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We develop a model to describe reflectance-difference~RD! spectra of zinc-blende semiconductors due to
strains induced bya andb 60° dislocations. It is shown that near the semiconductor surface, as a result of the
lost of lattice periodicity, dislocations result in an anisotropic average strain that changes the symmetry from
cubic to orthorhombic, thus leading to a reflectance anisotropy. We obtain expressions for RD spectra at
critical points of bothG andL symmetry that predict first-derivative RD line shapes as long as the strain-
induced energy shifts are small compared to spectra broadening energies. Furthermore, we report on RD
spectra of semi-insulating GaAs~100! in the 1.2–5.5-eV energy range and show that such spectra comprise a
component that is well described by our model.@S0163-1829~96!09239-9#

I. INTRODUCTION

Reflectance-difference spectroscopy1 ~RDS! has emerged
in recent years as a sensitive optical probe for the character-
ization of a number of optical processes in cubic semicon-
ductors. Among the applications of RDS, we can mention the
in situ, real time, monitoring of epitaxial growth processes in
both molecular-beam epitaxy2 and metalorganic chemical-
vapor-deposition~MOCVD! reactors,3 and the in situ deter-
mination of doping levels of epitaxial layers grown by
MOCVD.4 Because of its broad range of applications, much
theoretical and experimental work has been dedicated to
clarifying the physical mechanisms responsible for the ob-
served reflectance anisotropies. Such work has been carried
out in Si,5,6 Ge,6,7 GaAs,8 and InP,8 among other semicon-
ductors. Despite this effort, however, the mechanisms giving
rise to an anisotropic interaction of the light with the semi-
conductor surface are only partially understood at present.
Indeed, while it seems straightforward to conclude that the
breakdown of the cubic symmetry near the semiconductor
surface should lead to surface anisotropies, experiment
shows that RD spectra are rather complex, comprising sev-
eral components with various physical origins. In this regard,
RD spectra have been reported to include components due to
local-field effects,6,7 surface reconstruction,9 molecule
adsorption,5 spatial dispersion,8 and both linear10 and
quadratic11 electro-optic effects.

In a previous paper, we have reported that, in addition to
all the above mechanisms, RD spectra comprise components
associated with the strain induced by 60°a and b
dislocations.12 The results of Ref. 12 make it possible for
RDS to be used in the characterization of dislocations in
semiconductors. In this paper, we develop a model to explain
dislocation-induced RD line shapes. This model is based on
dislocation-induced piezo-optic effects. We consider bothG-
andL-point interband transitions and extend the experimen-
tal results of Ref. 12 to include theE08 , E081D08 , andE08
1D081D0 critical-point transitions.

II. EXPERIMENT

A. Experimental procedure

The RD measurements were performed on commercial
Cr-doped semi-insulating GaAs crystals oriented in the~100!
direction. We used semi-insulating samples in order to avoid
the electro-optic effects that are known to dominate the
GaAs RD spectra around theE1 andE11D1 transitions for
both n- andp-type crystals.13 Such electro-optic effects are
associated with the surface electric field due to surface band
bending. Because of its high resistivity, no appreciable
electro-optic effects are expected for Cr-doped GaAs.

The spectrometer employed in this work for the RD mea-
surements is schematically shown in Fig. 1. In this setup,
light coming from either a Xe lamp or a Tungsten lamp is
focused at the entrance slit of a 0.25-m monochromator. Two
50-cm focal length mirrors direct the light beam at the output
of the monochromator through a polarizer prism~quartz
Rochon! and a photoelastic modulator~Hinds Instruments,
model PEM-80! and focuses it on the sample surface with an
angle of incidence of about 10°. The polarizer prism and
photoelastic modulator in tandem allow for the polarization
of the light incident on the sample surface to be modulated at
a frequency of 50 kHz between two orthogonal, linearly po-
larized states. For the experiment, the sample is aligned so
that the two extreme polarization states coincide with the
sample optical axis@01̄1# and @011# directions. Upon reflec-

FIG. 1. Schematics of the spectrometer employed for the
reflectance-difference measurements.

