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We describe a scheme~BSM for ‘‘bond saturation model’’! for modeling the energetics of adatom clusters
on close-packed metallic surfaces. In the BSM, atoms interact viacoordination dependentnearest-neighbor
bonds. We show that the BSM yields a detailed understanding of the relationship between shape and energy for
two-dimensional~2D! homoepitaxial adatom clusters on close-packed metallic surfaces. In particular, we
advance a simple rule for predicting the binding energies of small clusters based on the moments of their
coordination distributions, derive a useful expression for the binding energy of a 2D cluster of arbitrary
geometry, and study the role played by coordination dependent bonding in determining step energies for
adatom islands. Our analysis of step energies provides insight into why the two distinct types of monatomic
steps on Pt~111! have similar free energies as observed by Michely and Comsa. While our numerical results are
for Pt~111!, we expect our conclusions to hold for any chemically similar system.@S0163-1829~96!05740-2#

I. INTRODUCTION

On all metal surfaces the relationship between shape and
energy for clusters of adsorbed atoms~adatoms! is compli-
cated by the significant multiatom nature~coordination de-
pendence! of the metallic bond.1 Multiatom interactions are
responsible for much of the physics unique to metallic
surfaces.2 In particular, it has been argued that multiatom
interactions play a decisive role in determining the equilib-
rium shapes of 2D homoepitaxial clusters of adatoms on the
~111! surfaces of Cu~Ref. 4! and Pt.5 Understanding the
energetics of adatom clusters is a problem of considerable
current interest in surface science. We propose to analyze
this problem using a simple yet realistic model which allows
the treatment of multiatom interactions. While, ideally, first-
principles calculations6 could be used to study surface cluster
energetics, despite recent progress,7–9 this still poses a for-
midable computational challenge. This is one reason why
simplified models like the one used here are valuable. More
importantly, the understanding provided by first-principles
calculations is greatly enhanced when they provide the pa-
rameters for simplified models which facilitate large scale
simulations and more readily provide unifying concepts.

Lattice gas models provide perhaps the most transparent
framework for studying surface physics. Close-packed sur-
faces, such as Pt~111!, are particularly well suited to inves-
tigation via lattice gas methods because, on these surfaces,
adsorbate-induced relaxations are small. On more open sur-
faces@such as Pt~100!# the physics is complicated by larger
surface relaxations.10 Despite this apparent simplicity, the
Pt~111! surface has been the focus of many recent experi-
mental studies.11 Because, in general, the systematic treat-
ment of multiatom ~multisite! interactions is a difficult
task,12 most lattice gas simulations of metallic surfaces to
date have assumed strictly two-body~pairwise additive! in-
teractions between atoms.13 Because the metallic bond is
strongly multiatom in nature, the situation calls for a lattice
gas approach incorporating multisite interactions.

The focus of this paper is the so-called ‘‘bond saturation
model’’ ~BSM! and its implications for the energetics of
two-dimensional homoepitaxial clusters on close-packed me-
tallic surfaces. In Sec. II we describe the BSM, explaining
how we treat interadatom bonding with three parameters
~three-parameter BSM! in Sec. II A and critically discussing
the resulting description of metallic bonding in Sec. II B. In
Sec. II C we generalize the treatment from just interadatom
bonding to all the bonds in a solid~ten-parameter BSM!. In
Sec. III we discuss the energetics of small clusters from the
point of view of both the three-parameter~III A ! and ten-
parameter~III B ! models and do the same for large cluster
~island! energetics in Sec. IV, focusing mainly on step ener-
gies. Finally, in Sec. V, we summarize our findings and con-
clude.

II. BOND SATURATION MODEL

We recently proposed the ‘‘bond saturation model’’ or
BSM to treat the energetics of adatoms on close-packed me-
tallic surfaces.14 The distinguishing feature of our approach
is the inclusion of multiatom interactions in a natural and
computationally convenient fashion. In the BSM, the atoms
in a solid interact viacoordination dependentnearest-
neighbor bonds, i.e., the strength of the bond between two
neighboring atoms depends on how many~nearest! neigh-
bors each has. Generally, one expresses the bond strengths in
terms of several bond parameters—one for each possible
value of the coordination. These parameters can then be fit to
any available~theoretical or experimental! data for the sys-
tem of interest. The BSM allows one to study the conse-
quences of coordination dependent bonding in the absence of
all other physical effects, and so, to decide whether or not
this effect alone can explain any given experimental finding.

A. Three-parameter BSM

An atom located on the~111! surface of an fcc crystal can
occupy either an fcc or an hcp site~threefold coordinated
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hollow!. The two types of surface sites form two~triangular!
sublattices. In general, there can be interactions between ada-
toms on the same sublattice~at all distances, with possibly
different strengths for the fcc and hcp sublattices!, and also
between adatoms on different sublattices. Furthermore, each
of these interactions can in principle be coordination depen-
dent. In this work, we will focus on just the nearest-neighbor
bonds between adatoms on the same sublattice. This approxi-
mation is critiqued in Sec. II B.

