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Influence of multiatom interactions on the shapes and energetics
of two-dimensional homoepitaxial clusters on close-packed metallic surfaces
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We describe a schem@&SM for “bond saturation model) for modeling the energetics of adatom clusters
on close-packed metallic surfaces. In the BSM, atoms interactadadination dependemearest-neighbor
bonds. We show that the BSM yields a detailed understanding of the relationship between shape and energy for
two-dimensional(2D) homoepitaxial adatom clusters on close-packed metallic surfaces. In particular, we
advance a simple rule for predicting the binding energies of small clusters based on the moments of their
coordination distributions, derive a useful expression for the binding energy of a 2D cluster of arbitrary
geometry, and study the role played by coordination dependent bonding in determining step energies for
adatom islands. Our analysis of step energies provides insight into why the two distinct types of monatomic
steps on RiL11) have similar free energies as observed by Michely and Comsa. While our numerical results are
for P{(111), we expect our conclusions to hold for any chemically similar sys{@0163-18206)05740-3

I. INTRODUCTION The focus of this paper is the so-called “bond saturation
model” (BSM) and its implications for the energetics of
On all metal surfaces the relationship between shape arvo-dimensional homoepitaxial clusters on close-packed me-
energy for clusters of adsorbed atoaslatomy is compli-  tallic surfaces. In Sec. Il we describe the BSM, explaining
cated by the significant multiatom natufeoordination de- how we treat interadatom bonding with three parameters
pendencgof the metallic bond. Multiatom interactions are ~(three-parameter BSMn Sec. Il A and critically discussing
responsible for much of the physics unique to metallicthe resulting description of metallic bonding in Sec. Il B. In
surface€ In particular, it has been argued that multiatom S€C- Il C we generalize the treatment from just interadatom
interactions play a decisive role in determining the equilib-20nding to all the bonds in a soligen-parameter BSM In

rium shapes of 2D homoepitaxial clusters of adatoms on theec. Il we discuss the energetics of small clusters from the

(111) surfaces of CuRef. 4 and PE Understanding the point of view of both the three-parametéil A) and ten-

energetics of adatom clusters is a problem of considerabl arameter|ll B). mc_)dels and do th? same for large cluster
) ) . island energetics in Sec. IV, focusing mainly on step ener-
current interest in surface science. We propose to analyz

. . . L . ies. Finally, in Sec. V, we summarize our findings and con-
this problem using a simple yet realistic model which aIIowsClude
the treatment of multiatom interactions. While, ideally, first- )
principles calculatiorfscould be used to study surface cluster
energetics, despite recent progréssthis still poses a for- Il. BOND SATURATION MODEL
midak_al_e computatipnal challenge. This is one reason why We recently proposed the “bond saturation model” or
simplified models like the one used here are valuable. Morggp to treat the energetics of adatoms on close-packed me-
importantly, the understanding provided by first-principlesy|iic surfaces The distinguishing feature of our approach
calculations is greatly enhanced when they provide the pgs the inclusion of multiatom interactions in a natural and
rameters for Slmp||f|6d models which facilitate Ial’ge Scalecomputationa”y convenient fashion. In the BSM, the atoms
simulations and more readily provide unifying concepts.  in a solid interact viacoordination dependennearest-

Lattice gas models provide perhaps the most transparemiighbor bonds, i.e., the strength of the bond between two
framework for studying surface physics. Close-packed surneighboring atoms depends on how mamgarest neigh-
faces, such as At11), are particularly well suited to inves- bors each has. Generally, one expresses the bond strengths in
tigation via lattice gas methods because, on these surfacagrms of several bond parameters—one for each possible
adsorbate-induced relaxations are small. On more open sWalue of the coordination. These parameters can then be fit to
faces[such as R1L00] the physics is complicated by larger any available(theoretical or experimentatiata for the sys-
surface relaxation¥’ Despite this apparent simplicity, the tem of interest. The BSM allows one to study the conse-
P11 surface has been the focus of many recent experiguences of coordination dependent bonding in the absence of
mental studies’ Because, in general, the systematic treat-all other physical effects, and so, to decide whether or not
ment of multiatom (multisite) interactions is a difficult this effect alone can explain any given experimental finding.
task!? most lattice gas simulations of metallic surfaces to
date have assumed strictly two-bo@yairwise additive in-
teractions between atomi$.Because the metallic bond is
strongly multiatom in nature, the situation calls for a lattice An atom located on thél11) surface of an fcc crystal can
gas approach incorporating multisite interactions. occupy either an fcc or an hcp sitéhreefold coordinated

A. Three-parameter BSM
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FIG. 1. Pt bond parametef§a)] and cohesive energi¢gh)] for the six-parameter BSM versus nearest adatom coordinatida) is
obtained by dividing all quantities ith) by z. The parameters marked by's are determined from EAM binding energies of six clusters,
whereas those marked by circles were fit to 62 binding energies. Both the solid(cubie polynomial and the dotted line were fit to the
refined parameter&ircles in (b).