PHYSICAL REVIEW B 15 OCTOBER 1996-IVOLUME 54, NUMBER 15

540163-1829/96/54~15!/10726~10!/$10.00 10 726 © 1996 The American Physical Society



tion, the light beam is focused on the active area of a UV-
enhanced silicon photodetector whose electric output is fed
to a lock-in amplifier tuned to twice the photoelastic modu-
lator frequency. The spectrometer operates in the 1.2–5.5-eV
energy range. More experimental details can be found
elsewhere.14

To suppress parasitic signals in the measured RD spectra,
we have employed the procedure described in Ref. 14 that
consists in measuring two spectra with sample azimuthal ori-
entationsp/2 radians apart and then subtracting them. To
facilitate the two measurements, the sample is mounted on
two rotating discs joined by a spring and three adjusting
screws. This arrangement, together with a He-Ne laser im-
pinging on the sample, allows the sample surface to be
aligned perpendicularly to the rotation axis.

B. Experimental results

In Fig. 2 we show a~100! GaAs:Cr typical spectrum in
the 1.2–5.5-eV energy range, obtained as describe above. On
top of a relatively structureless background, we can see
prominent structures around theE1 and E11D1 transition
energies~2.91 and 3.13 eV, respectively! as well as around
theE08 triplet ~4.2–5.0 eV!. A smaller but well defined struc-
ture is also seen around the fundamental gapE0. In contrast,
no appreciable structure is observed around theE01D0 tran-
sition, a feature that will be discussed below. Broken lines
around critical points in Fig. 2 correspond to the numerical
energy derivativedR/dE of the GaAs reflectivity. The coin-
ciding of the broken line spectra with the RD line shape is
indicative of the existence of a first-derivative component in
the RD spectra.12 We note, however, that the relationship
between the RD anddR/dE line shapes is not a simple one,
since the various critical points contribute to RD spectra with
characteristic relative amplitudes and phases that are differ-
ent from those for the correspondingdR/dE line shapes, as
discussed below.

As previously reported,12 the first-derivative RD spectrum
of Fig. 2 is associated with an anisotropic surface strain that

changes the GaAs symmetry near the surface from cubic
~point groupTd! to orthorhombic~point groupC2v!. Such
stress is generated by the edge component ofa andb 60°
dislocations, provided that the density of one of them domi-
nates over that of the other. In the next section, we will
discuss an RD line-shape model based on the average strain
due to the difference in the densities ofa andb dislocations
that normally occurs in GaAs.15,16

III. THEORETICAL MODEL

A. Geometry of 60° dislocations

To discuss dislocation-induced strains and associated op-
tical anisotropies, we will consider the coordinate axis
(x,y,z) defined in Fig. 3~a!. We will assume normal light
incidence on the~100! surface of GaAs, and we will be in-
terested in anisotropies occurring along this surface.

Sixty-degree dislocations are known to be a common oc-
currence in zinc-blende crystals.16,17 Such dislocations,
which are characterized by the fact that the Burgers vector
makes an angle of 60° with the dislocation corel ~which lies
along any of the six equivalent^011& directions!, have both
screw and edge components that are directed along the^011&
and ^211& directions, respectively. In Fig. 3~a! the geometry
of 60° dislocations is illustrated for the particular case of a
dislocation with a corel along @01̄1# and edge and screw
Burgers vector components along@21̄1̄# and @011̄#, respec-
tively, leading to a total Burgers vector along@101̄#.

The crystallographic orientation of both components of
the Burgers vector, displays 48 types of 60° dislocations.16,17

In what follows, however, we will consider only the 16 dis-
locations with cores oriented along@011̄# or @011#, since they
are the only ones leading to an optical anisotropy for normal
incidence on the~100! surface, as can be easily verified from
symmetry considerations. Burgers vectors for these sixteen
dislocations are given by

b~ i jkmn!5be
~ i jk !1bs

~mn!52
a

4
@ i jk #1

a

4
@0mn#, ~1!

wherea is the unit cell parameter and subscriptse and s
stand for the edge and screw components of the Burgers

FIG. 2. Reflectance-difference spectrum for GaAs:Cr~100! in
the 1.2–5.5-eV energy range.

FIG. 3. Geometry and classification of 60° dislocations.~a! Bur-
gers vectorb and its edge~be! and screw~bs! components for ana

1

dislocation. Vectorsb, be , and bs lie on plane~111!, while b is
directed along@110#, making an angle of 60° with dislocation core
1. ~b! Burgers vector orientations for~a1,b2! and~a2,b1! disloca-
tions.
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vector, respectively. Indexi takes values62, while j , k, m,
and n take values61, provided that the conditionul•bu
5lb cos~p/3! is fulfilled. In Table I we resume the possible
indicator combinations.

