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Reflectance anisotropy of GaA&L00): Dislocation-induced piezo-optic effects
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We develop a model to describe reflectance-differdiiti®) spectra of zinc-blende semiconductors due to
strains induced by and 8 60° dislocations. It is shown that near the semiconductor surface, as a result of the
lost of lattice periodicity, dislocations result in an anisotropic average strain that changes the symmetry from
cubic to orthorhombic, thus leading to a reflectance anisotropy. We obtain expressions for RD spectra at
critical points of bothI' and A symmetry that predict first-derivative RD line shapes as long as the strain-
induced energy shifts are small compared to spectra broadening energies. Furthermore, we report on RD
spectra of semi-insulating GaA%00) in the 1.2—-5.5-eV energy range and show that such spectra comprise a
component that is well described by our mod&0163-182806)09239-9

I. INTRODUCTION Il. EXPERIMENT

A. Experimental procedure

Reflectance-difference spectroscbgiRDS) has emerged The RD measurements were performed on commercial
in recent years as a sensitive optical probe for the charactecr_doped semi-insulating GaAs crystals oriented in(tt@0)
ization of a number of optical processes in cubic semicongirection. We used semi-insulating samples in order to avoid
ductors. Among the applications of RDS, we can mention thehe electro-optic effects that are known to dominate the
in situ, real time, monitoring of epitaxial growth processes inGaAs RD spectra around thg, and E;+A, transitions for
both molecular-beam epitakyand metalorganic chemical- both n- and p-type crystals® Such electro-optic effects are
vapor-depositiofMOCVD) reactors’ and the in situ deter- associated with the surface electric field due to surface band
mination of doping levels of epitaxial layers grown by bending. Because of its high resistivity, no appreciable
MOCVD.* Because of its broad range of applications, muchelectro-optic effects are expected for Cr-doped GaAs.
theoretical and experimental work has been dedicated to The spectrometer employed in this work for the RD mea-
clarifying the physical mechanisms responsible for the obsurements is schematically shown in Fig. 1. In this setup,
served reflectance anisotropies. Such work has been carrigiht coming from either a Xe lamp or a Tungsten lamp is
out in Si>® Ge®’ GaAs? and InP? among other semicon- focused at the entrance slit of a 0.25-m monochromator. Two

ductors. Despite this effort, however, the mechanisms giving0-cm focal length mirrors direct the light beam at the output
fise to an anisotropic interaction of the light with the semi-©f trr‘]e monochrohmatolr through al polarizer prisiuartz
conductor surface are only partially understood at presenfochon and a photoelastic modulatgHinds Instruments,

Indeed, while it seems straightforward to conclude that themOdeI PEM-80 and focuses it on the sample surface with an

breakdown of the cubic symmetry near the semiconducto?ngle of |r_1C|dence . a_lbout 10°. The polarizer prism gnd
: . . hotoelastic modulator in tandem allow for the polarization
surface should lead to surface anisotropies, experime

L f the light incident on the sample surface to be modulated at
shows that RD spgctra are rather'comp!e.x, COmpriSIng Sevy frequency of 50 kHz between two orthogonal, linearly po-
eral components with various physical origins. In this regardlarized states. For the experiment, the sample is aligned so

RD spectra have been reported to include components due {Q,¢ the two extreme polarization states coincide with the

local-field effect$’ surface reconstructioh, molecule . s T
adsorptior spatial dispersiof, and both lined® and sample optical axi§011] and[011] directions. Upon reflec-

quadrati¢! electro-optic effects.

In a previous paper, we have reported that, in addition to
all the above mechanisms, RD spectra comprise components
associated with the strain induced by 6@ and B
dislocationst? The results of Ref. 12 make it possible for
RDS to be used in the characterization of dislocations in
semiconductors. In this paper, we develop a model to explain
dislocation-induced RD line shapes. This model is based on
dislocation-induced piezo-optic effects. We consider Hoth
and A-point interband transitions and extend the experimen-
tal results of Ref. 12 to include thE;, Ej+Aj, andE,
+Ag+ Ay critical-point transitions. FIG. 1. Schematics of the spectrometer employed for the

reflectance-difference measurements.
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FIG. 3. Geometry and classification of 60° dislocatig@as Bur-
0.0 =

gers vectob and its edgéb,) and screwbs) components for an™*
dislocation. Vectord, b, andbg lie on plane(111), while b is
directed alond110], making an angle of 60° with dislocation core
1.0 2.0 3.0 4.0 5.0 X . L - DR
Photon Energy (eV) tlog]t;) Burgers vector orientations foe,87) and(a~,8") disloca-
ions.