Accordingly, for the BSM, we seek six bond parameters
because each adatom can have up to six nearest~adatom!
neighbors. With this scheme, the 2D lattice gas of adatoms
on either sublattice is governed by a Hamiltonian of the form

H52
1

2 (
i
u~zi !zini , ~1!

whereni andzi are, respectively, the occupation~1 if occu-
pied, 0 if not! and coordination numbers at sitei andu(zi) is
the coordination dependent bond strength. As in Ref. 14, we
obtained preliminary values for the six bond parameters
@marked by1’s in Fig. 1~a!# from the binding energies of six
clusters calculated with the embedded atom method or
EAM.15 The chosen clusters ranged in size from a dimer to a
complete monolayer. From the figure, it is seen that the re-
sulting bond strength decreases with increasing coordination
as is characteristic of the metallic bond.16 The labeling
scheme in Fig. 1~a! is u(1)5a, u(2)5b, u(3)5c, etc. The
corresponding ‘‘cohesive energies,’’U(z)[zu(z), are
marked by1’s in Fig. 1~b! and are labeled with the corre-
sponding uppercase letters. ‘‘Cohesive energy’’ seems ap-
propriate since in the BSM the contribution to the total en-
ergy of a solid from an atom with coordinationz is
proportional toU(z). The cohesive energies marked by
circles in Fig. 1~b! are obtained from a least-squares fit to the

EAM binding energies of 62 clusters including a monolayer
and 61 clusters with up to 7 adatoms. These cohesive ener-
gies are also given in Table I. The previous energies@1’s in
Fig. 1~b!# were used as starting values for the fit. The corre-
sponding bond parameters [U(z)/z] are marked by circles in
Fig. 1~a!. The details for our EAM calculations and how we
parametrize the binding energies are given in Ref. 14. In all
our EAM calculations we used the empirical Pt function de-
veloped by Voter and Chen~VC!.17 Because the cluster bind-
ing energies calculated on the fcc and hcp sublattices dif-
fered by so little~typically several meV!,18 we averaged the
two binding energies for the fit.19

As is seen in Fig. 1~b!, the fitted cohesive energies are
well described by the solid curve which is a cubic polyno-

FIG. 1. Pt bond parameters@~a!# and cohesive energies@~b!# for the six-parameter BSM versus nearest adatom coordination,z. ~a! is
obtained by dividing all quantities in~b! by z. The parameters marked by1’s are determined from EAM binding energies of six clusters,
whereas those marked by circles were fit to 62 binding energies. Both the solid curve~cubic polynomial! and the dotted line were fit to the
refined parameters~circles! in ~b!.

TABLE I. Cohesive energies~least-squares fit! for Pt and coor-
dination numbers in the six- and ten-parameter bond saturation
models.

Coordination
number

Parameter
name

Cohesive
energy~eV!

Parameter
name

Cohesive
energy~eV!

1 A 0.850
2 B 1.556
3 C 2.148 A 6.820
4 D 2.621 B 7.744
5 E 3.019 C 8.502
6 F 3.311 D 9.148
7 E 9.675
8 F 10.128
9 G 10.471
10 H 10.941
11 I 11.278
12 J 11.540
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mial of the form,U(z)5C1z1C2z
21C3z

3 @note that we
must haveU~0!50#. A least-squares fit to the cohesive en-
ergies ~circles! gives C1510.9183, C2520.07407, and
C3510.0022~eV!, for the three coefficients. With this form
for U(z), the coordination dependent bond strength is given
by

u~z!5C11C2z1C3z
2, ~2!

which is shown as the solid line in Fig. 1~a!. Thus instead of
a six-parameter model, we are behooved to think now in
terms of a three-parameter model where the three coefficients
(C1 ,C2 ,C3) are interpreted as phenomenological constants
whose values will depend on the particular system being
studied. This scheme~three-parameter BSM! is quite accu-
rate: the quadraticu(z) faithfully reproduces the 62 EAM
binding energies, incurring~maximum and mean! errors of
only ~3.4% and 0.62%!.20 In comparison, the single~coordi-
nation independent! bond strength,u0>0.614 eV, obtained
by fitting a straight line~dotted line with zero intercept! to
the cohesive energies~circles! in Fig. 1~b!, gives~max. and
mean! errors of~29.2% and 18.2%!. This bond@indicated by
the dotted horizontal line in Fig. 1~a!# underpredicts the
dimer bond strength@u~1!>0.87 eV# by 29% and overpre-
dicts the ~saturated! monolayer bond strength@u~6!>0.55
eV# by 11%.21 These inaccuracies could adversely affect
simulations of metal surface physics using a single coordina-
tion independent bond strength~constant bond model or
CBM!.

B. Critical discussion

As we have shown, the energetics predicted by EAM cal-
culations for Pt are described very accurately in terms of
~coordination dependent! nearest-neighbor bonds only. In
their first-principles assessment of ‘‘glue’’ schemes~of
which the BSM and EAM are examples!, Robertsonet al.
found that the cohesive energies of a wide range of structures
of Al atoms were determined to a large extent simply by the
number of nearest neighbors, lending credence to our ap-
proach for systems other than Pt.22 However, they found that
a cohesive energy of the formU(z)5AAz1Bz fit the first-
principles energies of 18 different structures with a rather
high rms deviation of 0.2 eV/atom. It is hoped that Eq.~2!
better captures the essential physics for Pt and chemically
similar systems, i.e., the late transition and noble metals.