60° dislocations are termeda or b according to whether
their cores are composed of arsenic or gallium atoms,
respectively.16 Furthermore, 60° dislocations can be negative
or positive depending on whether the dislocation extra half
plane is introduced from the surface toward the interior of
the crystal or in the opposite direction. The dislocation type
~a1, a2, b1, or b2! is determined by the value of indicesj
and k as indicated in Table I. In Fig. 3~b! we illustrate the
geometry of the sixteen 60° dislocations defined by Eq.~1!.
We note that cores ofa~b! dislocations of a given sign are
rotated 90° with respect to cores ofb~a! dislocations of the
same sign, while cores of positive and negative dislocations
of the same type~eithera or b! are rotated 90° with respect
to each other.

B. Strain tensor for 60° dislocations

The strain tensor for the edge components of the disloca-
tions defined by Eq.~1! can be obtained by the procedure
outlined by Eshelby, Read, and Shockley.18 Such a tensor is
a function of three independent parameterse11, e12, ande22,
and can be written

e~e!
~ i jk !5

1

2 F 2ke11
i j d jke12

i j ~d jk21!e12

i j d jke12
2 jd jke22

0

i j ~d jk21!e12
0

2 j ~d jk21!e22
G .
~2a!

In Fig. 4 we illustrate the strain field described by tensor~2a!
for dislocationsa1, a2, andb2. Lines within circles around
dislocations represent the resulting elastic deformation of an
otherwise cubic lattice. We note that dislocation strain fields
include tension~shaded areas! as well as compression~un-
shaded areas! domains.

The screw component tensor, on the other hand, is a func-
tion of two parameters,e13 ande23, and is written as follows:

e~s!
~mn!5F 0

dmne13
~12dmn!e13

dmne13
0

2ne23

~12dmn!e13
2ne23
0

G . ~2b!

Taking into account that we are considering only linear
piezo-optic contributions to the RD spectra, we will model
the strain induced by a dislocation by making it equal to the
strain average over a plane parallel to the~100! surface

^e~e,s!&5
1

2l 2 F E
z02 l /2

l /21z0 E
y02 l

l1y0
e~e,s!dydzG

x5x01Dx

, ~3!

where (x0 ,y0 ,z0) is the dislocation center,l is the disloca-
tion radius of influence whose magnitude will be assumed to
be equal to the magnitude of the dislocation length,19 and
Dx' l /2 ~see Fig. 4!.

To obtain the average strain tensors, we note that for the
stress tensor componentt11 we havê t11&50, so that we can
write

^e11&52
c12
c11

^e22&. ~4!

Furthermore, as the average value oft12 also vanishes, we
have

^e12&5^e21&50. ~5!

Equations~2!–~5! lead to the average strain tensors

^e~e!
~ i jk !&5^e22&S 2k

c12
c11

0
0

0

jd jk

0

0

0
j ~d jk21!

D , ~6a!

and

TABLE I. Conventions used in this paper for the indicesi jkmn
of the 16 60° dislocations with cores parallel to the~100! surface
~i562!. Indices (j ,k,i ) and (m,n) determine the orientations of
the edge and screw components of the Burgers vector, respectively.
Dislocation type and sign are determined by indicesj andk, respec-
tively.

Dislocation type

be bs

j k i m n

a1 1 1
2 61 71

22 71 61

a2 1 21
2 61 61

22 71 71

b1 21 1
2 61 61

22 71 71

b2 21 21 2
22

61
71

71
61

FIG. 4. Strain fields due to 60° dislocations. Lines around dis-
location cores represent the dislocation-induced strains in an other-
wise cubic lattice.
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^e~s!
~mn!&52n^e23&S 00

0

0
0
1

0
1
0
D . ~6b!

We note that tensors~6a! and ~6b! depend only on the pa-
rameterse22 ande23, respectively.