FIG. 2. Reflectance-difference spectrum for GaAs(@d0 in changes the GaAs symmetry near the surface from cubic

the 1.2-5.5-eV energy range. (point groupT,) to orthorhombic(point groupC,,). Such
stress is generated by the edge componert ahd 8 60°

tion, the light beam is focused on the active area of a UVdislocations, provided that the density of one of them domi-
enhanced silicon photodetector whose electric output is feflates over that of the other. In the next section, we will
to a lock-in amplifier tuned to twice the photoelastic modu-discuss an RD line-shape model based on the average strain
lator frequency. The spectrometer operates in the 1.2-5.5-eue to the difference in the densities@find 8 dislocations
energy range. More experimental details can be foundhat normally occurs in GaAS:*®
elsewheré?

To suppress parasitic signals in the measured RD spectra, IIl. THEORETICAL MODEL
we have employed the procedure described in Ref. 14 that . .
consists in measuring two spectra with sample azimuthal ori- A. Geometry of 60° dislocations

entations/2 radians apart and then subtracting them. To T4 discuss dislocation-induced strains and associated op-
facilitate the two measurements, the sample is mounted Ofica| anisotropies, we will consider the coordinate axis
two rotating discs joined by a spring and three adjustmg(x,ylz) defined in Fig. 83). We will assume normal light
screws. This arrangement, together with a He-Ne laser imncidence on thé100) surface of GaAs, and we will be in-
pinging on the sample, allows the sample surface t0 begsrested in anisotropies occurring along this surface.

aligned perpendicularly to the rotation axis. Sixty-degree dislocations are known to be a common oc-
currence in zinc-blende crystd$!’ Such dislocations,
B. Experimental results which are characterized by the fact that the Burgers vector

. ] ) . makes an angle of 60° with the dislocation cbfhich lies

In Fig. 2 we show 100 GaAs:Cr typical spectrum in - 45 any of the six equivale®1l) directions, have both
the 1.2—5.5-e\( energy range, obtained as describe above. QBrew and edge components that are directed alon(tti
top qf a relatively structureless background, we can S€8nd(211) directions, respectively. In Fig.(8 the geometry
prominent structures around tf, and E,+A, transition ¢ goo gisjocations is illustrated for the particular case of a
enerq|e§(2.91 and 3.13 eV, respectivelas well as around dislocation with a cord along[011] and edge and screw
the E triplet (4.2—5.0 eV. A smaller but well defined struc- Burgers vector components alofigll] and [011], respec-
ture is also seen around the fundamental Bgpln contrast, tively, leading to a total Burgers vector alof01.
no appreciable structure is observed aroundiheA, tran- The crystallographic orientation of both components of
sition, a feature that will be discussed below. Broken linespe Burgers vector, displays 48 types of 60° dislocatiGrg.
around crit@callpoints in Fig. 2 correspond.tq the numgricahn what follows, however, we will consider only the 16 dis-
energy derivativelR/dE of the GaAs reflectivity. The coin- |ocations with cores oriented alofig11] or [011], since they
ciding of the broken line spectra with the RD line shape isre the only ones leading to an optical anisotropy for normal
indicative of the existence of a first-derivative component injcidence on th€100) surface, as can be easily verified from

2 . .
the RD spectra® We note, however, that the relationship symmetry considerations. Burgers vectors for these sixteen
between the RD andR/dE line shapes is not a simple one, gjsjocations are given by

since the various critical points contribute to RD spectra with
characteristic relative amplitudes and phases that are differ- N , a a
ent from those for the correspondidd/dE line shapes, as pUIkmm = p(1) 4 p{" = — 2 Likl+ 7 [Omn], (D)
discussed below.
As previously reported the first-derivative RD spectrum wherea is the unit cell parameter and subscrigtsand s
of Fig. 2 is associated with an anisotropic surface strain thastand for the edge and screw components of the Burgers



10728 L. F. LASTRAS-MARTINEZ AND A. LASTRAS-MARTINEZ 54

TABLE I. Conventions used in this paper for the indicgemn

of the 16 60° dislocations with cores parallel to tti®0 surface
(i==2). Indices (,k,i) and (m,n) determine the orientations of [011]
the edge and screw components of the Burgers vector, respectively. [100]
Dislocation type and sign are determined by indicasdk, respec-
tively.
be b ho
Dislocation type i k i m n
2 *1 *1
+
“ ! L om0 a1
_ 2 +1 +1
“ e
2 +1 +1
+ —
B 1 1 -2 F1 F1
B* -1 -1 2 +1 F1 i
-2 F1 +1 Air | GaAs

