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It is shown that conductance fluctuations due to phase coherent ballistic transport through a chaotic cavity
genericallyare fractals. The graph of conductance vs externally changed parameter, e.g., magnetic field, is a
fractal with dimensionD522b/2 between 1 and 2. It is governed by the exponentb (<2) of the power-law
distributionP(t);t2b for a classically chaotic trajectory to stay in the cavity up to timet, which is typical for
chaotic systems with a mixed~chaotic and regular! phase space. The phenomenon should be observable in
semiconductor nanostructures and microwave billiards.@S0163-1829~96!06639-8#

Phase coherent phenomena have received considerable at-
tention over the past years. Indisorderedconductors smaller
than the phase coherence length universal conductance fluc-
tuations and weak localization have been found.1 Recent ex-
perimental and theoretical work put emphasis onballistic
transport in nanostructures on semiconductor heterojunctions
with chaotic classical dynamics.2–12 Regarding conductance
fluctuations the focus has been on thespecificcase of hyper-
bolic systems where the escape from a cavity typically is
exponentially fast and spectral as well as correlation proper-
ties of the fluctuations have been predicted13,14 and
observed.15 Phase coherent phenomena in thegenericcase of
systems with a mixed~chaotic and regular! classical phase
space, however, have apart from Ref. 16 received much less
attention. There the chaotic part of the phase space has a very
different long time behavior, namely, the escape from such a
cavity is much slower and follows apower lawsimilar to
those reported in various chaotic model systems.17–19This is
believed to be due to an infinite hierarchy of cantori, i.e., sets
of measure zero which are partial barriers for transport,
spread in the hierarchical structure of phase space.20,21

Therefore one may wonder what the fingerprints are of the
hierarchical phase space structure of chaotic systems and
their corresponding power-law escapes of chaotic trajectories
on conductance fluctuations.

In the present paper this question is answered by showing
that in the generic case ~i.e., a mixed phase space with
power-law escape from the cavity! phase coherent ballistic
transport leads tofractal fluctuations of the conductance, as
illustrated in Fig. 1. Quantitatively, the fractal dimensionD
of the graph of conductance vs externally changed param-
eter, e.g., gate voltage or magnetic field, is shown to be given
by

D522b/2 ~1!

if the classical probabilityP(t) of chaotic trajectories to stay
longer than a timet in the cavity decays as a power law

P~ t !;t2b ~2!

with exponentb<2.
Regular and metastable trajectories also can give rise to a

power-law distribution,22,12,23however, typically with an ex-
ponentb.2. As they group in families and their contribu-
tion to the phase coherent conductance is very subtle~see
Ref. 12 for a conjecture!, their contribution will not be dis-
cussed in the remainder of the paper, but rather the contribu-
tion of the chaotic part of the mixed phase space. Also, sharp
resonances due to quantum tunneling between the chaotic
and regular parts of phase space, as observed by Seba,24 will
be neglected.

The surprising phenomenon of fractal fluctuations should

FIG. 1. ~a! The hierarchical phase space structure of a 2D cha-
otic system and~b! fractal conductance fluctuations are shown.
Their relation for phase coherent ballistic transport is derived in the
text @Eqs.~9,12!#. The Poincare´ surface of section shows the inter-
sections of one chaotic and 6 regular trajectories with the (y50)
plane (vy.0) for the example of an antidot array~Ref. 4!. The
conductance fluctuations are described by fractional Brownian mo-
tion according to Eqs.~10,12!, whereD51.4 was used for this
figure.
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be observable in semiconductor nanostructures2,3,8,15as well
as in microwave billiards.25 In particular, such an experiment
would serve as the first quantitative observation of the hier-
archical phase space structure of a chaotic system. A possible
experimental realization will be discussed at the end of this
paper.

The two-probe conductanceG of a nanostructure is pro-
portional to the sum of transmission amplitudes squared
from modem of one lead to moden of the other lead,

G5
e2

h(
n,m

utnmu2, ~3!

which in the semiclassical approximation are given by14

tnm5(
s

Apse~ i /\! Ss2 i ~p/2! ns. ~4!

HereSs andns are the classical action and Maslov index of
paths traversing the cavity with classical transmission prob-
ability ps to go from modem to moden. A small change in
magnetic field or in energy will change the classical action of
paths:

Ss~E1DE,B1DB!5Ss~E,B!1tsDE1
husDB

f0
, ~5!

where ts is the time for paths, us5(1/2p)*s(]A/]B)dl ,
“3A5B, andf05h/e is the magnetic flux quantum. For a
closed pathus gives the~accumulated! area enclosed by the
orbit.

In analogy to previous derivations of the correlation
function16,12 from the above formulae the change in the con-
ductance for a small change in the external parameter, e.g.,
the magnetic field, is found to be

DG5G~E,B1DB!2G~E,B!

5
e2

h(
n,m

(
s,u

Apspu~e2p i ~us2uu!DB/f021!

3e~ i /\! ~Ss2Su!2 i ~p/2! ~ns2nu!. ~6!