With the quadratic form foru(z), the BSM Hamiltonian
@Eq. ~1!# can be shown14 to contain repulsive three-body
~trio! and attractive four-body~quartet! interactions in addi-
tion to an attractive two-body interaction. All the trio~and
separately the quartet! interactions have the same strength
independent of the angles between the bonds. Though angu-
lar bonding is precluded in the EAM through the assumption
of rigid spherical atomic charge densities, substrate relax-
ations can, in principle, induce effectively angle-dependent
interactions. But by the close agreement between the BSM
and the EAM, we infer that the EAM predicts small surface
relaxations—as expected for close-packed surfaces. Because
of this explicit lack of angular dependence, the BSM is prob-
ably not well suited, in its present form, to more open sur-
faces which can have significant surface relaxations10 and

also, as emphasized by Einstein,23 to the central transition
metals where angular bonding is important.24

The energetics embodied by Eqs.~1! and ~2! work quite
well ~at least at the EAM level! when all the adatoms reside
on the same sublattice. The most serious omission is prob-
ably the ~next longest! bond between adatoms on the two
different sublattices~i.e., between an atom on an fcc site and
one on a nearby hcp site!. However, our EAM calculations
indicate that this ‘‘mixed-site’’ bond is on average about 0.1
eV weaker than the ‘‘pure-site’’ bond~0.7 eV average!.14

Also, most of the mixed-site clusters we studied relaxed~at
T50! into homogeneous-site clusters. This is perhaps a fur-
ther indication of the tendency for adatoms to occupy the
same type of surface site. A recent study by Feibelman, Nel-
son, and Kellogg9 is also of significance here. Using field-ion
microscopy~FIM!, they observed that a single Pt adatom on
Pt~111! prefers to bind at fcc sites. This observation is cor-
roborated by their first-principles calculations which indicate
a preference of 0.18 eV for adatom binding at an fcc site
over an hcp site~the EAM predicts a negligible difference of
;1 meV!. The formation of mixed-site bonds would then be
hindered because adatoms would tend to avoid the hcp sites.

C. Ten-parameter BSM

We have extended our approach to treat all the~nearest-
neighbor! bonds in a solid instead of just interadatom bonds
as discussed so far. Our motivation is simple: with the model
discussed in the preceding section, we can only study two-
dimensional surfaces. Extending the model to all bonds al-
lows us to study three-dimensional surface physics. In this
work, we will use this extended model to examine the influ-
ence of substrate atom coordination on 2-D cluster energet-
ics.

Since an adatom on an fcc~111! surface always has three
nearest neighbors in the substrate and can have 0 to 6 adatom
neighbors, its coordination~now total number of nearest
neighbors! can have any value from 3 to 9. The coordination
of substrate atoms can vary from 9~no adatom neighbors! to
12 ~bulk coordinated!. Accordingly, we seek 10 bond param-
eters to characterize bonding over the entire range of coor-
dination numbers from 3 to 12. The Hamiltonian for this
ten-parameter BSM will also be given by Eq.~1! but with a
possibly different form foru(z) ~and a different range forz!.
The contribution to the energy of a solid from an atom with
coordinationz will again be2U(z)/2 @recallU(z)[zu(z)#.
In keeping with the previous labeling scheme, we have

J[U~12!, I[U~11!, H[U~10!,..., A[U~3!.
~3!

We could not find ten~2D! clusters which would give ten
independent equations in the ten unknown bond
parameters.25 Rather, we obtained the ‘‘bulk energies,’’H, I ,
andJ from three bulk quantities for Pt: the measured subli-
mation ~Esub! and vacancy formation (E v

f ) energies and a
calculated value for the divacancy removal energy (E 2v

r !. In
the BSM, Esub5J/2, since it is the energy~per atom! re-
quired to break up an infinite solid into isolated atoms.E v

f is
the energy costbeyond Esub to remove a single atom from
the bulk. Removing this atom changes the coordination num-
bers of its 12 nearest neighbors from 12 to 11. Thus,
E v

f 56(J2I ). Similar reasoning givesE 2v
r 510J27I22H,

which is the energy to remove two neighboring atoms from
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the bulk. Foiles, Baskes, and Daw~FBD! report measured
values from the literature of 5.77 and 1.5 eV forEsubandE v

f

for Pt.26 These give 11.54 and 11.29~eV! for J and I , re-
spectively.E 2v

r is not directly measurable and the measured

values reported by FBD for the related divacancy binding
energy (E 2v

b ) are quite uncertain: 0.1–0.2 eV. Using the VC
EAM Pt function, we obtained 14.472 eV forE 2v

r ~unre-
laxed!, giving 10.95 eV forH.27 As a consistency check, we

TABLE II. EAM and BSM ~three and ten parameter! binding energies~eV! and 0th–3rd
coordination moments for clusters in three bond maximizing groups.
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note that withH, I , andJ determined as described, the model
value for the divacancy binding energy,
E 2v

b [uE 2v
r 22~Esub1E v

f !u53J25I12H, is about 0.07 eV
~attractive!. This is much closer to the experimental range
than 0.45 eV, obtained with the FBD EAM Pt function.26

This attests to the accuracy of both the VC Pt potential as
well as the description of bonding provided by the~ten-
parameter! BSM.