) ) o FIG. 4. Strain fields due to 60° dislocations. Lines around dis-
vector, respectively. Indextakes valuest2, while j, k, m,  |ocation cores represent the dislocation-induced strains in an other-
and n take values*1, provided that the conditiofi-b|  wise cubic lattice.
=lb coqn/3) is fulfilled. In Table | we resume the possible

indicator combinations. 0 So€1s (1= Smn)€rs

60° dislocations are termed or 8 according to whether (mn)_ S e 0 e b
their cores are composed of arsenic or gallium atoms, & = mn=13 23 | (2D
respectively:® Furthermore, 60° dislocations can be negative (1-6mn)€1s —neyx 0

or positive depending on whether the dislocation extra half Taking i h ideri v i
plane is introduced from the surface toward the interior of . ' KIN9 Into account that we are considering only linear

the crystal or in the opposite direction. The dislocation typeplezo—optig contributions .to the. RD spectr_a, we will model
(a*, a, B*, or B7) is determined by the value of indicgs the strain induced by a dislocation by making it equal to the

andk as indicated in Table I. In Fig.(B) we illustrate the strain average over a plane parallel to 860 surface

geometry of the sixteen 60° dislocations defined by @g. o+ .
We note that cores a#(B) dislocations of a given sign are f %0 f Yo dydz
rotated 90° with respect to cores Bfa) dislocations of the Zo_112 Yo fes)
same sign, while cores of positive and negative dislocations
of the same typéeithera or B) are rotated 90° with respect where ,,y,.2,) is the dislocation centet, is the disloca-
to each other. tion radius of influence whose magnitude will be assumed to
be equal to the magnitude of the dislocation lengtand
Ax~1/2 (see Fig. 4.
To obtain the average strain tensors, we note that for the
The strain tensor for the edge components of the dislocastress tensor component, we have(r;;)=0, so that we can
tions defined by Eq(1) can be obtained by the procedure write
outlined by Eshelby, Read, and Shockt&such a tensor is

1
<e(ev$)>: W ’ (3)

X=Xg+AX

B. Strain tensor for 60° dislocations

a function of three independent parameteys e;,, ande,,, Cio
and can be written (e19=— cn (€22). (4)
. . Furthermore, as the average valuemf also vanishes, we
) 2ker; ijSjker2  1j(Sk—1)er have
di)=> ok 2]k O :
ij(Sk—1)ew 0 2j(ojk—L)ex 23 (e1=(e)=0. 5)

Equations(2)—(5) lead to the average strain tensors
In Fig. 4 we illustrate the strain field described by ten&a

for dislocationsa™, a~, and~. Lines within circles around —k Ca2 0 0

dislocations represent the resulting elastic deformation of an - C11

otherwise cubic lattice. We note that dislocation strain fields <e§'e’)k))=<e22) I8 0 , (63
i

include tension(shaded areasas well as compressiofun-
shaded areaglomains.

The screw component tensor, on the other hand, is a func-
tion of two parameter®,; ande,;, and is written as follows: and

0 j(&Kk—1)
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0 0 O where pk™" is the volume density for dislocatiaijkmn.

(mny _ 0 0 1], 6b Furthermore, by carrying out the summation oydmn in
(&97)=~(ez3) 0 1 0 (6b) Eq. (9) by employing tensorgsa) and (6b) we obtain

We note that tensoré6a) and (6b) depend only on the pa- = (ex)Ap, (10)

rametersey, andeys, respectively. where Ap=p*—pP is the difference betweea and g dislo-

_ _ _ _ _ cation densities. On the other hand, by assuming a uniform
C. Anisotropic strains due to 60° dislocations dislocation distribution, thél vector should satisfy the rela-

Tensorg(6a) and (6b), which are dependent of—x,, de- 10N
scribe the strain associated with a single dislocation. We note
that such a strain results in local anisotropy for light incident § -do=0 (11)
along the(100 surface. Any reflection anisotropy, however, s ’
results from the average contributions of all dislocations ) o ) )
present within the light-penetration depth into the semiconWhere integration is carried out on a surface enclosing a large
ductor. Regarding this, we note that although the strain conenough number of dislocations.
tributions of dislocations in the semiconductor bulk average From Eqs.(10) and(11) we finally obtain for the differ-
out to zero, near the surface, as a result of the loss of latticBNCe in average strain per unit area alyngndz
periodicity, dislocations may lead to a crystal anisotropy. To -
be more specific, the average strain contributions of tensor Ae=II-n=(ex)lAp, (12)
(6b) are always zero, even near the surface; tegar, on
the other hand, would lead to an anisotropically stressed su

{giﬁelag:;;]; th(;:kr;sd&l c?irscljc\)/ge\?i(cj) rt‘r;at there is a difference average change in GaAs symmetry from cubic to ortho-
y Ola B : rhombic in a surface layer of thicknesd, thus leading to a

The above comments may be understood if we Cons'derreflectance anisotropy.

pis ofdentea) dlocatons displacea i reshect 10 261\ ot from £/ that ony th dge component o

tance approximately equal to the dislocation radius of ianu—the dlslpcatlon strain contnput_es o the average anisotropy,
. . . . so that in what follows we will ignore the screw component.