hollow). The two types of surface sites form twimiangulay EAM binding energies of 62 clusters including a monolayer
sublattices. In general, there can be interactions between adand 61 clusters with up to 7 adatoms. These cohesive ener-
toms on the same sublatti¢at all distances, with possibly gies are also given in Table I. The previous energie's in
different strengths for the fcc and hcp sublatticend also  Fig. 1(b)] were used as starting values for the fit. The corre-
between adatoms on different sublattices. Furthermore, eadponding bond parameterd (z)/z] are marked by circles in
of these interactions can in principle be coordination depenFig. 1(a). The details for our EAM calculations and how we
dent. In this work, we will focus on just the nearest-neighborparametrize the binding energies are given in Ref. 14. In all
bonds between adatoms on the same sublattice. This approxiur EAM calculations we used the empirical Pt function de-
mation is critiqued in Sec. Il B. veloped by Voter and ChevC).!” Because the cluster bind-
Accordingly, for the BSM, we seek six bond parametersing energies calculated on the fcc and hcp sublattices dif-
because each adatom can have up to six neéaesttom  fered by so little(typically several mey*® we averaged the
neighbors. With this scheme, the 2D lattice gas of adatomswvo binding energies for the fif
on either sublattice is governed by a Hamiltonian of the form As is seen in Fig. (b), the fitted cohesive energies are
well described by the solid curve which is a cubic polyno-
1
H=-3 > u(z)zn, .y . . .
29 TABLE I. Cohesive energiefeast-squares fifor Pt and coor-

) L dination numbers in the six- and ten-parameter bond saturation
wheren; andz; are, respectively, the occupati¢h if occu-  models.

pied, 0 if no) and coordination numbers at sitandu(z) is
the coordination dependent bond strength. As in Ref. 14, w&oordination Parameter Cohesive Parameter Cohesive
obtained preliminary values for the six bond parameters number name energy(eV) name energy(eV)
[marked by+'s in Fig. 1(a)] from the binding energies of six

clusters calculated with the embedded atom method or 1 A 0.850

EAM.*® The chosen clusters ranged in size from a dimer to a 2 B 1.556

complete monolayer. From the figure, it is seen that the re- 3 C 2.148 A 6.820
sulting bond strength decreases with increasing coordination 4 D 2.621 B 7.744
as is characteristic of the metallic boHtiThe labeling 5 E 3.019 c 8.502
scheme in Fig. () isu(1)=a, u(2)=b, u(3)=c, etc. The 6 F 3.311 D 9.148
corresponding “cohesive energies,’'U(z)=zu(z), are 7 E 9.675
marked by+’s in Fig. 1(b) and are labeled with the corre- 8 F 10.128
sponding uppercase letters. “Cohesive energy” seems ap- 9 G 10.471
propriate since in the BSM the contribution to the total en- 10 H 10.941
ergy of a solid from an atom with coordination is 11 I 11.278
proportional toU(z). The cohesive energies marked by 12 J 11.540

circles in Fig. 1b) are obtained from a least-squares fit to the
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mial of the form,U(z)=C,z+C,z>+C,z° [note that we also, as emphasized by Einstéinto the central transition
must haveU (0)=0]. A least-squares fit to the cohesive en- metals where angular bonding is importéht.

ergies (circles gives C,=+0.9183, C,=—0.07407, and The energetics embodied by Ed&) and (2) work quite
C,=+0.0022(eV), for the three coefficients. With this form well (at least at the EAM levgwhen all the adatoms reside

for U(2), the coordination dependent bond strength is giverPn the same sublattice. The most serious omission is prob-
by ably the (next longest bond between adatoms on the two

different sublatticesi.e., between an atom on an fcc site and
5 one on a nearby hcp sjteHowever, our EAM calculations
u(z)=Cy+ Cpz+Csz", (2 indicate that this “mixed-site” bond is on average about 0.1

eV weaker than the “pure-site” bon@®.7 eV average*
which is shown as the solid line in Fig(a. Thus instead of  Also, most of the mixed-site clusters we studied relatad
a six-parameter model, we are behooved to think now inr=0) into homogeneous-site clusters. This is perhaps a fur-
terms of a three-parameter model where the three coefficienther indication of the tendency for adatoms to occupy the
(C41,C,,Cy) are interpreted as phenomenological constantsame type of surface site. A recent study by Feibelman, Nel-
whose values will depend on the particular system beingon, and Kelloggis also of significance here. Using field-ion
studied. This scheméhree-parameter BSMs quite accu- microscopy(FIM), they observed that a single Pt adatom on
rate: the quadratiai(z) faithfully reproduces the 62 EAM Pt(111) prefers to bind at fcc sites. This observation is cor-
binding energies, incurringmaximum and meanerrors of  roborated by their first-principles calculations which indicate
only (3.4% and 0'62%20 In comparison, the singlé&oordi- a preference _Of 0.18 eV for _adatom blndll’lg a_\t an fcc site
nation independentbond strengthp,=0.614 eV, obtained OVer an hcp sitéthe EAM pred_lcts a_neghglble difference of
by fitting a straight line(dotted line with zero intercepto 1 meV). The formation of mixed-site bonds would then be
the cohesive energigsircles in Fig. 1(b), gives (max. and hindered because adatoms would tend to avoid the hcp sites.
mean errors 0f(29.2% and 18.2% This bond[indicated by
the dotted horizontal line in Fig.(4)] underpredicts the
dimer bond strengtiiu(1)=0.87 eV] by 29% and overpre- We have extended our approach to treat all (thearest-
dicts the (saturategl monolayer bond strengtfu(6)=0.55 neighboy bonds in a solid instead of just interadatom bonds
eV] by 11%2! These inaccuracies could adversely affectas discussed so far. Our motivation is simple: with the model
simulations of metal surface physics using a single coordinadiscussed in the preceding section, we can only study two-
tion independent bond strengiftonstant bond model or dimensional surfaces. Extending the model to all bonds al-
CBM). lows us to study three-dimensional surface physics. In this
work, we will use this extended model to examine the influ-
ence of substrate atom coordination on 2-D cluster energet-
ics.