With the bulk energies (H2J) determined, we then
picked seven clusters from the 62 in Ref. 14 and solved the
resulting seven equations in the seven unknown ‘‘adatom
energies,’’A–G.28 As in Fig. 1, these preliminary energies
are marked by1’s in Fig. 2~b! as are the corresponding bond
parameters in Fig. 2~a!. As before, these parameters were
used as starting values for a least-squares fit to the EAM
binding energies of the same 62 clusters giving the param-
eters marked by circles in Figs. 2~a! and 2~b!. The param-
eters changed much less for the ten-parameter fit~maximum
of 0.25% forE! than for the six-parameter fit~4% for D!.
The dotted line in Fig. 2~b! is meant only as a guide to the
eye but it does indicate that the ten energies are best fit by
two functions which meet atG where there is a cusp in both
parameter sets. The solid curve in Fig. 2~a! is a third degree
polynomial of the form,C11C2z1C3z

21C4z
3 fit to the

circles in Fig. 2~b! ~not shown there for clarity!. The fitted
coefficients are C1513.563 47, C2520.561 972,
C3510.045 241, andC4520.001 373 92. This shows that
we really need only four parameters instead of ten. For this
work, we choose to work directly with the ten~least-squares!
parameters which are listed in Table I. Unless stated other-
wise, any numerical result we give for the ten-parameter
BSM is obtained with these values. The ten-parameter BSM
is not only more accurate than the three-parameter model,
but, as we shall see, also gives qualitatively different physics
in the sense that it predicts different values for physical
quantities which are degenerate in the three-~or six-! param-

eter model. It should be stressed that there is nothing sacred
about fitting the BSM parameters to EAM calculations and
that in general any theoretical~e.g., first-principles calcula-
tions! or, better yet, experimental data could be used.

III. SMALL CLUSTER ENERGETICS

A. Energy-shape relationship in the three-parameter BSM

To demonstrate the predictive power of our method, let us
switch in Eq. ~1! from a summation over lattice sites to a
summation over coordination numbers, giving

H52
1

2 (
z50

6

zu~z!Nz , ~4!

whereNz is the coordination distribution giving~for eachz!
the number of adatoms with that coordination. Using the
quadratic form foru(z) in Eq. ~2!, Eq. ~4! becomes

H52
1

2
@C1m11C2m21C3m3#, ~5!

wherem1 ,m2 ,m3 are the first, second, and third moments of
Nz—the pth moment being defined as,mp[( z50

6 zpNz . In
the remainder of this section, we will explore the ramifica-
tions of this ‘‘moment expansion’’ of the BSM Hamiltonian
for the energetics of 2D adatom clusters.

Since in any~finite! cluster there must be some ada-
toms with z,6, we have, 6mp.mp11, and for our para-
meters,C1.6uC2u.36C3 . These two facts are sufficient
to establish C1m1.uC2um2.C3m3 , and therefore,
C1m1.uC2m21C3m3u, becauseC2 and C3 have opposite
signs. Thus, becauseC1 is attractive~positive!, the energy of
a cluster ofN ~m0! adatoms is minimized byfirst maximiz-
ing m1 which is just twice the number of~nearest-neighbor!
bonds. So far, we have not made any pre-

FIG. 2. Pt bond parameters@~a!# and cohesive energies@~b!# for the ten-parameter BSM versustotal nearest-neighbor coordination,z. All
symbols have the same meaning as in Fig. 1. The solid curve in~a! is a fourth degree polynomial fit to the parameters~circles! in ~b! @not
shown in~b! for clarity#. The dotted curve in~b! is meant only as a guide to the eye.
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dictions different from a constant bond model. For
N52,3,4,5,7,8,10,12,14,16,19, etc., there isonly onebond-
maximizing cluster geometry. However, when there are sev-
eral different bond-maximizing geometries~as for
N56,9,11,13,15,17,18, etc.!, the higher moment terms in Eq.
~5!, which are absent in a constant bond model, determine
which shapes are most stable. Because the second moment
term ~next largest! is repulsive, for fixedm0 andm1 the most
highly bound clusters willminimize m2. Thus, sincem2 is a
measure29 of the width of the coordination distribution, it is
energetically favorable to have the ‘‘populated’’ values ofz
gathered as closely as possible around the mean value:
z̄5m1/m0 . Lastly, for cluster geometries with the samem0,
m1, andm2, it is energetically favorable to maximizem3
which is a measure29 of the asymmetry ofNz .

The above scheme is nicely illustrated in Table II for the
bond-maximizing geometries with 6, 9, and 15 adatoms. For
each cluster, we list the binding energies calculated~on the
fcc sublattice! with the EAM ~Ref. 14! and with the three-
and ten-parameter forms of the BSM in columns 2–4, and
the 0th–3rd moments ofNz in columns 5–8. The three clus-
ter shapes in the upper group all have 6~m0! adatoms and 9
~m1/2! bonds. As expected, the geometry with the smallest
value ofm2 has the highest binding energy~in all three mod-
els!. In the three-parameter BSM, the binding energies of the
other two geometries~with equalm2! increase with the value
of m3. The same remarks hold true for the 9 and 15 adatom
groups as well. Because the BSM can so accurately repro-
duce the EAM results, we believe the conclusions drawn
here for Pt~111! should also hold for the~111! surfaces of the
other ‘‘EAM metals’’: Ni, Cu, Pd, Ag, and Au.