In the semiclassical limit, where the classical actionsSs and
Su are much larger than\ and can be assumed to be inde-
pendent for different chaotic trajectories, the last exponential
factor in Eq. ~6! can be considered as a complex random
number with mean 0 and variance 1~except fors 5 u, but in
that case the second but last factor vanishes!. Assuming sta-
tistical independence of the actionsSs for paths connecting
different modes~diagonal approximation! and with the help
of the central limit theorem it follows that the increment
DG is a Gaussian distributed random variable with mean
zero and variance

^~DG!2&5S e2h D 2(
n,m

(
s,u

pspuue2p i ~us2uu!DB/f021u2

52 S e2h D 2(
n,m
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s
psD 2

2U(
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pse

2p i usDB/f0U2G . ~7!

Replacing the sum over pathss by an integral over the
distribution dP(u)/du of areasu enclosed by classical paths,
assumingP(u) to be independent of the modesn andm, and
by restricting to positive areasu>0 for simplicity one finds

^~DG!2&;12U E
0

`

du
dP~u!

du
e2p i uDB/f0U2. ~8!

Power-law distributions of the enclosed areas

P~u!;u2g ~9!

for largeu then cause the variance of the increments to scale
as

^~DG!2&;~DB!g; g<2 ~10!

^~DG!2&;~DB!2; g.2 ~11!

under small changes in the magnetic field. Thus forg<2 the
graph of conductance vs magnetic field has the same statis-
tical properties as a Gaussian random process with incre-
ments of mean zero and variance (DB)g. Such processes are
known as fractional Brownian motion26 and have the prop-
erty that their graph is a fractal with dimension

D522g/2 ~12!

between 1 and 2@Fig. 1~b!#. Similarly, for small changes of
the energy, e.g., by changing a gate voltage and for a power-
law distributionP(t);t2b (b<2) of classical sojourning
times in the cavity larger thant the fractal dimension is given
by D522b/2.

Thus the graph of conductance vs magnetic field~energy!
is a reproducible fractal line, whenever the classical prob-
ability P(u) @P(t)# decays as a power law with an exponent
smaller than 2. This phenomenon, which we callfractal con-
ductance fluctuationsis generic for ballistic nanostructures,
as in a typical system one has a mixed phase space with a
hierarchical phase space structure@Fig. 1~a!# and a hierarchy
of cantori causing the power law of the staying
probability.20,21 In the remainder of the paper some general
remarks regarding the observability of fractal conductance
fluctuations are given and an experimental realization is pro-
posed.

Equation~4! makes use of the semiclassical approxima-
tion for the transmission amplitudes which is valid up to
some finite timet* only. Therefore the fine scale fluctuations
of the conductance due to trajectories staying longer than this
time t* in the cavity will be washed out by quantum me-
chanics. Thus the graph of conductance vs externally
changed parameter will look like a fractal only on scales
larger than
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DE*;h/t* or DB*;f0 /u~ t* !. ~13!

As for any other fractal in the physical world there is not
only such a smallest, but also a largest scale. Here it is de-
termined by the time and the area of the onset of the power-
law behavior ofP(t) andP(u), respectively.

How big the range of validity for the semiclassical ap-
proximation is and how it depends on the effective\ of the
system is a subject of current research.27 A rough estimate
for the present situation may be that only those parts of the
hierarchical phase space structure can be resolved that are
larger than\. This will lead to a breakdown of the power-
law staying probability at some timet*;(\/S)2a with a
depending on the system andS being the action of a typical
trajectory.

What is the effect of disorder? As long as theelastic
scattering can be modeled by smooth impurity potentials it
will not change the generic properties of the mixed phase
space. Thus fractal conductance fluctuations may well be ob-
servable in the presence of disorder. For strong disorder,
however, the fractal dimensionD may depend on the specific
disorder configuration. The situation would be different for
integrable systems and some idealized chaotic systems with
hard walls, e.g., the stadium billiard, where power-law dis-
tributions have been found.22,12,23The latter are due to fami-
lies of metastable orbits and would break down even for
small disorder.Inelastic scattering, e.g., due to electron-
electron interaction, destroys the phase coherence and there-
fore the fractal conductance fluctuations on small scales.
This scale is determined by the inelastic scattering timetw in
the same way as in Eq.~13! for t* .

How severe is the restriction to systems withb,g<2?
Exponentsb,2 as well asb.2 have been reported in vari-
ous systems and parameter ranges,17–19,21,16so far, however,
it is not possible to predict the exponentb,g for a given
system. For the caseb,g>2 it follows from Eq.~11! that the
graph of conductance vs externally changed parameter is a
smooth line with dimension 1. Thus not every such chaotic
system gives rise to fractal conductance fluctuations with
D.1.