As we have shown, the energetics predicted by EAM cal- Since an adatom on an f¢t11) surface always has three
culations for Pt are described very accurately in terms ofiearest neighbors in the substrate and can have 0 to 6 adatom
(coordination dependentnearest-neighbor bonds only. In neighbors, its coordinatiorinow total number of nearest
their first-principles assessment of “glue” schemésf  neighbor$ can have any value from 3 to 9. The coordination
which the BSM and EAM are examplesRobertsonet al.  of substrate atoms can vary from(i®o adatom neighborgo
found that the cohesive energies of a wide range of structure®2 (bulk coordinategl Accordingly, we seek 10 bond param-
of Al atoms were determined to a large extent simply by theeters to characterize bonding over the entire range of coor-
number of nearest neighbors, lending credence to our aglination numbers from 3 to 12. The Hamiltonian for this
proach for systems other than®towever, they found that ten-parameter BSM will also be given by Ed) but with a
a cohesive energy of the fort(z) =A\/z+ Bz fit the first-  possibly different form fou(z) (and a different range fa).
principles energies of 18 different structures with a ratherThe contribution to the energy of a solid from an atom with
high rms deviation of 0.2 eV/atom. It is hoped that Eg).  coordinationz will again be—U(z)/2 [recallU(z)=zu(z)].
better captures the essential physics for Pt and chemicallyy keeping with the previous labeling scheme, we have
similar systems, i.e., the late transition and noble metals. _ _ _ _

With the quadratic form fou(z), the BSM Hamiltonian J=U(12), 1=U(D, H=UdO...., A_U(3)'(3)

[Eq. (1)] can be showl{ to contain repulsive three-body
(trio) and attractive four-bodyquartej interactions in addi- We could not find ter{2D) clusters which would give ten
tion to an attractive two-body interaction. All the triand  independent equations in the ten unknown bond
separately the quareinteractions have the same strength parameteré® Rather, we obtained the “bulk energies’, I,
independent of the angles between the bonds. Though angandJ from three bulk quantities for Pt: the measured subli-
lar bonding is precluded in the EAM through the assumptiormation (Eg,) and vacancy formationE(L) energies and a

of rigid spherical atomic charge densities, substrate relaxealculated value for the divacancy removal energy,(. In
ations can, in principle, induce effectively angle-dependenthe BSM, E,,;=J/2, since it is the energyper atonm re-
interactions. But by the close agreement between the BSMuired to break up an infinite solid into isolated atorEé.is

and the EAM, we infer that the EAM predicts small surfacethe energy cosbeyond E,, to remove a single atom from
relaxations—as expected for close-packed surfaces. Because bulk. Removing this atom changes the coordination num-
of this explicit lack of angular dependence, the BSM is prob-bers of its 12 nearest neighbors from 12 to 11. Thus,
ably not well suited, in its present form, to more open sur—E,f)=6(J—I). Similar reasoning giveg5,=10J—71—2H,
faces which can have significant surface relaxafidmmd  which is the energy to remove two neighboring atoms from

C. Ten-parameter BSM

B. Critical discussion



10872 M. C. FALLIS AND C. Y. FONG 54

TABLE Il. EAM and BSM (three and ten paramejebinding energiegeV) and Oth—-3rd
coordination moments for clusters in three bond maximizing groups.

CLUSTER EAM  3pBSM  10pBSM m  m =~ m,  m,

C@) 232411 6.278 gégj 6 18 60 216
C@ 6299 6284 6288 6 18 60 222
T 6332 6332 6325 6 18 58 198
C% 10556  10.568 10560 9 32 128 566
(@3 10585 10616 10597 9 32 126 542
C@) ig:g;g 10.616° 181232 9 32 126 542
C%? 10627 10623 10620 9 32 126 548
C% 13:?% 19.533 }g:ggg 15 6 282 1388
C@ 1322(1)‘11 19.533 }g:gg 15 62 282 1388
% ig:ggg 19.581 1322‘3‘ 15 6 280 1364
c@ DS oy 9 s o a0 1w

the bulk. Foiles, Baskes, and Dai¥BD) report measured values reEorted by FBD for the related divacancy binding
values from the literature of 5.77 and 1.5 eV E)SrubandEL energy E5,) are quite uncertain: 0.1-0.2 eV. Using the VC
for Pt?® These give 11.54 and 11.28V) for J and |, re- EAM Pt function, we obtained 14.472 eV fd&), (unre-
spectively.E}, is not directly measurable and the measuredaxed, giving 10.95 eV forH.?” As a consistency check, we
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FIG. 2. Pt bond parametef&)] and cohesive energi¢€)] for the ten-parameter BSM verstatal nearest-neighbor coordinatian,All
symbols have the same meaning as in Fig. 1. The solid cur¢@ is a fourth degree polynomial fit to the parametgmiscles in (b) [not
shown in(b) for clarity]. The dotted curve irib) is meant only as a guide to the eye.

note that withH, I, andJ determined as described, the model eter model. It should be stressed that there is nothing sacred
value for the divacancy binding energy, about fitting the BSM parameters to EAM calculations and
ES,=|E}, —2(Eq+E!)|=3J-51+2H, is about 0.07 eV that in general any theoreticé.g., first-principles calcula-
(attractivg. This is much closer to the experimental rangetions) or, better yet, experimental data could be used.

than 0.45 eV, obtained with the FBD EAM Pt functiéh.

