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Fractal conductance fluctuations in generic chaotic cavities
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It is shown that conductance fluctuations due to phase coherent ballistic transport through a chaotic cavity
genericallyare fractals. The graph of conductance vs externally changed parameter, e.g., magnetic field, is a
fractal with dimensiorD =2— 8/2 between 1 and 2. It is governed by the expongiit=2) of the power-law
distribution P(t) ~t~# for a classically chaotic trajectory to stay in the cavity up to timehich is typical for
chaotic systems with a mixe@haotic and regularphase space. The phenomenon should be observable in
semiconductor nanostructures and microwave billiar§6163-182006)06639-9

Phase coherent phenomena have received considerable aith exponent3<2.
tention over the past years. tlisorderedconductors smaller Regular and metastable trajectories also can give rise to a
than the phase coherence length universal conductance flusewer-law distributiorf>*>?*however, typically with an ex-
tuations and weak localization have been foliitecent ex-  ponent3>2. As they group in families and their contribu-
perimental and theoretical work put emphasis lmilistic  tion to the phase coherent conductance is very subte
transport in nanostructures on semiconductor heterojunctioriRef. 12 for a conjectupe their contribution will not be dis-
with chaotic classical dynamiés!? Regarding conductance cussed in the remainder of the paper, but rather the contribu-
fluctuations the focus has been on Hpecificcase of hyper- tion of the chaotic part of the mixed phase space. Also, sharp
bolic systems where the escape from a cavity typically isesonances due to quantum tunneling between the chaotic
exponentially fast and spectral as well as correlation properand regular parts of phase space, as observed by?4eliia,
ties of the fluctuations have been predi¢tdd and  be neglected.
observed?® Phase coherent phenomena in gemericcase of The surprising phenomenon of fractal fluctuations should
systems with a mixedchaotic and regularclassical phase
space, however, have apart from Ref. 16 received much less
attention. There the chaotic part of the phase space has a very a) v b G
different long time behavior, namely, the escape from such a e -
cavity is much slower and follows power law similar to
those reported in various chaotic model systéfm&’ This is
believed to be due to an infinite hierarchy of cantori, i.e., sets
of measure zero which are partial barriers for transport,
spread in the hierarchical structure of phase spatk.
Therefore one may wonder what the fingerprints are of the
hierarchical phase space structure of chaotic systems and
their corresponding power-law escapes of chaotic trajectories
on conductance fluctuations.

In the present paper this question is answered by showing \J QO
that in the generic case(i.e., a mixed phase space with N T
power-law escape from the cavitphase coherent ballistic
transport leads téractal fluctuations of the conductance, as
illustrated in Fig. 1. Quantitatively, the fractal dimensibn
of the graph of conductance vs externally changed param- e’
eter, e.g., gate voltage or magnetic field, is shown to be given

by

FIG. 1. (a) The hierarchical phase space structure of a 2D cha-
otic system andb) fractal conductance fluctuations are shown.
D=2-pI2 () Their relation for phase coherent ballistic transport is derived in the
text [Eqgs.(9,12]. The Poincaresurface of section shows the inter-
sections of one chaotic and 6 regular trajectories with the @)
plane @,>0) for the example of an antidot arrdRef. 4. The
conductance fluctuations are described by fractional Brownian mo-

tion according to Eqgs(10,12, whereD=1.4 was used for this
P(t)~t # (2) figure.

if the classical probability?(t) of chaotic trajectories to stay
longer than a timé in the cavity decays as a power law
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be observable in semiconductor nanostructiitésas well 2\ 2
as in microwave billiard$? In particular, such an experiment (AG)Y)=| — > pepy|e2™ (P bwABIo_ )2

would serve as the first quantitative observation of the hier- h/ w53
archical phase space structure of a chaotic system. A possible ,\ 2 2
experimental realization will be discussed at the end of this €

=2\ z Ps
paper' h n,m S

The two-probe conductandg of a nanostructure is pro-
portional to the sum of transmission amplitudes squared
from modem of one lead to moda of the other lead, -

2

)

S pee?mi 628/
S

2 Replacing the sum over patlssby an integral over the
G= e_E |toml2, (3) distribution dP(#)/de of areasd enclosed by classical paths,
him assumingP(#) to be independent of the modesandm, and

by restricting to positive area@=0 for simplicity one finds

which in the semiclassical approximation are gived‘by

= dP(6 _
<(AG)2>~1_IO de d(e )82711 0AB/ ¢g 2_ (8)
to=S Jpeeli/h) Ssi(w/2) s 4) Power-law distributions of the enclosed areas
nm S .
) P(6)~ 67 ©)