encel, as is schematically shown by dislocatidias and (b)

in Fig. 4. As is clear from this figure, the tension domain of

dislocation (a) averages out to zero with the compression D. RD line shapes

domain of dislocation(b), thus leading to a zero average  The reflectance-difference spectrum results from the con-
strain field. Such a pairing of dislocations, however, is notyibutions of all dislocations within the anisotropically
possible for dislocations within a surface layer of thicknessstrained layer of thicknesk present at the surface of the

of the order ofl, as is evident for dislocatioft) in Fig. 4, semiconductor as discussed above. By assuming that the dis-
thus allowing for dislocations to generate a surface anisotipcation has an area of influence equal 13, 2ve may thus

vyhereﬁ is a unit vector perpendicular to ti&00) surface.
The average strain difference defined by E®) introduces

ropy. write for the RD line shape
Taking into account that the relevant parameter for reflec-
tance anisotropies i&,,) and that it is an odd function of AR - -
X— X, that describes tension as well as compression domains, ﬁ=2|2pij2k P R (as—iB)Ae ], (13

the above discussion can be stated in a formal way by defin-

ing, in analogy with electric-polarization phenomena, anwhereq, andg; are Seraphin coefficien8 p is equal either
anisotropic strain dipole” for dislocationjkmn by to | or to the light penetration deptk %, whichever is

smaller, andA&e(%) for dislocationijk is given by

11,(ijkmn)er(ijkmn)L (7)

Aelizg . 5608 @ . 5elik). 5 14

wherel is defined to be perpendicular to the surfdt€0) & Y & 19

(see Fig. 4and whereg, andg, are the light polarization vectors alof@11]
and[011], respectively, ands"¥) is the change in dielectric

Ae(ijkmn):éz.[<e<iik>>+<e<m”>>].éz function under the presence of strain ten$éa). In what

A . . follows we will obtain expressions fake''"*/, for thel” and
-8 [(e)+(a™1-§, (8 A critical-point interband transitions studied in this paper.

Whereéy ande, are unit vectors along andz, respectively. 1. Ey and Eg+A, transitions

Aekm corresponds to the difference in strain algngnd
z due to dislocationjkmn.

We will also define an “anisotropic strain polarization”
field by the relation

The E, critical-point interband transition links thé&g
valence-band state§23) and |33) with the |S) Iy
conduction-band staté$.A surface anisotropy &, arises
because the strain tens@a) splits the valence bantsee
Fig. 5. Taking into account only terms linear in the stress,
n=> plitkmn) zijkmn) (9) the total shift in energ\AEy- for valence-band wave func-

ifkmn tions is given by(see Appendix A
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A
8 A A 8(E): EZ MFJ(E): (18)
r, whereJ(E) is the joint density-of-states function for inter-
band transitions and is a factor independent of enerég.
We note thatse(') is a diagonal tensor in thex(y,z)
axis and that the two components relevant for usdarg"’
and 8§}, which may be written with the help of tensor
(6a and Eq.(18) as
- Eq+Ap+2p o A .
Eo S8y =27 (e[ J(E+AE" + AEF)MET(E,)
Fot% +I(E+AEM-AEP)M{T(&)], (199
Seilk) = E2 (ex)[IE+AEM+AEF)MET(&)
T, “
6 ) +I(E+AEM-AEP)MIT(E)]. (190
s
E, Af(rh) 2/Er From Egs.(14), (16), and(19) we obtain
8 i (i = A (+) (4 AE(S
_ Eg+A, A =27 [AMETI(E+AE +AE)
7
T4 Cay +AMEIEFAEN-AEP)] (20

and, finally, from Eqgs(13), (18), and(20) we can write for
FIG. 5. Interband transitions in a zinc-blende crystal under a 60the RD line shape for thE, critical point
dislocation-induced strain. The change in crystal symmetry from

cubic (T ) to orthorhombic C5,) leads to a hydrostatic shiftE { AR CI2 . ©
and to a split energy 2E (¥ for the I'® valence-band levels. R —— PAp Re{(as—iBy)[e(Eq+AER"+AER)
AE=KAE{M+KAE® —&(Eq+ AEN —AE®) +8(Eq— AE{M + AEY)
2 e —&(Eo— AEN—AEP)T}, (21)

+d?

=k (1——)(e 2)+—[b2(1+2 (e22),
where C=3. Furthermore, by assumingE (¥ +AE {MN<y,
(15)  Wherey is the line-shape broadening parameter, we obtain
from Eq. (21) the first derivative line shape

a( Ezs))

whereAE (" stands for the hydrostatic energy shift (¥ is
half the valence-band-splitting energy, b, andd are the AR 1
deformation potentials for hydrostatic, tetragonal, and ortho- _2C|ZPAP = Re{(as iBs)
rhombic deformations, respectively.