This attests to the. apcuracy of bpth the YC Pt potential as IIl. SMALL CLUSTER ENERGETICS
well as the description of bonding provided by tften-
parameter BSM. A. Energy-shape relationship in the three-parameter BSM

With the bulk energies H—J) determined, we then  To demonstrate the predictive power of our method, let us
picked seven clusters from the 62 in Ref. 14 and solved thewitch in Eq.(1) from a summation over lattice sites to a
resulting seven equations in the seven unknown “adatongummation over coordination numbers, giving
energies,”A—G.?® As in Fig. 1, these preliminary energies
are marked byt+'s in Fig. 2(b) as are the corresponding bond
parameters in Fig. (3). As before, these parameters were H=—
used as starting values for a least-squares fit to the EAM
binding energies of the same 62 clusters giving the paramyhereN, is the coordination distribution givintfor eachz)
eters marked by circles in Figs(a2 and 2b). The param- the number of adatoms with that coordination. Using the

eters changed much less for the ten-parametéméiximum  quadratic form foru(z) in Eq. (2), Eq. (4) becomes
of 0.25% forE) than for the six-parameter f{#t% for D).

The dotted line in Fig. @) is meant only as a guide to the 1

eye but it does indicate that the ten energies are best fit by H=— 5 [Cimy+Comy+ Camg], )
two functions which meet & where there is a cusp in both

parameter sets. The solid curve in Figa)Zs a third degree  wherem;,m,,ms are the first, second, and third moments of
polynomial of the form,C,+C,z+C3z°+C,42° fit to the  N,—the pth moment being defined am,==3_(z°N,. In
circles in Fig. Zb) (not shown there for clarijy The fitted the remainder of this section, we will explore the ramifica-
coefficients are C;=+3.56347, C,=-0.561972, tions of this “moment expansion” of the BSM Hamiltonian
C3;=+0.045 241, andC,=—0.001 373 92. This shows that for the energetics of @ adatom clusters.

we really need only four parameters instead of ten. For this Since in any(finite) cluster there must be some ada-
work, we choose to work directly with the téleast-squargs  toms with z<6, we have, &,>m,.,, and for our para-
parameters which are listed in Table I. Unless stated othemeters,C,>6|C,|>36C;. These two facts are sufficient
wise, any numerical result we give for the ten-parameteto establish C,;m;>|C,|m,>C;m;, and therefore,
BSM is obtained with these values. The ten-parameter BSMC,;m;>|C,m,+Csms|, becauseC, and C; have opposite

is not only more accurate than the three-parameter modesigns. Thus, becaugg, is attractive(positive), the energy of
but, as we shall see, also gives qualitatively different physica cluster ofN (my) adatoms is minimized bfirst maximiz-

in the sense that it predicts different values for physicaling m; which is just twice the number ghearest-neighbor
guantities which are degenerate in the thi@e-six-) param- bonds. So far, we have not made any pre-

6
2, ZUZ)Nz, (4)

N| -
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dictions different from a constant bond model. For
N=2,3,4,5,7,8,10,12,14,16,19, etc., thereoidy onebond-
maximizing cluster geometry. However, when there are sev-
eral different bond-maximizing geometrieqas for
N=6,9,11,13,15,17,18, ej¢cthe higher moment terms in Eq.

(5), which are absent in a constant bond mqdidtermine
which shapes are most stable. Because the second moment
term (next largestis repulsive for fixed my andm, the most
highly bound clusters wilminimize my. Thus, sincam, is a
measur® of the width of the coordination distribution, it is FIG. 3. The two physically distinct orientations of a compact

energetically favorable to have. the “populated” valueszof  yimer on a fec(112) substrate. The “hollow” configuration is on

gathered as closely as possible around the mean valuie left and the “filled” configuration on the right. If thfl 12]

z=m,/my. Lastly, for cluster geometries with the samg, direction is up, then the adatortmmaller open circlégeside on fcc

m,, and m,, it is energetically favorable to maximize;  sites. Only the top layer substrate atofslsaded circlesare shown.

which is a measuf@ of the asymmetry oN, . All atoms in the figure are labeled with their total nearest-neighbor
The above scheme is nicely illustrated in Table Il for thecoordination(z in the ten-parameter BSM

bond-maximizing geometries with 6, 9, and 15 adatoms. For

each cluster, we list the binding energies calculdtadthe B. Effect of cluster orientation on binding energy

fcc sublattice with the EAM (Ref. 14 and with the three- As mentioned in the preceding section, the binding ener-