C. Anisotropic strains due to 60° dislocations

Tensors~6a! and~6b!, which are dependent ofx2x0, de-
scribe the strain associated with a single dislocation. We note
that such a strain results in local anisotropy for light incident
along the~100! surface. Any reflection anisotropy, however,
results from the average contributions of all dislocations
present within the light-penetration depth into the semicon-
ductor. Regarding this, we note that although the strain con-
tributions of dislocations in the semiconductor bulk average
out to zero, near the surface, as a result of the loss of lattice
periodicity, dislocations may lead to a crystal anisotropy. To
be more specific, the average strain contributions of tensor
~6b! are always zero, even near the surface; tensor~6a!, on
the other hand, would lead to an anisotropically stressed sur-
face layer of thickness'l provided that there is a difference
in the density ofa andb dislocations.

The above comments may be understood if we consider
pairs of identical dislocations displaced with respect to each
other perpendicularly to the semiconductor surface by a dis-
tance approximately equal to the dislocation radius of influ-
encel , as is schematically shown by dislocations~a! and~b!
in Fig. 4. As is clear from this figure, the tension domain of
dislocation ~a! averages out to zero with the compression
domain of dislocation~b!, thus leading to a zero average
strain field. Such a pairing of dislocations, however, is not
possible for dislocations within a surface layer of thickness
of the order ofl , as is evident for dislocation~c! in Fig. 4,
thus allowing for dislocations to generate a surface anisot-
ropy.

Taking into account that the relevant parameter for reflec-
tance anisotropies iŝe22& and that it is an odd function of
x2x0 that describes tension as well as compression domains,
the above discussion can be stated in a formal way by defin-
ing, in analogy with electric-polarization phenomena, an
‘‘anisotropic strain dipole’’ for dislocationi jkmn by

p~ i jkmn!5De~ i jkmn!l, ~7!

where l is defined to be perpendicular to the surface~100!
~see Fig. 4! and

De~ i jkmn!5êz•@^e~e!
~ i jk !&1^e~s!

~mn!&#•êz

2êy•@^e~e!
~ i jk !&1^e~s!

~mn!&#•êy , ~8!

whereêy and êz are unit vectors alongy andz, respectively.
De( i jkmn) corresponds to the difference in strain alongy and
z due to dislocationi jkmn.

We will also define an ‘‘anisotropic strain polarization’’
field by the relation

P5 (
i jkmn

r~ i jkmn!p~ i jkmn!, ~9!

wherer( i jkmn) is the volume density for dislocationi jkmn.
Furthermore, by carrying out the summation overi jkmn in
Eq. ~9! by employing tensors~6a! and ~6b! we obtain

P5^e22& lDr, ~10!

whereDr5ra2rb is the difference betweena andb dislo-
cation densities. On the other hand, by assuming a uniform
dislocation distribution, theP vector should satisfy the rela-
tion

R
s
P•ds50, ~11!

where integration is carried out on a surface enclosing a large
enough number of dislocations.

From Eqs.~10! and ~11! we finally obtain for the differ-
ence in average strain per unit area alongy andz

De5P•n̂5^e22& lDr, ~12!

wheren̂ is a unit vector perpendicular to the~100! surface.
The average strain difference defined by Eq.~12! introduces
an average change in GaAs symmetry from cubic to ortho-
rhombic in a surface layer of thickness'l , thus leading to a
reflectance anisotropy.

We note from Eq.~12! that only the edge component of
the dislocation strain contributes to the average anisotropy,
so that in what follows we will ignore the screw component.

D. RD line shapes

The reflectance-difference spectrum results from the con-
tributions of all dislocations within the anisotropically
strained layer of thicknessl present at the surface of the
semiconductor as discussed above. By assuming that the dis-
location has an area of influence equal to 2l 2, we may thus
write for the RD line shape

DR

R
52l 2p(

i jk
r~ i jk ! Re@~as2 ibs!D«~ i jk !#, ~13!

whereas andbs are Seraphin coefficients,
20 p is equal either

to l or to the light penetration depthK21, whichever is
smaller, andD«( i jk ) for dislocationi jk is given by

D«~ i jk !5̂êz•d«~ i jk !
•êz2êy•d«~ i jk !

•êy , ~14!

whereêy andêz are the light polarization vectors along@011#
and@01̄1#, respectively, andd«( i jk ) is the change in dielectric
function under the presence of strain tensor~6a!. In what
follows we will obtain expressions forD«( i jk ), for theG and
L critical-point interband transitions studied in this paper.