This relatively simple scheme is complicated by the fact
that some clusters’ binding energies depend on how they are
oriented on the~111! surface.3,14,30Clusters of this type have
two binding energies listed in columns 2 and 4~EAM and
ten-parameter BSM!. The two binding energies correspond
to two orientations which differ by a 180° rotation of the
entire cluster. As we show in the next section, this difference
can be understood in the context of the ten-parameter BSM.
Keeping this complication in mind, we assert that the rule of
thumb: ‘‘first maximizem1, then minimizem2, and finally
maximizem3,’’ should provide a unique and powerful way
of deciphering the spectrum of binding energies of 2D ho-
moepitaxial adatom clusters on close-packed surfaces of the
EAM metals. This hypothesis should be testable~although
not without care as evidenced by the small energy differ-
ences in Table II! by observing adatom clustering with FIM
or similar techniques for probing surfaces. To our knowl-
edge, the only fcc~111! surface on which many small ho-
moepitaxial clusters have been studied in atomic detail is
Ir~111! by Wang and Ehrlich.30 Using FIM, they observed
clusters with 2–8, 12, and 13 adatoms. With the exception of
trimers, they always observed bond-maximizing equilibrium
geometries in agreement with our hypothesis. However, for
clusters with 6 and 13 adatoms~for which there are several
possible bond-maximizing geometries!, they observed differ-
ent ground state geometries than predicted by our rule. These
‘‘discrepancies’’ probably just reflect the increased angular
character of the Ir bond compared to the Pt bond.24

B. Effect of cluster orientation on binding energy

As mentioned in the preceding section, the binding ener-
gies of certain clusters depend on how they are oriented on
the substrate. The two possible orientations of a triangular
trimer on the fcc sublattice31 are shown in Fig. 3. The tri-
angle on the left~pointing up! is centered on a surface hol-
low ~hcp site!, while the triangle on the right~pointing down!
is centered on a substrate atom. Following Ref. 14, we will
refer to these as ‘‘hollow’’ and ‘‘filled’’ orientations, respec-
tively. According to our EAM calculations, the filled trimer
is more stable than the hollow trimer by about 40 meV. This
may not seem surprising given that the adatoms bond to
seven substrate atoms in the filled trimer, but to only six in
the hollow trimer as is clear from Fig. 3. However, it should
be noted that the number of bonds is the same for both con-
figurations. This is easily seen by summing the coordination
numbers~which overcounts bonds by a factor of 2! of the
seven substrate atoms for the filled trimer: 6~10!112572,
and doing the same for the hollow one: 913~10!13~11!572
~a seventh substrate atom contributes the 9!. Clearly, the co-
ordination numbers of the adatoms and the rest of the sub-
strate atoms cancel in the energy difference between the two
trimers. Thus, from the vantage of~nearest-neighbor! lattice
gas models, this difference is a purely multiatom effect not
understandable in a constant bond model~CBM!. Rotating
the trimer does not affect the number of bonds, but it does
affect their strengths. This is reflected in the ten-parameter
expression for the energy difference,

DEfh52
1

2
@~J2G!23~ I2H !#, ~6!

whereDEfh stands forEfilled2Ehollow . Note thatDEfh re-
duces to zero in a CBM whereU(z)5zu0 @refer to Eq.~3!#.
The BSM value of about229 meV for this quantity reflects
the higher stability of the filled trimer. The~average! EAM
value for this quantity obtained from all the ‘‘polar’’ clusters
~see the next paragraph! in the set of 62 is228.6 meV. Note
that, forT,250 K, Wang and Ehrlich observed triangular Ir
trimers in the hollow configuration 80% of the time30 in con-
trast to our prediction for enhanced stability of the filled
trimer.

FIG. 3. The two physically distinct orientations of a compact
trimer on a fcc~111! substrate. The ‘‘hollow’’ configuration is on
the left and the ‘‘filled’’ configuration on the right. If the@1̄ 1̄2#
direction is up, then the adatoms~smaller open circles! reside on fcc
sites. Only the top layer substrate atoms~shaded circles! are shown.
All atoms in the figure are labeled with their total nearest-neighbor
coordination~z in the ten-parameter BSM!.
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Since larger clusters are composed of both hollow and
filled triangles, any cluster with an excess of either kind of
triangle is expected to have a preferred orientation. It is just
these ‘‘polar’’ clusters which have two binding energies in
Table II for the EAM and ten-parameter BSM. If the page of
the figure is the~111! substrate with the@1̄ 1̄2# direction
pointing up and the@1̄10# direction to the right~as in Fig. 3!,
the upper binding energy corresponds to the~hollow! orien-
tation ~shown in column 1!, and the lower value to the ro-
tated~filled! orientation~not shown!. Except for the bottom-
most 15-adatom cluster, both the EAM and the ten-parameter
BSM predict that the filled orientation is most stable. As is
shown in Sec. IV B, in the ten-parameter BSM, the energy
difference between the two orientations is always a multiple
of the fundamental difference,DEfh , in Eq. ~6!. This need
not be true in the EAM because the forces are of longer
range and there is surface relaxation. The two orientations
are degenerate in the three-parameter BSM, because coordi-
nation changes for atoms in the substrate are ignored,
whereas, in the EAM and ten-parameter BSM, they are in-
cluded and give rise to an energy difference.