and ten-parameter forms of the BSM in columns 2-4, angjies of certain clusters depend on how they are oriented on
the Oth—3rd moments 94, in columns 5-8. The three clus- the sybstrate. The two possible orientations of a triangular
ter shapes in the upper group all havén) adatoms and 9 trimer on the fcc sublattié® are shown in Fig. 3. The tri-
(my/2) bonds. As expected, the geometry with the smalleshngle on the lef{pointing up is centered on a surface hol-
value ofm, has the highest binding energy all three mod-  |ow (hcp site, while the triangle on the righipointing down
els). In the three-parameter BSM, the binding energies of thés centered on a substrate atom. Following Ref. 14, we will
other two geometrie@vith equalm,) increase with the value refer to these as “hollow” and “filled” orientations, respec-
of m;. The same remarks hold true for the 9 and 15 adatontively. According to our EAM calculations, the filled trimer
groups as well. Because the BSM can so accurately repras more stable than the hollow trimer by about 40 meV. This
duce the EAM results, we believe the conclusions drawrmay not seem surprising given that the adatoms bond to
here for Pt111) should also hold for thél11) surfaces of the Seven substrate atoms in the filled trimer, but to only six in
other “EAM metals”: Ni, Cu, Pd, Ag, and Au. the hollow trimer as is clear from Fig. 3. However, it should
This relatively simple scheme is complicated by the facte noted that the number of bonds is the same for both con-
that some clusters’ binding energies depend on how they afégurations. This is easily seen by summing the coordination
oriented on thé111) surface®43°Clusters of this type have numbers(which overcounts bond_s by a factor of @f the
two binding energies listed in columns 2 and®AM and ~ S€Ven substrate atoms for the filled trime(1®+12=72,

ten-parameter BSM The two binding energies correspond and doinghthebsame for the hoIIo_\t/Jv onefse((lng?(llr)]:?Z
to two orientations which differ by a 180° rotation of the @ seventh substrate atom contributes th arly, the co-
ordination numbers of the adatoms and the rest of the sub-

entire cluster. As we show in the next section, this difference . .
. trate atoms cancel in the energy difference between the two
can be understood in the context of the ten-parameter BS!\;T

Keeping this complication in mind. we assert that the rule o fimers. Thus, from the vantage @fiearest-neighboiattice

th ptl).g“f. It plicat Ith Ind, We : d f IlIJ gas models, this difference is a purely multiatom effect not
umo: “rs ,r,naﬁlm:zeml,_ €n minimizems, an ::n? Y understandable in a constant bond modeBM). Rotating

maximizems,” should provide a unique and powerful Way he trimer does not affect the number of bonds, but it does

of deciphering the spectrum of binding energies & Bo-  affact their strengths. This is reflected in the ten-parameter
moepitaxial adatom clusters on close-packed surfaces of thgression for the energy difference,

EAM metals. This hypothesis should be testatdéthough
not without care as evidenced by the small energy differ-
ences in Table )Iby observing adatom clustering with FIM
or similar techniques for probing surfaces. To our knowl-
edge, the only fcd111) surface on which many small ho-

moepitaxial clusters have been studied in atomic detalil i%vhereAth stands forEgyeq—Enoow. NOte thatAE,, re-
Ir(111) by Wang and Ehrlicii” Using FIM, they observed gyces to zero in a CBM wheld(z) =z, [refer to Eq.(3)].
clusters with 2—8, 12, and 13 adatoms. With the exception ofhe BSM value of about-29 meV for this quantity reflects
trimers, they always observed bond-maximizing equilibriumthe higher stability of the filled trimer. Th@average EAM
geometries in agreement with our hypothesis. However, foyalue for this quantity obtained from all the “polar” clusters
clusters with 6 and 13 adatoni®r which there are several (see the next paragrapim the set of 62 is-28.6 meV. Note
possible bond-maximizing geometriethey observed differ- that, forT<250 K, Wang and Ehrlich observed triangular Ir
ent ground state geometries than predicted by our rule. Thesgmers in the hollow configuration 80% of the tiffén con-
“discrepancies” probably just reflect the increased angulatrast to our prediction for enhanced stability of the filled
character of the Ir bond compared to the Pt bhd. trimer.

1
Ath=—§[(J—G)—3(I—H)], (6)
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Since larger clusters are composed of both hollow angberatures than the corresponding CBM. For example, island
filled triangles, any cluster with an excess of either kind ofedges should roughen at lower temperatures in the BSM than
triangle is expected to have a preferred orientation. It is jusin the CBM. Our Monte Carlo simulations do indeed show
these “polar” clusters which have two binding energies inthis and other interesting phenomefaote that Eq.(7)
Table Il for the EAM and ten-parameter BSM. If the page of could be useful in determininG,, C,, andC; directly from
the figure is the(11l) substrate with thd1 12] direction  experiment.
pointing up and th¢110] direction to the rightas in Fig. 3,
the upper binding energy corresponds to thellow) orien- B. Step energies and island shapes
tation (shown in column }, and the lower value to the ro- - )
tated(filled) orientation(not shown. Except for the bottom- erg-l;:’]eaztr)ggg \ﬁellljleij‘i‘fh ?ﬁeg gz\l\//llag;tg:?azgng‘eo? tle\relign
most 15-adatom cluster, both the EAM and the ten-parametel, 7, 33 (NEKR), who obtained T=0) step energies of359