On the other hand, by neglecting the mixing of thg

wave functions with thel; spin-orbit split valence-band Regarding thé&,+ A, transitions, we note that by neglect-
states, we obtain the following differences in interband traning the mixing of thel's and I'; valence-band wave func-

sition momentum matrix elements fe{ andey polarizations tions, there is not any associated anisotropy, as Ithe

AE®.
(22)

(see Appendix A valence-band states are not split by the dislocation stsaie
. o o Appendix A.
AM(F):MF)(ez)_MF)(ey)Zi%Mr(25jk_1), PP
(16) 2. E{ and Ej+Aj+A, transitions
where The transitions that give rise to tttg optical structure of
B N GaAs are of the typeds—Ag andT'g—I';.2 We note, how-
Mr=[clp-&w)| (17) ever, that the\ transition is isotropic for light incidence on a

is the square of the momentum matrix elementEgrtran- (100 surface and will be not be further considered. The
sitions in the absence of strain, while Mf\" stands for the 1- -point E} interband transition links the fourfold-degenerate
square of the momentum matrix element for interband tranl's valence-band states with the spin-degeneiateupper
sitions involving upward and downward shifted valence-conduction-band statésee Fig. 3. Interband transition ma-
band states, respectively. trix elements are thus given by E(L6), with M standing

To obtain an expression fat=(1%), we will make use of for the Eq transition matrix element for the unperturbed crys-
the following expression for the unperturbed dielectric func-tal. In the same way, the RD line shape for thetransition
tion is given by Eqs(21) and(22).
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Transition Ej+Ag+Ay links the spin-orbit spliced

~ 1.0
valence-band’; levels with the upper conduction-barg 2
states> as shown schematically in Fig. 5. As occurs for = AE® = 10.5 meV
valence-band states, the strain ten&a) removes the en- % i AE® =65meV |
ergy degeneracy of the upper conduction-band lebgldVe —~
may thus expect that Eq&l6), (20), and (21) are valid for W ool -
this transition, withAE {¥ and AE{" standing for the upper 2
conduction-band shifting energies aMi- for the Ej+A c
+ A, transition matrix element in the absence of strain. Pro- %: i i
vided thatAE {9 + AE (< for this transition, the RD line &
shape is thus given by ER2). We note, however, that we 1ot GaAs:Cr (100) -
must include anegative sigrin front of the second members 2] 1.0
of Egs.(21) and(22), to take into account that in this case we S
are considerind’;—1Ig transitions instead dfg—1I';. g N i
©
3. Eg+A| transitions g
. i S 00 —
The Eg+Ag transition links fourfold-degeneratd’g =
levels? The calculation of the contribution &+ A} to the g E,=1.416 6V
RD spectrum is thus more complex than for the previous @ i v=28 meV
critical points, as it involves transitions between two strain- E
split sets of statetsee Fig. . As discussed in Appendix A, 1.0 L L L L L
however, matrix elements for these transitions can be ne- 1.30 1.40 1.50 1.60
glected when compared with othErpoint transitions. Photon Energy (eV)
4. E; and E;+A, transitions FIG. 6. (a) Second energy-derivative spectra of the RD line

shape around the GaAs fundamental dfited circles and line-
shape fitting(continuous ling (b) Photoreflectance spectrum for
GaAs:Cr(filled circles and line-shape fittingcontinuous ling

There are eight equivalet; and E;+A; critical points,
corresponding, to the eight equivalafl1) directions in the
Brillouin zone. E; and E;+A; transitions link |A§)
c?rlduction-ba?d %a’bes dWitﬁ“ﬁ} ﬁnd Ag) \f/alfnge-i)and (22) with C=-2, provided that we substitutAE{" and
states, respectively. Under the influence of strain tensor S) \ni (h) (s) ;

(6a), the equivalence of both; andE;+A, critical points is AE with AE andAE(Y, respectively.
removed, splitting|A§) and [A,g into states|E{")) and
|(E,+A) ™)) (Ref. 21) with energy shifts given bysee Ap- IV. DISCUSSION OF EXPERIMENTAL RESULTS

pendix B We will first consider results for the fundamental transi-

c tion Ey. In order to isolate the dislocation-associated line
1— —12)(e22> shape of the RD spectrum of Fig. 2, we enhanced it against
Cu1 the relatively structureless background by taking its second

AE,=kAE"+KkAE® =k(A%a+B?a’)

1 derivative with respect to energy. Results are shown in Fig.

Z d+BZd’)(e22), (23)  6(a). For the sake of comparison, in Fig(b$ we show a

2 GaAs photoreflectance spectrum for the same sample as that

employed in the RD measurements. The close coincidence

(getween spectra of Figs(d& and @b), constitutes further
vidence of the existence of a first-derivative component in

the RD line shape in accordance with our model, since pho-

. . c
A F; ggi:j@(cz;e;/?’ Qigliﬁgn d%}g;?()'ﬁ'g%;; t||2§§>s ?gd o- toreflectance line shapes are known to be associated with the
4 220771 = PO° third derivative of the reflectance spectra in the low-field