1. E0 and E01D0 transitions

The E0 critical-point interband transition links theG8
valence-band statesu 32

1
2& and u12

1
2& with the uS↑& G6

conduction-band states.21 A surface anisotropy atE0 arises
because the strain tensor~6a! splits the valence band~see
Fig. 5!. Taking into account only terms linear in the stress,
the total shift in energyDEG for valence-band wave func-
tions is given by~see Appendix A!
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DEG5kDEG
~h!6kDEG

~s!

5kaS 12
c12
c11

D ^e22&6
k

2 Fb2S 112
c12
c11

D 21d2G1/2^e22&,
~15!

whereDE G
(h) stands for the hydrostatic energy shift,DE G

(s) is
half the valence-band-splitting energy,a, b, and d are the
deformation potentials for hydrostatic, tetragonal, and ortho-
rhombic deformations, respectively.

On the other hand, by neglecting the mixing of theG8
wave functions with theG7 spin-orbit split valence-band
states, we obtain the following differences in interband tran-
sition momentum matrix elements forêz andêy polarizations
~see Appendix A!:

DMG
~6 !5MG

~6 !~ êz!2MG
~6 !~ êy!56 3

4MG~2d jk21!,
~16!

where

MG5 z^cup•êun& z2 ~17!

is the square of the momentum matrix element forE0 tran-
sitions in the absence of strain, while ofM G

~6! stands for the
square of the momentum matrix element for interband tran-
sitions involving upward and downward shifted valence-
band states, respectively.

To obtain an expression ford«( i jk ), we will make use of
the following expression for the unperturbed dielectric func-
tion

«~E!5
A

E2 MGJ~E!, ~18!

whereJ(E) is the joint density-of-states function for inter-
band transitions andA is a factor independent of energy.22

We note thatd«( i jk ) is a diagonal tensor in the (x,y,z)
axis and that the two components relevant for us ared« 22

( i jk )

and d« 33
( i jk ), which may be written with the help of tensor

~6a! and Eq.~18! as

d«33
~ i jk !5

A

E2 ^e22&@J~E1DEG
~h!1DEG

~s!!MG
~1 !~ êz!

1J~E1DEG
~h!2DEG

~s!!MG
~2 !~ êz!#, ~19a!

d«22
~ i jk !5

A

E2 ^e22&@J~E1DEG
~h!1DEG

~s!!MG
~1 !~ êy!

1J~E1DEG
~h!2DEG

~s!!MG
~2 !~ êy!#. ~19b!

From Eqs.~14!, ~16!, and~19! we obtain

D«~ i jk !5
A

E2 @DMG
~1 !J~E1DEG

~h!1DEG
~s!!

1DMG
~2 !J~E1DEG

~h!2DEG
~s!!# ~20!

and, finally, from Eqs.~13!, ~18!, and~20! we can write for
the RD line shape for theE0 critical point

DR

R
5
Cl2

2
pDr Re$~as2 ibs!@«~E01DEG

~h!1DEG
~s!!

2«~E01DEG
~h!2DEG

~s!!1«~E02DEG
~h!1DEG

~s!!

2«~E02DEG
~h!2DEG

~s!!#%, ~21!

whereC53. Furthermore, by assumingDE G
(s)1DE G

(h)!g,
whereg is the line-shape broadening parameter, we obtain
from Eq. ~21! the first derivative line shape

DR

R
52Cl2pDr

1

E2 ReF ~as2 ibs!S ]~E2«!

]E D GDEG
~s! .

~22!

Regarding theE01D0 transitions, we note that by neglect-
ing the mixing of theG8 and G7 valence-band wave func-
tions, there is not any associated anisotropy, as theG7
valence-band states are not split by the dislocation strain~see
Appendix A!.

2. E08 and E081D081D0 transitions

The transitions that give rise to theE08 optical structure of
GaAs are of the typesD5→D5 andG8→G7.

23 We note, how-
ever, that theD transition is isotropic for light incidence on a
~100! surface and will be not be further considered. The
G-pointE08 interband transition links the fourfold-degenerate
G8 valence-band states with the spin-degenerateG7 upper
conduction-band states~see Fig. 5!. Interband transition ma-
trix elements are thus given by Eq.~16!, with MG standing
for theE08 transition matrix element for the unperturbed crys-
tal. In the same way, the RD line shape for theE08 transition
is given by Eqs.~21! and ~22!.