IV. LARGE CLUSTER „ISLAND … ENERGETICS

A. Binding energy in the three-parameter BSM

To further clarify the energy-shape relationship, we cal-
culate the binding energy according to Eq.~4! of an arbitrary
cluster assuming only that, for every adatom,z>2. An
N-adatom cluster~like any of those in Table II! will have L
adatoms~with z,6! on the perimeter, andN2L ~interior!
adatoms withz56, whereL is the perimeter length in units
of the lattice constant. TheL perimeter adatoms can be di-
vided intoNc corner adatoms andL2Nc edge adatoms with
z54. TheNc corner adatoms can be divided intoN2, N3, and
N5 adatoms~with z’s of 2, 3, and 5!. Since, by assumption,
N05N150, we now have the entire coordination distribu-
tion. Replacing2zu(z)/2 in Eq. ~4! by Uz , the cluster’s
binding energy,Ebind, is then given by

Ebind5U6N1U46L1U24N21U34N31U54N5 , ~7!

whereUnm[Un2Um is the energy cost of changing the co-
ordination of an adatom fromm to n. The physical interpre-
tation of the terms in this expression is obvious:U6N is the
‘‘bulk’’ or ‘‘interior’’ energy, U46L is the energy cost of
creating the cluster boundary~step energy!, and the next
three terms are the energy costs of putting bends with angles
~measured inside the cluster! of 60°, 120°, and 240° in the
boundary~corner energies!. In terms ofC1, C2, and C3,
these energies areU6523C1218C22108C3>21.66,
U465C1110C2176C3>10.34, U245C116C2128C3
>10.53, U345(C117C2137C3)/2>10.24, and U545
2(C119C2161C3)/2>20.19 ~all in eV/adatom!. In con-
trast, for a CBM we have~in the same order!: 21.84,10.61,
10.61,10.31,20.31 ~eV/adatom!, using the single bond,
u050.614 eV ~Sec. IIA!, in place of C1 and taking
C25C350. The ratios of the BSM to the CBM values for
these quantities are: 0.90, 0.56, 0.87, 0.77, and 0.61, respec-
tively. Their magnitudes, especially the step energy~U46!,
are reduced in the BSM by the repulsive nature ofC2 ~i.e.,
by repulsive three-body interactions14!. Consequently, we
should expect the BSM lattice gas to disorder at lower tem-

peratures than the corresponding CBM. For example, island
edges should roughen at lower temperatures in the BSM than
in the CBM. Our Monte Carlo simulations do indeed show
this and other interesting phenomena.32 Note that Eq.~7!
could be useful in determiningC1, C2, andC3 directly from
experiment.

B. Step energies and island shapes

The above value,U46>343 meV/adatom for the step en-
ergy, agrees well with the EAM calculations of Nelson
et al.33 ~NEKR!, who obtained~T50! step energies of~359
and 357 meV/adatom! with the VC Pt potential, and~344
and 341 meV/adatom! with the FBD potential for~A andB!
type steps on Pt~111!. TheA ~$100% microfacet! andB ~$111%
microfacet! step energies are degenerate in the three-~or
six-! parameter BSM and, as we shall see, are nearly so in
the ten-parameter model.

Arguing plausibly that maximizing the number of bonds
is equivalent to maximizingN6, sinceL5N2N6 , it follows
that the ground state shapes predicted by Eq.~7! will have
minimum perimeter lengthL. This is equivalent to saying
that the boundary energy term (U46L) is the dominant edge
term in Eq.~7!. This is clearly the case for a large island with
long straight edges because edge atoms will far outnumber
corner atoms. Attempting to lower the energy by forming
five fold coordinated corners~U54,0! would not seem to
balance the cost of increasingL. This reasoning appears to
hold even forsmallclusters since, in Table II, all the clusters
in a given group have the sameL. To minimize L, large
clusters will tend to form hexagons with sides of equal
length.34 Thus, for Pt,despite the multisite interactionsin the
three-parameter BSM, the predicted ground state cluster
shapes are regular hexagons.

In the STM experiments of Michely and Comsa,5 for
T.700 K, hexagonal clusters on the Pt~111! surface are in-
deed seen but with sides that alternate in length in an
ABABABfashion withA steps short andB steps long. They
observe the same shapes independent of the islands’ sizes
and independent of their formation history and thus conclude
that these representequilibrium island shapes. The measured
ratio of the short to long side lengths, 0.6660.05, gives via
the Wulff construction35 a free energy ratio,
R[ f B/ f A50.8760.02, for the two steps. That is, on Pt~111!,
B steps havelower free energy thanA steps. Michely and
Comsa~MC! remark that it is natural to expect the$111%
microfacet~B step! to have a lower energy because the~111!
surface~with its higher coordination! is lower in energy than
any other surface. This very plausible sounding argument is
actually misleading. First of all, for amonatomicstep, the
concept of a microfacet is not really valid since none of the
atoms at the step~on the upper or lower terrace! have the
same coordination as for the true facet. Still, theB step, for
which the atoms at the step bottom have 11 nearest neigh-
bors, is more highly coordinated than theA step for which
the corresponding coordination number is 10~see Fig. 4!.
This would seem to lend credence to MC’s reasoning. In-
deed, as we will show, if theA andB steps differedonly in
the coordination of the step atoms, theB step would have a
substantially lower~ground state! energy than theA step in
agreement with MC. However, it is crucial to note that the
two steps differ also in their ‘‘unit cell’’ areas~Fig. 4!. As we
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shall see, this areal difference translates into a substantial
energy difference and results in essentially degenerate step
energies in disagreement with MC’s remark and with the
observed step~free! energy difference.