Iar_lzatlon selectlo_n rules that are expressed by the relatlonr-egime_24 We note, however, a shoulder in the RD spectrum
ship (see Appendix B

that is not present in the PR line shape. This shoulder is due
() (E Ay mE)ay— + o8 to the fact that for this particular sample condition
AMET=MA(8) - My (&) = =MA(1= 20, (24) AEP+AE{M<yis not fulfilled. Thus, in this case the RD
Wherer) stands for momentum matrix elements for inter- line shape is described by E@1) rather than by Eq(22).
band transitions involving upward- and downward-shifted By fitting the derived experimental RD spectrum in Fig.
critical points, respectively, anll , is the square of the mo- 6(a) to the second derivative of the theoretical modeq.
mentum matrix element for interband transitions in the un{21), we can obtain the numerical values fAE ?h) and
perturbed crystal for botk,; andE;+A, transitions. AE{®. Such a fitting is given by the continuous line spec-
From the above discussion, an anisotropy atEjeand trum in Fig. §a). We note that to build this spectrum we
E,+A; critical points arises for reasons similar to those forhave made use of the fact that for thg critical point of
theI'-point interband transitions. Thus, with the help of Eqs.GaAs, AEM/AE{®~1.62. We have also employed the
(13) and (20), the RD line shape for th&; and E;+A;  broadening energy=28 meV and the gap eneriy=1.416
critical points in first order ife,,) is given by Eqs(21) and eV obtained from the fitting of the photoreflectan@@R)

*k—

wherea’ andd’ are the hydrostatic and orthorhombic defor-
mation potentials for the conduction band, respectively, an
A=—B=0.56 for GaAs!
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1.0 We note that in GaAs th&;+ A+ A, transition is al-

E, most degenerate with the transition labeled and that the

! ] broadening of the RD spectrum of Fig. 2 makes it difficult to
resolve both transitions. However, and although the symme-
try of the E, is unknown?® we can see from Fig. 2 that the
contribution of theE, transition to the RD line shape has the
same phase as that Bf+A(+A,.

Furthermore, we note that the relative phases ofEhe
and E;+A; critical-point components in the RD spectra of
Fig. 2 with respect to the corresponding phases forBhe
andEj+ A+ Ag components are congruent with the predic-
tions of our modelSecs. Il D 2 and Ill D 4. This is, how-
ever, not the case for thE,-point component, whose RD
line shape is predicted to be radians out of phase with
GaAs:Cr (100) respect to that observed experimentalyee Sec. IlID L

T=800K 1 This may be associated with the fact that around the funda-
mental gap the light penetration degéhfew micrometersis
e 2'8 ' 3'0 ' 3'2 o4 two orders of magnitude larger than the penetration depth at

Photon energy (eV) higher energies, that_ls, 100—200 A T_hus,_ at high energies

we are actually sensing a region that is different from that

esensed by photons arourtt},, each region having its own
distribution of dislocations. We may expect that for the RD
spectrum aroundE, the line shape is associated with dislo-
cations formed during crystal growth, while at higher ener-
gies the RD line shape is to a great extent determined by
experimental spectrum to a low-fieM, line shapé [con- sample surface preparation.
tinuous line in Fig. 60)]. From the fitting of Fig. € we As an additional mechanism to help understand the above
obtainedAE {V=10.5 meV andAE {¥=6.5 meV. phase discrepancy, we note that the inhomogeneity atong

We note that from the fitting of the RD spectrum ampli- of the average strain field E(B) may introduce a shift in the
tude we can calculate the produépAp, which, by assum- phase of the RD line shape. Such a phase shift is a function
ing p=I at Ey, allows us to determine the average changeof the dislocation-length—to—light-penetration-depth ratio
Ad in lattice spacing along th€l10) directions parallel to  and is largest arounH,. The effect of a spatial inhomoge-
the surface. The absolute valuefdly; normalized to lattice  neity in the perturbation field in modulated reflectance line
spacingd is given by |(Ad)./d|=(ey)|*Ap. The strain- shapes has been considered by various autfidfsAspnes
tensor componerte,,) can be obtained from th&E{" and  and Frov& have shown that for light-penetration depths
AE({® determined from the RD line-shape fitting. From the large compared to the thickness of the inhomogeneous per-
above we obtain|(Ad)c/d| values in the range of turbation, substantial modifications in the modulated reflec-
107°-10* for our samples. tance line shape are obtained as compared to the line shape

Regarding the contribution of thig,+ A, critical pointto  for a homogeneous perturbation. In a similar way, Behn and
the RD spectrum, we can see from Fig. 2 that it is negligible Roppische?® report on both theoretical and experimental
as anticipated in Sec. 1l D 1. electroreflectance spectra showing dramatic changes in spec-

Let us now consideE; and E;+A; transitions. Filled tral line shapes as a function of bias voltage. If the observed
circles in Fig. 7 show the second derivative of the experi-phase discrepancies in the RD spectrum were entirely due to
mental RD spectra of our samples in the energy range arourle strain-field inhomogeneity, the difference in phase fac-
the E; andE;+A, energies. In Fig. 7 we also show the PR tors for energies arounBl, and E; should be~. Work is
spectrum of undoped GaAsontinuous ling which closely  under way in an attempt to settle this issue.
coincides with the RD spectrum of the same figure. In this
case, due to the larger broadening energies as compared to
transitions around the fundamental gap, the dislocation-
induced component of the RD line shape is well described by \We have developed a model to describe RD spectra for
a first-derivative line shape, in agreement with our model. the (100) surface of zinc-blende semiconductors due to