BSM predict that the filled orientation is most stable. As IS nd 357 meV/adatojwith the VC Pt potential, and344
shown in Sec. IV B, in the te"."para.‘mete.f BSM, the eNergy,nd 341 meV/adatopwith the FBD potential foA andB)
difference between the two orientations is always a multlple[ype steps on Pt11). TheA ({100 microface} andB ({111}
of the fundamental differencé\E,, in Eq. (6). This need microface} step energies are degenerate in the thfee-

not be true in th_e EAM because j[he forces are pf Ion_ge%ix_) parameter BSM and, as we shall see, are nearly so in
range and there is surface relaxation. The two orientationg, ten-parameter model

are degenerate in the three—p_arameter BSM, becaus_e coordi- Arguing plausibly that maximizing the number of bonds
nation changes for atoms in the substrate are |gn0reqs equivalent to maximizindlg, sincel =N— N, it follows

whereas, in the E.AM and ten-parameter BSM, they are "Mhat the ground state shapes predicted by Egwill have
cluded and give rise to an energy difference. minimum perimeter length.. This is equivalent to saying
that the boundary energy tern4¢L) is the dominant edge
IV. LARGE CLUSTER (ISLAND) ENERGETICS term in Eq.(7). This is clearly the case for a large island with
A. Binding energy in the three-parameter BSM long straight edges because edge atoms will far outnumber
corner atoms. Attempting to lower the energy by forming
“five fold coordinated corner8UJ;,<0) would not seem to
balance the cost of increasitg This reasoning appears to
hold even forsmallclusters since, in Table Il, all the clusters
in a given group have the sante To minimize L, large
clusters will tend to form hexagons with sides of equal
length®* Thus, for Ptdespite the multisite interactioriis the

To further clarify the energy-shape relationship, we cal
culate the binding energy according to E4). of an arbitrary
cluster assuming only that, for every adatom®2. An
N-adatom clusteflike any of those in Table JIwill have L
adatoms(with z<<6) on the perimeter, antil—L (interior)
adatoms witte=6, whereL is the perimeter length in units

o_f the_lattice constant. The perimeter adatoms can be_di- three-parameter BSM, the predicted ground state cluster
vided intoN; corner adatoms and— N, edge adatoms with shapes are regular hexagons.

z=4.TheN, corner adatoms can be divided irtg, N3, and In the STM experiments of Michely and Confsdor
N5 adatoms(with Z's of 2, 3, and $. Since, by assumption, 1700 K, hexagonal clusters on the(Pt1) surface are in-
No=N;=0, we now have the entire coordination d'Str,'bu' deed seen but with sides that alternate in length in an
tion. Replacing—zu(2)/2 in Eq. (4) by U, the cluster's A agABfashion withA steps short anB steps long. They
binding energyEying, is then given by observe the same shapes independent of the islands’ sizes
o and independent of their formation history and thus conclude
Eoing=UeN+Usel +UaaNo+UsiNs +UsiNs, (7)) thece represeatuilibriumisland shapes. The measured
whereU,,,=U,—U,, is the energy cost of changing the co- ratio of the short to long side lengths, 0:66.05, gives via
ordination of an adatom fromn to n. The physical interpre- the Wulff constructio® a free energy ratio,
tation of the terms in this expression is obvioukN is the  R=fg/f,=0.87+0.02, for the two steps. That is, on(P11),
“bulk” or “interior” energy, U, is the energy cost of B steps havdower free energy tharA steps. Michely and
creating the cluster boundarigtep energy and the next Comsa(MC) remark that it is natural to expect tH&11}
three terms are the energy costs of putting bends with angleaicrofacet(B step to have a lower energy because (thé1)
(measured inside the clustesf 60°, 120°, and 240° in the surface(with its higher coordinationis lower in energy than
boundary(corner energies In terms ofC;, C,, and Cs, any other surface. This very plausible sounding argument is
these energies ardJg=-—3C;—18C,—108C,;=—-1.66, actually misleading. First of all, for aonatomicstep, the
Uyu=C,+10C,+76C;=+0.34, U,,=C;+6C,+28C; concept of a microfacet is not really valid since none of the
=+0.53, U3=(C;+7C,+37C3)/2=+0.24, and Ug,= atoms at the stefon the upper or lower terragdave the
—(C,;+9C,+61C3)/2=-0.19 (all in eV/adaton. In con-  same coordination as for the true facet. Still, thetep, for
trast, for a CBM we havéin the same ordgr —1.84,+0.61,  which the atoms at the step bottom have 11 nearest neigh-
+0.61, +0.31, —0.31 (eV/adatom, using the single bond, bors, is more highly coordinated than thAestep for which
Upy=0.614 eV (Sec. lIA), in place of C; and taking the corresponding coordination number is (§¢e Fig. 4
C,=C3=0. The ratios of the BSM to the CBM values for This would seem to lend credence to MC's reasoning. In-
these quantities are: 0.90, 0.56, 0.87, 0.77, and 0.61, respedeed, as we will show, if thé& andB steps differecbnly in
tively. Their magnitudes, especially the step enefgyg), the coordination of the step atoms, tBestep would have a
are reduced in the BSM by the repulsive natureCgf(i.e.,  substantially lowerground stateenergy than the\ step in
by repulsive three-body interactioffs Consequently, we agreement with MC. However, it is crucial to note that the
should expect the BSM lattice gas to disorder at lower temtwo steps differ also in their “unit cell” aread=ig. 4). As we
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at the bottom of the two steps. If this were the only differ-
ence between the two step energiBssteps would be sub-
stantially favored. According to Eq8) we must subtract
from the unit cell energygie racd\sted, Which for the prob-
lem at hand becomesg || 5, Whereey;, is the(111) surface
energy per unit area andy, is the step unit cell length
(perpendicular to the stgpBy the previous discussion, we
have €,,;=(J—G)/2=535 meV/atom. In terms of the
nearest-neighbor bond length, the surface area per atom
on the (111) surface isv3af/2, giving €1,=(J—G)V3
eV/a?, or about 1288 erg/chfor the Pt111) surface energy.
Full scale EAM calculations give 1341 erg/émV/C) (Ref.
38) and 1440 erg/cm(FBD).2%*° The lack of surface relax-
ations in the BSM can always be invoked as the culprit be-
hind any discrepancy with the EAM. From Fig. 4, theand

