFC(T,Z).

The Na8 and Na16 ground structures according to this
energy function are represented in Fig. 6. Na8, with the en-
ergy24.95 eV, hasTd symmetry, whereas Na16, in its com-
pact triaxial shape~axial ratios X050.27, Y050.33, and
Z050.40), has a binding energy of211.26 eV andC1 sym-
metry. The reference curve atT50 is plotted in Fig. 7. Con-

FIG. 4. Finite-temperatureF
C
(T,Z) curves calculated with the

thermodynamic perturbation~solid lines! and the displacement-
vector ~dashed lines! methods. The free-energy reference is
FC(T50, Z5`)50. ~a! T50.05. ~b! T50.10. ~c! T50.15. ~d!
T50.20. ~e! T50.25. ~f! T50.30 LJ units.

FIG. 5. FC(T,Z) map of the configurational free energy with the
referenceFC(0,̀ )50 for the Ar131Ar 13 dimer. The units are LJ.

FIG. 6. Four snapshots of locally stable Na16 with the Z con-
straint, as part of the reference curveT50. Isomer ~a! Z56.25
bohr,V521.3586 eV. Isomer~b! Z59.25 bohr,V521.1367 eV.
Isomer ~c! Z514.25 bohr,V520.4446 eV. Isomer~d! Z526.25
bohr,V528.231025 eV. The first structure~a! is theC 1 compact
structure.
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trary to the rare-gas case, it does not clearly exhibit any
metastable prolate structure or local barrier between such a
structure and a more compact isomer. Also, the irregularities
at smallZ do not seem very apparent here, and rather more
smooth with respect to the argon case. This might be due to
the use of a quantal Hamiltonian and to the physically non-
local character of the interaction in metal clusters.

The agreement between the thermodynamic perturbation
and displacement-vector methods was again rather good.
Several curvesF

C
(T,Z) of the configurational Helmholtz

free energies are plotted in Fig. 8, with the reference
F(T50, Z5`)50, at different temperatures 10 K
,T,300 K. There is no evidence on this plot for any ap-
pearance of a locally stable isomer at someZ. The only
stable isomer is the compact Na16, and no intermediate
structure is stabilized by either temperature or entropic ef-
fects. We did not see any qualitative difference at higher
temperatures 300 K,T,600 K.

V. DISCUSSION AND CONCLUSION

We have implemented and checked several methods to
determine the Helmholtz free-energy function in constrained
problems, corresponding here to the mutual approach of two
clusters. We have tested on this problem the convergency of
both Monte Carlo and molecular-dynamics simulations,
which was found to be quite satisfactory as in a previous
study19 dealing with phase transitions in clusters. Again, as
already mentioned above, we observe that, for the same re-
sult and equivalent sampling, MC-based algorithms appear
to be more efficient when considering the computer-time cri-
terion.

Also, a good stability of the results was obtained when
comparing the thermodynamic perturbation algorithm versus
the displacement-vector approach. However, whereas the
thermodynamic perturbation method had been up to now es-
sentially combined with MD, the formalism of the
displacement-vector method makes it directly suited for the

MC scheme. Here we have shown that the thermodynamic
perturbation method can also be very efficient when com-
bined with the MC method. From the methodological point
of view, the present study is not only concerned with appli-
cations in cluster physics, but should also stimulate similar
studies in the field of finite-temperature reactivity, particu-
larly for biomolecules.

However, it is to be noted that the implementation of the
present algorithms~especially the multiple histogram meth-
ods! was made practical due to the linear character of the
involved constraint. Its extension to the general case of non-
linear constraints still demands further analytical work.

As concerns the present applications to the interaction be-
tween cluster entities, the results clearly indicate in the case
of Ar 131Ar 13 that possible metastable dimerlike configura-
tions, like local minima of the free energy, exist at low tem-
perature, although they are not likely to be stabilized in a
two-body frontal approach. At higher finite temperature,
however, those minima tend to vanish, and a single stable
compact isomer remains. Beyond the frontal approach, it
should be interesting to extend the present study to include
centrifugal contributions, which is not quite straightforward
in the Monte Carlo scheme.41

As concerns the interaction between two Na8 clusters, the
low-temperature free energy does not present any evidence
of a dimerized isomer of Na16, and this result is almost
independent of temperature. Independently of theZ con-
straint considered here, the present work can also be viewed
as a contribution that incorporates entropic effects for study-
ing the stability and structure of clusters and other complex
molecular systems at finite temperature.
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FIG. 8. Finite-temperatureF
C
(T,Z) curves calculated with the

displacement-vector method. The free-energy reference is
FC(T50, Z5`)50.

FIG. 7. Reference curveV(Z)5F
C
(T50,Z) for the sodium

dimer Na81Na8, with respect to infinitely distant clusters. The
distance units are bohr, the energy units are eV.
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