Regarding interband transitions above 4 eV, we note thagtrains induced by and 3 60° dislocations. The model takes
in this case, both the larger broadening energies and the ifnto account the strain contributions of alland 8 disloca-
creased noise prevented us from obtaining meaningful spegons present within the penetration depth of the light. Pro-
trum energy derivatives. From Fig. 2, however, it appearsjided that we have a difference inand 3 dislocation den-
that the contributions of th, andEy+Ag+ A transitions  sities, it is shown that such contributions result in an
to the RD spectrum are about radians out of phase with anisotropic average strain near the semiconductor surface
respect to each other, in accordance with the discussion ehat changes the sample symmetry from cubic to orthorhom-
Sec. Il D 2. Furthermore, the contribution of tH&)+Aj bic, thus leading to a reflectance anisotropy. The model pre-
critical point to the RD spectrum appears to be negligible, alicts RD line shapes for critical points of both and A
fact that also agrees with our mod&ec. 111 D 3. symmetry that are proportional to the first energy derivative

0.5

d2(AR/R)/dE2
o
(=)

PR amplitude ( arb. units)

PR
seeeees RD

FIG. 7. Second energy-derivative spectra of the RD line shap
aroundE, andE;+A (filled circle and photoreflectance spectrum
for undoped GaAsgcontinuous ling

V. CONCLUSIONS
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of the reflectance spectrum as long as the strain-induced en- 1100 1
ergy shifts are small compared to the spectrum broadening ‘——> =— (' +jky")|1)
energies. The overall RD spectrum is predicted to be a linear 22 V6

combination of the individual line shapes associated with

each critical point. The amplitude and phase of each of these i i
line shapes in the linear combination are dependent on the V3

specific critical point considered. We presented RD spectra
of semi-insulating(100 GaAs:Cr in the 1.2-5.5-eV energy ‘1 1>(jk)

Xt %(z'—jky'))m, (A2a)

range that confirm the predictions of our model.
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wherelL is the angular momentuna, b, andd are the de-
APPENDIX A formation potentials for hydrostatic, tetragonal, and ortho-
We will consider in this appendix the effect of the ombic deformations, respectively, arekAy/3.
dislocation-induced strains on the anisotropyEgf(Ils—T'g), Valence-band eigenvectors of HamiltoniA3) are a
Eo+A, (T;—T), andE)+ A, (Tg—T) critical-point inter- mixture ofI'; andI'g states and are written as
band transitions. We will choose coordinated axisy’,z’

(jk) (jk)
along[100], [010], and[001], respectively. Let us first con- |E(+>> )\‘3 3> +M‘§,_ E>
sider Eq and Eq+A,. The conduction-band’s wave func- 2" 2 2" 2
tions are|ST) and|S|). The valence-band states Bf sym- (e 2> 1\ (k)
metry can be written 35 +VIg 2 50 §> : (Ada)
33|00 1 1 3 1\G0 |3 3|0k
-=) =—|x+i—=(Z—jky’ ,  (Alq) ny=nZ 2V 12 2
22> > - ¢ JY))|T> (Ala) |ES) )“2’ 2> M2,2>
(jk)
3 3,00 1 1 _ +—= £ (o) —,—}> ; (A4b)
373 =, x’—|5(z’—1ky’) [1), (Alb) vz Ao |27 2
1 1\ (k) £ (e |3 1\ (k)
31\00 1 IEo+Ao>=—,——> - 517 —>
‘§§> =5 @ +iky)ln) 2020 v 20 2
3 3 3\ 34k
L (ai L ik ’)>Ii> AL0 VI |2 2> ' (A49
—— | X' +i —= (2 —jky , c
J6 V2 where
3 1\ 1 . AN=17—> ;7 NI 12 (A4d)
373 = @ikl {7 +[E—(&+ )%
O n=—|b| 1+ o1 —i, (Ade)
+% X' —i %(z —jky’) [11T), (Ald) 4 €11/ V3
\k/)v)thile the spin-orbit-splitl’; valence-band states are given &= % [b 1+22—i +\/§d}, (A4f)




10734

and

N+ pl=1. (A4dg)

From the above eigenvectors, we obtain the energy shifts
for states|ES™) given by Eq.(15), as well as the following

interband matrix elements:

[(STIp-&IEL H2P=M{"(§)

=M, >\2+>\§< 22)} Six
1 V3 (e
[4“‘?”‘5“ A,
X(1—5jk)], (A5a)
[(STIp-&|EG Y P=M{"(&)
(€20