B step unit cell lengths are seen to bg=4a,;/vV3 and
Ig=7a,/2v3. Thus the terrace subtraction term is)4(G)/3

for A steps and 7]—G)/6 for B steps(both eV/aton.
Combining everything, we have

B)

d a3 d

FIG. 4. Unit cells(inside dashed boundaryor the A ({100
microfacej (upper figurg¢ andB ({111} microfacej (lower figure 1 4
steps on a fca11l) surface. Repeating the cells vertically will Ba=5 [B3J-(H+G+E)]— 3 (J-G), 9
create steps running vertically. As in Fig. 3, the atoms are labeled
with their nearest-neighbor coordination. Unshaded atoms reside iand
the upper terrace and shaded atoms in the lower terrace. In the
figure, a; is the nearest-neighbor bond length, in terms of which 1 7
d=v3a,/2. Thus the two cells differ in length by onby,/2v3. Be=75[3I-(I+G+E)]— 5 (J-06) (10

shall see, this areal difference translates into a substantifdr the A andB step energies in the BSM. These expressions

energy difference and results in essentially degenerate steive S,=341 meV/atom and3g=351 meV/atom, in good

energies in disagreement with MC’s remark and with theagreement with NEKR’s EAM results. While NEKR found a

observed stefifree) energy difference. very slight preferencé2—3 me\j for the B step, we predict
To calculate a step energy, one could proceed in the fola slight preferencé€l0 meV/atom for A steps. These small

lowing manner. First calculate the surface energy of a subenergy differences are certainly near if not well below the

strate which is slightly miscut and so has a surface with widdimit of accuracy of the EAM.

terraces bounded by parallel monatomic steps. This surface The step energy difference is, from E@9) and (10),

energy will include both step and terrace enerdasd pre-

sumably minimal step-step interactions for sufficiently wide _I=H J-G

terraces To obtain the step energy, one subtracts the proper Ba=PBe=—%5 "5

amount of terrace energ§.The essence of this calculation is _ ) _

a subtraction of surface energies in the immediate vicinity off Ne first term(0.169 eV/atomy as previously discussed, has

(11)

the step’’ Accordingly, we take, its origin in the different coordination of atoms at the step
bottom and strongly favorB steps. The second ter(@.178
Bster= [ €step— EtermacdAste/ a1 » (8)  eV/atom, arising from the difference in unit cell areas, is

large enough to cancel the first term and even tip the scales
as our definition of step energy. Heg,,is the step energy/ slightly the other way in favor ofA steps. Note that the
atom(or per unit step lengdh e;epandeeraceare the step and  absence of substrate contributions in the thi@e-six-) pa-
terrace surface energies per unit alg,,is the area of the rameter BSM is responsible for the consequent degeneracy
step unit cell, andy, is the width of the step unit cell parallel of the two step energies. In the limit of a single bond strength
to the step(i.e., the spacing between neighboring atoms(CBM), both Eqs(9) and(10) reduce tou, per atom, so that
along the step their difference(if any) is purely multiatom in origin.

In Eq. (8), esteffstepiS just the surface energy of the step  For self-consistency, we now show that the step energy
unit cell. The unit cells for monatomi& andB steps on the difference obtained above for infinitely long steps can also
(112) surface are depicted in Fig. 4. Each surface atom conbe obtained from the energetics of finite clusters. To do this,
tributes, U,— U, to the surface energy whetd, has the consider two clusters shaped like equilateral triangles, each
same meaning as in E¢7) andz is the atom’s surface co- with three sides of lengt® (in lattice parameter unitsone
ordination. Thus, the unit cell energies farandB steps are  (hollow, with B-type edgespointing up and the othéfilled,
epa=U;+Ug+U;;—3U;, and eg=U,+Ug+U;;—3U,,  with A-type edgespointing down. TheS=1 case is shown
respectively. In terms of the cohesive energlesJ we have in Fig. 3. Just as for the trimeg(S=1) considered in Sec.
ep=[3J—(H+G+E)]/2andeg=[3J—(I+G+E)]/2. The Il B, the binding energy difference for the two clusters will
difference in cell energieses—eg=(1—H)/2=0.17 eV/ only have contributions from the substrate atoms. Accord-
atom, is purely due to the different coordination of the atomdngly, we seek the numberN;) of substrate atoms with
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z’s of 10, 11, and 12. For the filled cluster, we have should be emphasized that finite temperature effects could
N;,=S(S+1)/2,N;;=0, N;,=3(S+1), and for the hollow play a significant role in the analysis of MC'’s discovery.
cluster N;,=S(S—1)/2, N;;=3S, and N,;,=3. Therefore, After all, the ratio of step free energies reported by MC is
the filled cluster bonds t& more substrate atoms than the inferred from observations of clusters equilibrated at700
hollow one. Being careful to treat this difference in numberK. Assuming Feibelman’s result fg8, is representative of

of substrate atoms, we find the free energy f(,), MC's reported ratio
(fg/fo=0.870.02 implies a free energy difference
Efiled— Enollow= SAE+p (12) (fo—fg) of only 6010 meV/atom. The thermal energyT