Here S, and v, are the classical action and Maslov index of for large 0 then cause the variance of the increments to scale

paths traversing the cavity with classical transmission prob—as

ability ps to go from modem to moden. A small change in (AG)Y)~(AB)Y; y=2 (10)
magnetic field or in energy will change the classical action of ’
paths: (AG))~(AB)%  y>2 (11)

under small changes in the magnetic field. Thusyfer2 the
ho.AB graph of conductance vs magnetic field has the same statis-
S(E+AE,B+AB)=S4(E,B) +t;AE+ b0’ (5 tical properties as a Gaussian random process with incre-
0 ments of mean zero and varianc®R)”?. Such processes are
known as fractional Brownian motiéhand have the prop-
where tg is the time for paths, 6;=(1/27) [ (dA/oB)dl, erty that their graph is a fractal with dimension
V X A=B, and¢y=h/e is the magnetic flux quantum. For a
closed pathd, gives the(accumulateflarea enclosed by the D=2-7y/2 (12)

orbit. i L . between 1 and 2Fig. 1(b)]. Similarly, for small changes of
In. angllggy to previous derivations of the c_:orrelauonthe energy, e.g., by changing a gate voltage and for a power-
functiont®!?from the above formulae the change in the CoN-14w distribution P(t)~t~# (B=2) of classical sojourning

ductance fo_r a Sma" change in the external parameter, €-%imes in the cavity larger thanthe fractal dimension is given
the magnetic field, is found to be by D=2— B2

Thus the graph of conductance vs magnetic fieliergy
_ _ is a reproducible fractal line, whenever the classical prob-
AG=G(E,B+AB)-G(E,B) ability P(6) [P(t)] decays as a power law with an exponent
g2 smaller than 2. This phenomenon, which we @alttal con-
h

E E \/Dspu(ezmwsf fuABldo_1) ductance fluctuationgs generic for ballistic nanostructures,
n,m s,u

as in a typical system one has a mixed phase space with a
x @(i11) (Ss=Sy) =i (w/2) (vs—vy) (6)  hierarchical phase space struct{fég. 1(a)] and a hierarchy

of cantori causing the power law of the staying

probability?®?! In the remainder of the paper some general
In the semiclassical limit, where the classical acti@®@sand remarks regarding the observability of fractal conductance
S, are much larger thai and can be assumed to be inde-fluctuations are given and an experimental realization is pro-
pendent for different chaotic trajectories, the last exponentigbosed.
factor in Eq.(6) can be considered as a complex random Equation(4) makes use of the semiclassical approxima-
number with mean 0 and variancéeixcept fors = u, butin  tion for the transmission amplitudes which is valid up to
that case the second but last factor vanish&@ssuming sta- some finite timea* only. Therefore the fine scale fluctuations
tistical independence of the actioBs for paths connecting of the conductance due to trajectories staying longer than this
different modegdiagonal approximatignand with the help time t* in the cavity will be washed out by quantum me-
of the central limit theorem it follows that the increment chanics. Thus the graph of conductance vs externally
AG is a Gaussian distributed random variable with mearchanged parameter will look like a fractal only on scales
zero and variance larger than
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AE* ~h/t*  or AB*~ ¢/ 0(t*). (13)

As for any other fractal in the physical world there is not
only such a smallest, but also a largest scale. Here it is de-
termined by the time and the area of the onset of the power-
law behavior ofP(t) andP(#0), respectively.

How big the range of validity for the semiclassical ap-
proximation is and how it depends on the effectivef the
system is a subject of current reseaf€h rough estimate
for the present situation may be that only those parts of the
hierarchical phase space structure can be resolved that are
larger than#i. This will lead to a breakdown of the power- -
law staying probability at some timg ~(#/S) ™ * with « 1 10 100 t 1000

depending on the system aftbeing the action of a typical
trajectory. FIG. 2. The probabilityP(t) to stay in the cavity(lower left