Hl V3
_M[‘ 2

at _7M"_2)‘5 Ay | O

>\2+>\§< €22

} 5jk)]u (A5Db)

[(STIp-&IEL)2=M{"(&)

e
=Mr 2/m<A—22>6,k
3 (€20
+ Z)\2+?)\M_‘/§)\ A—O}
X(l—éjk)], (A5C)
[(STIp-&IELy>=M{")(&,)
3 3 V3 (e
=M H4>\ 5 A V3Ny A, }5
+2un G2 1 5,k>}, (ASd
[(ST|p-§|Eg+Ag)|*=Mr 1+2§< ﬂ Sik

+1- 5@}(1 5Jk)] (A5e)
|<ST|p'éz|Eo+A0>|2=MF”]-_§%}@k
(€22

MEA Sy

(1- 5,k)], (AS5)
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(A5). In this way, by makingh=1 and by neglecting any
mixing of the valence-banBg wave functions with the spin-
orbit-splitI'; stateqi.e., by assummge 5 Ag<<1), we obtain
from Egs.(A5) the d|fferences&M( given in Eq.(16).

On the other hand, from EqGASe) and(ASf) we can see
that by neglecting any mixing of the valence-bdngandI’;
wave functions, the interband transitions involvifig+Ag)
states do not contribute to RD spectra.

We will now consider theEj+ A, (I's—Ig) interband
transition. As discussed above, each one of the states in-
volved in this transition are split by the dislocation strain into
two states. These two states will be termit, where plus
and minus signs stand for upward- and downward-shifted
states, respectively. In the perturbed crystal, four different
interband transitions are then possible, with E@s2) and
Hamiltonian(B3) leading to the following interband matrix
elements:

(PE]p-g| W) =5Q202u?5), (A6a)
(UE)|p-g | W)y =1Q3(N2— u?) 28+ 5Q%(N2+ u?)?
X (1= 6y, (A6b)
(PE|p- &) =3Q22u%(1-6)),  (A6e)
(Wp- & W) =3Q°(N*+ u?) 25+ 5 (N~ pu?)?
X (1= 8y)). (A6d)

As can be seen from Eg6A6), differences in matrix el-
ements for polarizationéy ande, for a given interband tran-
sition are either zero or of second order jn Thus, E|
+ A transitions contribute only in second order to the RD
line shape and will be neglected.

APPENDIX B

We will consider interband transitions at th&;
(Ag5—Ag) and E;+A; (Ag—Ag) critical points, which in-
volve the conduction-band wave functiéhs

) B
|ADIO=AIST)+ —= (xjk(x' £y )+2')[1) (BI)
V3
and the valence-band wave functiéhs

: 1
(jk)=_
[Agg0=>

—ZX’))lIT%
(B2a)

1
Z' Fjky' +i ‘/—g(z’tjk(y’

1
A I0=2 {z Tiky' —i — 7 (z’ijk(y’—ZX'))]H),
(B2b)

where the upper and lower signs stand for fié1] and

where &, and &, are polarization vectors alon@11] and [111] bands, respectively. The HamiltoniafA3), with
[011], respectively, andM is the square matrix element in «=v3A,/2, is still appropriate for describing the strain inter-
the absence of strain. action at theA points, as the terrk-p is not dependent on

Taking into account that~0.05\ for GaAs, we can ne- strain in first ordef! The eigenvectors of Hamiltoniaih\3)
glect in the first approximation terms dependingwim Eqs.  are given by



(e

[EY)=Age00x g = IA £y, (B33

<zz>

(E1+ AT =|AI0T == |A, 9%, (B3b)

where plus and minus signs stand for upward- and

downward-shifted critical points, respectively, and

d 1 c
9 (242
V3 2 cy
Hamiltonian (A3) and eigenvector$B3) lead to the en-

ergy splittings given in Eq(23), as well as to the interband
momentum matrix elements

[(AGlp-&ET)2=M{(&)

(= (B4)

L (€22)
= |27 1)(1— r5¢ Al)a,k
1
+(2%x1) 1+r§§<i—2>)(1 -k)},
(B5a)
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[(Aglp-&ET™)2Z=M{"(&,)

M3 1 (ex)
=— 1+r§§A—l>5jk

(2+1)

1
+(211)<1—r > 14 %)(1—5“()},
(B5b)

wherer =1 andM , is the square of the momentum matrix
element for interband transitions in the unperturbed crystal.
Equations(B5a) and(B5b) also apply for transitions involv-
ing the |(E;+A,) ™)) states withr =—1.

From Egs.(B5a) and (B5b) we obta|n the following dif-
ferences in matrix elements f@& and e, polarizations for
transitions involving botHE ;) and|(E;+A,)™)) states:

AME =M (&) -ME(&)
(€22

)(1 258, (B6)

=M A( 1*r¢
whereA, is the spin-orbit interaction energy. Finally, by ne-
glecting the mixing of theAg) and|A, 5 states we obtain Eq.
(24).
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