] ] ) .. has roughly the same valu60 me\) at T=700 K. NEKR
for the energy difference. In accord with the discussion inhaye shown that entropic contributions to the step free ener-
Sec. Il B, tisa multlple of the fundamental difference for gies from “diffusional Step Wandering” are neg||g|6|?ebut
trimers in Eq.(6). Since rotating any cluster by 180° con- this has not been shown for the effects of vibrational entropy.
verts itsA-type edges int@ and vice versa, we must con-
clude thatAE;, is related to théA,B step energy difference. V. CONCLUSION
This has been explicitly demonstrated by Barkeetal.® ) , i
who studied equilibrium island shapes on close-packed sur- !N conclusion, we have studied the role played by multia-

faces using an Ising model with two- and three-spin interactom interactions in determining the energies and shapes of

tions, with the energy difference between up and down trim2D homoepitaxial adatom clusters on close-packed metallic
ers(treated as a phenomenological paramegererning the ~Surfaces using the “bond saturation model” or BSM. By
strength of the three-spin terff5Their argument is simple: describing adatom-adatom interactions in termsardina-

adatoms in a cluster's interior belong to equal numbers of ufion dependennearest-neighbor bonds only, we arrive at a

and down triangles and so do not contribute to the orientaY€"Y detailed understanding of the energy-shape relationship

tional energy difference, whereas an adatom inAastep for adatom clusters predicted with EAM calculations. Key to

belongs to 2 down and 1 up triangle and vice versaBor this relationship, for thg thrge—parameter BSM, is an expan-
steps. It is then natural to write E6L2) as sion of the model Hamiltonian in the moments of the distri-

bution of adatom coordination numbers. This expansion
Efited— Enotiow= 3L A Beomert (S— 1) A Bste leads to a simple rule_fo_r predicting how the bin_ding energk_as
of several bond-maximizing cluster shapes will order. This
where ABomer and Afgep, are the corner and step energy ryje should be testable with surface probes such as FIM or
differences, respectively. Now when EG2) is written as sTM. We have also obtained a simple expression for the
binding energy of a cluster of arbitrary shape which includes
Efited ~ Enotow=3[ 1+ (S— 1) JAE/3, step and kink energies.
we see by comparison with the previous expression that Hexagons(with sides of equal lengthare the predicted
ground state shapes for large clusters in the three-parameter
BSM (as in an Ising model with a single nearest-neighbor

ABcome A Bste= AE¢1/3. bond strength In contrast, on R111) (for T>700 K), the
experimentally observed island shapes are hexagons with
From Eq.(6) we then have sides that alternate in length indicating a lower free energy

for B steps(111 microfacetthan A steps(100 microfacet
I“H J-G The two step energies are degenerate ip the theewt six)
ABgerBa—Pa=——— ——, parameter BSM'gadatom-adatom bonding onjybut with
g 2 6 the treatment of adatom-substrate bonding in the ten-
parameter BSM, this degeneracy can in principle be lifted.
g—|owever, the two step energies are nearly degenerate even in
the ten-parameter BSM because the two factors which deter-
mine the step energies, namely, the difference in coordina-
tion of the atoms at the step bottoffavoring B steps by
~170 meV/atom and the difference in step unit cell areas
(favoring A steps by~180 meV/atom give nearly cancel-
ling energies. This gives insight as to why the experimentally
observed step free energy difference is snfalb0 meV/
atom. The BSM allows powerful conclusions to be drawn
ith relative ease even in the presence of multiatom interac-
lons which, at first glance, would seem to place such analy-
sis out of easy reach.

in agreement with Eq11).

By estimating step energies from EAM surface energie
corresponding to the step microfadetNEKR find, either
degenerate step energi€3gs/B,=1.0) for (Ag,Au,P?, or a
slight preference foA steps(Bg/ Ba=1.1) for (Cu, Ni, Pd.>
There is strondif indirect) evidence from experiment that
steps are favored on CL11).* This is corroborated by Bree-
manet al.'s semiempiricalFinnis-Sinclair methodstudy of
Cu clusters on G111).%? It therefore seems that the predic-
tion of nearly degeneratdé andB step energies is generic to
atom-embedding schemes. Given Michely and Comsa’
(MC) finding of lower B step free energies, we might be
tempted to conclude that the(P11) surface is exhibiting

non-EAM behavior. However, in a recefitst-principles A
. . . CKNOWLEDGMENTS
study of steps on P111), Feibelman found higher but still
essentially degenerate ground stAteand B step energies: We wish to thank T. L. Einstein for suggesting many
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man’s finding is contested by a more recent first-principlesespecially regarding our step energy analysis, and A. Cancio
study by Boisvertet al** Their preliminary results for the for several stimulating discussions. Partial support from the
same step energies are in excellent agreement with MC. WCD Research Committee is gratefully acknowledged.
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