To calculate a step energy, one could proceed in the fol-
lowing manner. First calculate the surface energy of a sub-
strate which is slightly miscut and so has a surface with wide
terraces bounded by parallel monatomic steps. This surface
energy will include both step and terrace energies~and pre-
sumably minimal step-step interactions for sufficiently wide
terraces!. To obtain the step energy, one subtracts the proper
amount of terrace energy.36 The essence of this calculation is
a subtraction of surface energies in the immediate vicinity of
the step.37 Accordingly, we take,

bstep5@estep2e terrace#Astep/ai , ~8!

as our definition of step energy. Herebstepis the step energy/
atom~or per unit step length!, estepandeterraceare the step and
terrace surface energies per unit area,Astep is the area of the
step unit cell, andai is the width of the step unit cell parallel
to the step~i.e., the spacing between neighboring atoms
along the step!.

In Eq. ~8!, estepAstep is just the surface energy of the step
unit cell. The unit cells for monatomicA andB steps on the
~111! surface are depicted in Fig. 4. Each surface atom con-
tributes,Uz2U12 to the surface energy whereUz has the
same meaning as in Eq.~7! andz is the atom’s surface co-
ordination. Thus, the unit cell energies forA andB steps are
eA5U71U91U1023U12 and eB5U71U91U1123U12,
respectively. In terms of the cohesive energiesA2J we have
eA5[3J2(H1G1E)]/2 andeB5[3J2(I1G1E)]/2. The
difference in cell energies,eA2eB5(I2H)/2>0.17 eV/
atom, is purely due to the different coordination of the atoms

at the bottom of the two steps. If this were the only differ-
ence between the two step energies,B steps would be sub-
stantially favored. According to Eq.~8! we must subtract
from the unit cell energy,eterraceAstep/ai , which for the prob-
lem at hand becomese111l step, wheree111 is the~111! surface
energy per unit area andl step is the step unit cell length
~perpendicular to the step!. By the previous discussion, we
have e1115(J2G)/2>535 meV/atom. In terms of the
nearest-neighbor bond lengtha1, the surface area per atom
on the ~111! surface is)a1

2/2, giving e1115(J2G)/)
eV/a1

2, or about 1288 erg/cm2 for the Pt~111! surface energy.
Full scale EAM calculations give 1341 erg/cm2 ~VC! ~Ref.
38! and 1440 erg/cm2 ~FBD!.26,39 The lack of surface relax-
ations in the BSM can always be invoked as the culprit be-
hind any discrepancy with the EAM. From Fig. 4, theA and
B step unit cell lengths are seen to bel A54a1/) and
l B57a1/2). Thus the terrace subtraction term is 4(J2G)/3
for A steps and 7(J2G)/6 for B steps ~both eV/atom!.
Combining everything, we have

bA5
1

2
@3J2~H1G1E!#2

4

3
~J2G!, ~9!

and

bB5
1

2
@3J2~ I1G1E!#2

7

6
~J2G! ~10!

for theA andB step energies in the BSM. These expressions
give bA5341 meV/atom andbB5351 meV/atom, in good
agreement with NEKR’s EAM results. While NEKR found a
very slight preference~2–3 meV! for theB step, we predict
a slight preference~10 meV/atom! for A steps. These small
energy differences are certainly near if not well below the
limit of accuracy of the EAM.

The step energy difference is, from Eqs.~9! and ~10!,

bA2bB5
I2H

2
2
J2G

6
. ~11!

The first term~0.169 eV/atom!, as previously discussed, has
its origin in the different coordination of atoms at the step
bottom and strongly favorsB steps. The second term~0.178
eV/atom!, arising from the difference in unit cell areas, is
large enough to cancel the first term and even tip the scales
slightly the other way in favor ofA steps. Note that the
absence of substrate contributions in the three-~or six-! pa-
rameter BSM is responsible for the consequent degeneracy
of the two step energies. In the limit of a single bond strength
~CBM!, both Eqs.~9! and~10! reduce tou0 per atom, so that
their difference~if any! is purely multiatom in origin.

For self-consistency, we now show that the step energy
difference obtained above for infinitely long steps can also
be obtained from the energetics of finite clusters. To do this,
consider two clusters shaped like equilateral triangles, each
with three sides of lengthS ~in lattice parameter units!, one
~hollow, withB-type edges! pointing up and the other~filled,
with A-type edges! pointing down. TheS51 case is shown
in Fig. 3. Just as for the trimer~S51! considered in Sec.
III B, the binding energy difference for the two clusters will
only have contributions from the substrate atoms. Accord-
ingly, we seek the number (Nz) of substrate atoms with

FIG. 4. Unit cells ~inside dashed boundary! for the A ~$100%
microfacet! ~upper figure! andB ~$111% microfacet! ~lower figure!
steps on a fcc~111! surface. Repeating the cells vertically will
create steps running vertically. As in Fig. 3, the atoms are labeled
with their nearest-neighbor coordination. Unshaded atoms reside in
the upper terrace and shaded atoms in the lower terrace. In the
figure, a1 is the nearest-neighbor bond length, in terms of which
d5)a1/2. Thus the two cells differ in length by onlya1/2).
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z’s of 10, 11, and 12. For the filled cluster, we have
N125S(S11)/2,N1150, N1053(S11), and for the hollow
cluster N125S(S21)/2, N1153S, and N1053. Therefore,
the filled cluster bonds toS more substrate atoms than the
hollow one. Being careful to treat this difference in number
of substrate atoms, we find