Whgt is the effect of disorder? As _Iong as tb#astl_c insed for a time greater thanm in units of ty in a perpendicular
sqattermg can be modeleq by smoqth impurity p_otenuals 'hqagnetic fieldB=0.68, decays with a power lawP(t)~t~ 17
will not change the generic properties of the mixed phasgsojig line). The probabilityP(6) for enclosed areas greater than
space. Thus fractal conductance fluctuations may well be oby in units of 6, follows the same power-law behavi@tash-dotted
servable in the presence of disorder. For strong disordefine). The upper right inset shows a typical trajectory trapped in the
however, the fractal dimensidh may depend on the specific hijerarchical phase space structure giving rise to the power-law be-
disorder configuration. The situation would be different for havior. For this figure a cavity formed by two cosines with maxi-
integrable systems and some idealized chaotic systems withum distancel, minimum distancel/2, length 5i/4, and parabolic
hard walls, e.g., the stadium billiard, where power-law dis-walls of width d/4 was used.
tributions have been fourfd:'>?3The latter are due to fami-
lies of metastable orbits and would break down even forsical phase space. In a perpendicular magnetic field many
small disorder.Inelastic scattering, e.g., due to electron- trajectories will be trapped close to regular cyclotronlike or-
electron interaction, destroys the phase coherence and theffgts for some time(upper right inset of Fig. 2 This gives
fore the fractal conductance fluctuations on small scalegise to power-law distributions for the staying time
This scale is determined by the inelastic scattering tipie P(t)~t 17 and for the area enclosed by a trajectory
the same way as in EqLJ3) for t*. P(6)~ 617 (Fig. 2). For this cavity Eq(12) predicts fractal
How severe is the restriction to systems wjghy<2?  conductance fluctuations with a dimensibr-1.15. Similar
Exponents3<2 as well as83>2 have been reported in vari- results are found for cavities with other parameters or with
ous systems and parameter rantjed®?>1%so far, however, an antidot added to the center of the cavity. The power-law
it is not possible to predict the expone@ity for a given exponents range from 0.9 to 3.5 corresponding to fractal con-
system. For the cag®, y=2 it follows from Eq.(11) thatthe  ductance fluctuations with <D=<1.55. In all these ex-
graph of conductance vs externally changed parameter is anples with magnetic field8#0 the power-law exponents
smooth line with dimension 1. Thus not every such chaoticof P(t) andP(#) turn out to be identical.
system gives rise to fractal conductance fluctuations with The energy and the magnetic field scale for fluctuations
D>1. due to trajectories makiny revolutions is given byEgs.(4)
To test the above semiclassical treatment of the conduand(5)]
tance numerically by comparison with a quantum-
mechanical calculation, e.g., a recursive discrete Greens h b0
function method® is in general beyond current computa- AEN:tO_N and ABNIGO_N’ (14)
tional resources, as an approximating discrete lattice must be
fine enough to resolve the hierarchical structure in classicavheret, and 6, are the time and the area for one revolution.
phase space on at least a few levels. In a one-dimensionkpr a free cyclotron orbit of diametet these are given by
periodic array of potential wells studied by Letial,’® how- to=md/vg and @p=wd*4 at magnetic field
ever, it was possible to confirm a semiclassically derivedBy=2m7m*/(ety) with Fermi velocityv=#+2wn/m*, ef-
cusp in the correlation functioB(AE)=C(0)— (AE)? for  fective massn*, and the 2D electron density. This gives
P(t)~t~°. As the correlation function is related to the vari- rise  to an effective  Planck’'s  constant 7
ance of the increments b@(AE)=C(0)— X(AG)?) their  =#/[pdq=1/(2Y27%%dn'?).
calculations do confirm the semiclassical derivation of the In order to observe fractal conductance fluctuations over
variance((AG)?) [Eq. (10)], from which the occurrence of at least one order of magnitude one nelRds10 revolutions
fractal conductance fluctuations is concluded. and thus a phase coherence lenytf= 107d. In addition,
Since ballistic transport in chaotic cavities has beerthe validity of the semiclassical approximation over this
studied successfully in GaAs/&ba _,As heterojunc- length scale is required. As mentioned above, the latter is not
tions>>6-811.1%hese should be suitable for the observation ofknown exactly. On the other hand, in an antidot array of
fractal conductance fluctuations. The lower left inset of Fig.period 300 nm magnetotransport anomalies due to classical
2 shows an example for a geometry, namely, a widene&lectron trajectories surrounding 21 antidots have been
channel with parabolic walls, that gives rise to a mixed clasobserved corresponding to a length of about &m. The



10 844 ROLAND KETZMERICK 54

phase coherence length in these 2D electron systems is abdlutctuations is of semiclassical origin. Therefore, although at
10 um 8 Therefore a size of the cavity of abotit=300 nm first sight very similar, it is unrelated to the general relation
would be favorable for experiments with the current technol-of the quantum-mechanical power-law staying probability to
ogy. For smalled the scale of the fluctuation§By would  a multifractal dimension of the local density of stafes
be too large for the assumption implicit in the above semiwhich in some examples is also related to a multifractal di-
classical transport theoyEq. (4)] that on the scale of the mension of the eigenfunctiori.

fluctuations only the phases but not the classical trajectories |y conclusion, fractal conductance fluctuations are a ge-
themselves are changed. For the example shown in Fig. 2 thgsric phenomenon of phase coherent ballistic transport. They
exponent 8 is unchange? on a magnetic field range are due to the hierarchical phase space structure of mixed

~ _ _ 5 -2 ) .
A?BNO'lBO' For d=300 nm, n—5x;01 m~* and  cphaotic systems and should be observable in nanostructures
m* =0.067, one findsAB;~80 mT, which must be com- o camiconductor heterojunctions.

pared withABy~60 mT/N. Thus fractal conductance fluc-
tuations should be observable on one order of magnitude in It is a pleasure to thank Walter Kohn for discussions on
these experiments wit~ 300 nm, which provides a lower conductance fluctuations that stimulated this work and for
bound. More and more details of these fractal fluctuationdis hospitality during a stay at UCSB. Further helpful discus-
will be observable for samples with larger phase coherencsions with Theo Geisel are gratefully acknowledged. This
length. work was supported by the Deutsche Forschungsgemein-
The derived relation between a classical power-law stayschaft and partially by the NSF under Grant No. DMR93-
ing probability and the fractal dimension of the conductanced8011.
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