To test the above semiclassical treatment of the conduc-
tance numerically by comparison with a quantum-
mechanical calculation, e.g., a recursive discrete Greens
function method,28 is in general beyond current computa-
tional resources, as an approximating discrete lattice must be
fine enough to resolve the hierarchical structure in classical
phase space on at least a few levels. In a one-dimensional
periodic array of potential wells studied by Laiet al.,16 how-
ever, it was possible to confirm a semiclassically derived
cusp in the correlation functionC(DE)5C(0)2(DE)d for
P(t);t2d. As the correlation function is related to the vari-
ance of the increments byC(DE)5C(0)2 1

2^(DG)
2& their

calculations do confirm the semiclassical derivation of the
variance^(DG)2& @Eq. ~10!#, from which the occurrence of
fractal conductance fluctuations is concluded.

Since ballistic transport in chaotic cavities has been
studied successfully in GaAs/AlxGa12xAs heterojunc-
tions2,3,6–8,11,15these should be suitable for the observation of
fractal conductance fluctuations. The lower left inset of Fig.
2 shows an example for a geometry, namely, a widened
channel with parabolic walls, that gives rise to a mixed clas-

sical phase space. In a perpendicular magnetic field many
trajectories will be trapped close to regular cyclotronlike or-
bits for some time~upper right inset of Fig. 2!. This gives
rise to power-law distributions for the staying time
P(t);t21.7 and for the area enclosed by a trajectory
P(u);u21.7 ~Fig. 2!. For this cavity Eq.~12! predicts fractal
conductance fluctuations with a dimensionD51.15. Similar
results are found for cavities with other parameters or with
an antidot added to the center of the cavity. The power-law
exponents range from 0.9 to 3.5 corresponding to fractal con-
ductance fluctuations with 1<D<1.55. In all these ex-
amples with magnetic fieldsBÞ0 the power-law exponents
of P(t) andP(u) turn out to be identical.

The energy and the magnetic field scale for fluctuations
due to trajectories makingN revolutions is given by@Eqs.~4!
and ~5!#

DEN5
h

t0N
and DBN5

f0

u0N
, ~14!

wheret0 andu0 are the time and the area for one revolution.
For a free cyclotron orbit of diameterd these are given by
t05pd/vF and u05pd2/4 at magnetic field
B052pm* /(et0) with Fermi velocityvF5\A2pn/m* , ef-
fective massm* , and the 2D electron densityn. This gives
rise to an effective Planck’s constant \eff
5\/*pdq51/(21/2p3/2dn1/2).

In order to observe fractal conductance fluctuations over
at least one order of magnitude one needsN*10 revolutions
and thus a phase coherence lengthlw*10pd. In addition,
the validity of the semiclassical approximation over this
length scale is required. As mentioned above, the latter is not
known exactly. On the other hand, in an antidot array of
period 300 nm magnetotransport anomalies due to classical
electron trajectories surrounding 21 antidots have been
observed2 corresponding to a length of about 5mm. The

FIG. 2. The probabilityP(t) to stay in the cavity~lower left
inset! for a time greater thant in units of t0 in a perpendicular
magnetic fieldB50.6B0 decays with a power lawP(t);t21.7

~solid line!. The probabilityP(u) for enclosed areas greater than
u in units ofu0 follows the same power-law behavior~dash-dotted
line!. The upper right inset shows a typical trajectory trapped in the
hierarchical phase space structure giving rise to the power-law be-
havior. For this figure a cavity formed by two cosines with maxi-
mum distanced, minimum distanced/2, length 5d/4, and parabolic
walls of widthd/4 was used.
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phase coherence length in these 2D electron systems is about
10 mm.6 Therefore a size of the cavity of aboutd5300 nm
would be favorable for experiments with the current technol-
ogy. For smallerd the scale of the fluctuationsDBN would
be too large for the assumption implicit in the above semi-
classical transport theory@Eq. ~4!# that on the scale of the
fluctuations only the phases but not the classical trajectories
themselves are changed. For the example shown in Fig. 2 the
exponent b is unchanged29 on a magnetic field range
DBb'0.1B0. For d5300 nm, n5531015 m22, and
m*50.067me one findsDBb'80 mT, which must be com-
pared withDBN'60 mT/N. Thus fractal conductance fluc-
tuations should be observable on one order of magnitude in
these experiments withd'300 nm, which provides a lower
bound. More and more details of these fractal fluctuations
will be observable for samples with larger phase coherence
length.

The derived relation between a classical power-law stay-
ing probability and the fractal dimension of the conductance

fluctuations is of semiclassical origin. Therefore, although at
first sight very similar, it is unrelated to the general relation
of the quantum-mechanical power-law staying probability to
a multifractal dimension of the local density of states30

which in some examples is also related to a multifractal di-
mension of the eigenfunctions.31

In conclusion, fractal conductance fluctuations are a ge-
neric phenomenon of phase coherent ballistic transport. They
are due to the hierarchical phase space structure of mixed
chaotic systems and should be observable in nanostructures
on semiconductor heterojunctions.
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H.-D. Gräf, H. L. Harney, H. Lengeler, C. H. Lewenkopf, C.
Rangacharyulu, A. Richter, P. Schardt, and H. A. Weidenmu¨ller,
Phys. Rev. Lett.69, 1296~1992!.

26B. B. Mandelbrot,The Fractal Geometry of Nature~Freeman,
San Francisco, 1982!.
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