Efilled2Ehollow5SDEfh ~12!

for the energy difference. In accord with the discussion in
Sec. III B, it is a multiple of the fundamental difference for
trimers in Eq.~6!. Since rotating any cluster by 180° con-
verts itsA-type edges intoB and vice versa, we must con-
clude thatDEfh is related to theA,B step energy difference.
This has been explicitly demonstrated by Barkemaet al.,3

who studied equilibrium island shapes on close-packed sur-
faces using an Ising model with two- and three-spin interac-
tions, with the energy difference between up and down trim-
ers~treated as a phenomenological parameter! governing the
strength of the three-spin terms.40 Their argument is simple:
adatoms in a cluster’s interior belong to equal numbers of up
and down triangles and so do not contribute to the orienta-
tional energy difference, whereas an adatom in anA step
belongs to 2 down and 1 up triangle and vice versa forB
steps. It is then natural to write Eq.~12! as

Efilled2Ehollow53@Dbcorner1~S21!Dbstep#,

where Dbcorner and Dbstep are the corner and step energy
differences, respectively. Now when Eq.~12! is written as

Efilled2Ehollow53@11~S21!#DEfh/3,

we see by comparison with the previous expression that

Dbcorner5Dbstep5DEfh/3.

From Eq.~6! we then have

Dbstep5bA2bB5
I2H

2
2
J2G

6
,

in agreement with Eq.~11!.
By estimating step energies from EAM surface energies

corresponding to the step microfacet,41 NEKR find, either
degenerate step energies~bB/bA>1.0! for ~Ag,Au,Pt!, or a
slight preference forA steps~bB/bA>1.1! for ~Cu, Ni, Pd!.33

There is strong~if indirect! evidence from experiment thatA
steps are favored on Cu~111!.4 This is corroborated by Bree-
manet al.’s semiempirical~Finnis-Sinclair method! study of
Cu clusters on Cu~111!.42 It therefore seems that the predic-
tion of nearly degenerateA andB step energies is generic to
atom-embedding schemes. Given Michely and Comsa’s
~MC! finding of lower B step free energies, we might be
tempted to conclude that the Pt~111! surface is exhibiting
non-EAM behavior. However, in a recentfirst-principles
study of steps on Pt~111!, Feibelman found higher but still
essentially degenerate ground stateA andB step energies:
0.46 and 0.47 eV/atom forbA andbB , respectively.

43 Feibel-
man’s finding is contested by a more recent first-principles
study by Boisvertet al.44 Their preliminary results for the
same step energies are in excellent agreement with MC. It

should be emphasized that finite temperature effects could
play a significant role in the analysis of MC’s discovery.
After all, the ratio of step free energies reported by MC is
inferred from observations of clusters equilibrated atT.700
K. Assuming Feibelman’s result forbA is representative of
the free energy (f A), MC’s reported ratio
~f B/ f A50.8760.02! implies a free energy difference
( f A2 f B) of only 60610 meV/atom. The thermal energykBT
has roughly the same value~60 meV! at T5700 K. NEKR
have shown that entropic contributions to the step free ener-
gies from ‘‘diffusional step wandering’’ are negligible33 but
this has not been shown for the effects of vibrational entropy.

V. CONCLUSION

In conclusion, we have studied the role played by multia-
tom interactions in determining the energies and shapes of
2D homoepitaxial adatom clusters on close-packed metallic
surfaces using the ‘‘bond saturation model’’ or BSM. By
describing adatom-adatom interactions in terms ofcoordina-
tion dependentnearest-neighbor bonds only, we arrive at a
very detailed understanding of the energy-shape relationship
for adatom clusters predicted with EAM calculations. Key to
this relationship, for the three-parameter BSM, is an expan-
sion of the model Hamiltonian in the moments of the distri-
bution of adatom coordination numbers. This expansion
leads to a simple rule for predicting how the binding energies
of several bond-maximizing cluster shapes will order. This
rule should be testable with surface probes such as FIM or
STM. We have also obtained a simple expression for the
binding energy of a cluster of arbitrary shape which includes
step and kink energies.

Hexagons~with sides of equal length! are the predicted
ground state shapes for large clusters in the three-parameter
BSM ~as in an Ising model with a single nearest-neighbor
bond strength!. In contrast, on Pt~111! ~for T.700 K!, the
experimentally observed island shapes are hexagons with
sides that alternate in length indicating a lower free energy
for B steps~111 microfacet! thanA steps~100 microfacet!.
The two step energies are degenerate in the three-~and six-!
parameter BSM’s~adatom-adatom bonding only!, but with
the treatment of adatom-substrate bonding in the ten-
parameter BSM, this degeneracy can in principle be lifted.
However, the two step energies are nearly degenerate even in
the ten-parameter BSM because the two factors which deter-
mine the step energies, namely, the difference in coordina-
tion of the atoms at the step bottom~favoring B steps by
;170 meV/atom! and the difference in step unit cell areas
~favoring A steps by;180 meV/atom! give nearly cancel-
ling energies. This gives insight as to why the experimentally
observed step free energy difference is small~;60 meV/
atom!. The BSM allows powerful conclusions to be drawn
with relative ease even in the presence of multiatom interac-
tions which, at first glance, would seem to place such analy-
sis out of easy reach.
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