FIG. 5. Interband transitions in a zinc-blende crystal under a 60°
dislocation-induced strain. The change in crystal symmetry from
cubic (Td) to orthorhombic (C2v) leads to a hydrostatic shiftDEG

(h)

and to a split energy 2DEG
(s) for theG8 valence-band levels.
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Transition E081D081D0 links the spin-orbit spliced
valence-bandG7 levels with the upper conduction-bandG8
states,23 as shown schematically in Fig. 5. As occurs for
valence-band states, the strain tensor~6a! removes the en-
ergy degeneracy of the upper conduction-band levelsG8. We
may thus expect that Eqs.~16!, ~20!, and ~21! are valid for
this transition, withDE G

(s) andDE G
(h) standing for the upper

conduction-band shifting energies andMG for the E081D08
1D0 transition matrix element in the absence of strain. Pro-
vided thatDE G

(s)1DE G
(h)!g for this transition, the RD line

shape is thus given by Eq.~22!. We note, however, that we
must include anegative signin front of the second members
of Eqs.~21! and~22!, to take into account that in this case we
are consideringG7→G8 transitions instead ofG8→G7.

3. E081D08 transitions

The E081D08 transition links fourfold-degenerateG8

levels.23 The calculation of the contribution ofE081D08 to the
RD spectrum is thus more complex than for the previous
critical points, as it involves transitions between two strain-
split sets of states~see Fig. 5!. As discussed in Appendix A,
however, matrix elements for these transitions can be ne-
glected when compared with otherG-point transitions.

4. E1 and E11D1 transitions

There are eight equivalentE1 andE11D1 critical points,
corresponding, to the eight equivalent^111& directions in the
Brillouin zone. E1 and E11D1 transitions link uL 6

c&
conduction-band states withuL4,5& and uL6

n& valence-band
states, respectively.23 Under the influence of strain tensor
~6a!, the equivalence of bothE1 andE11D1 critical points is
removed, splittinguL 6

c& and uL4,5& into states uE1
~6!& and

u~E11D1!
~7!& ~Ref. 21! with energy shifts given by~see Ap-

pendix B!

DEL5kDEL
~h!6kDEL

~s!5k~A2a1B2a8!S 12
c12
c11

D ^e22&

6k
1

)
S 12 d1B2d8D ^e22&, ~23!

wherea8 andd8 are the hydrostatic and orthorhombic defor-
mation potentials for the conduction band, respectively, and
A52B50.56 for GaAs.21

Furthermore, by neglecting the mixing of theuL 6
c& and

uL4,5& bands~^e22&/D1!1!, the dislocation strain leads to po-
larization selection rules that are expressed by the relation-
ship ~see Appendix B!

DML
~6 !5ML

~6 !~ êz!2ML
~6 !~ êy!56ML~122d jk!, ~24!

whereM L
~6! stands for momentum matrix elements for inter-

band transitions involving upward- and downward-shifted
critical points, respectively, andML is the square of the mo-
mentum matrix element for interband transitions in the un-
perturbed crystal for bothE1 andE11D1 transitions.

From the above discussion, an anisotropy at theE1 and
E11D1 critical points arises for reasons similar to those for
theG-point interband transitions. Thus, with the help of Eqs.
~13! and ~20!, the RD line shape for theE1 and E11D1
critical points in first order in̂e22& is given by Eqs.~21! and

~22! with C522, provided that we substituteDE G
(h) and

DE G
(s) with DE L

(h) andDE L
(s), respectively.

IV. DISCUSSION OF EXPERIMENTAL RESULTS

We will first consider results for the fundamental transi-
tion E0. In order to isolate the dislocation-associated line
shape of the RD spectrum of Fig. 2, we enhanced it against
the relatively structureless background by taking its second
derivative with respect to energy. Results are shown in Fig.
6~a!. For the sake of comparison, in Fig. 6~b! we show a
GaAs photoreflectance spectrum for the same sample as that
employed in the RD measurements. The close coincidence
between spectra of Figs. 6~a! and 6~b!, constitutes further
evidence of the existence of a first-derivative component in
the RD line shape in accordance with our model, since pho-
toreflectance line shapes are known to be associated with the
third derivative of the reflectance spectra in the low-field
regime.24 We note, however, a shoulder in the RD spectrum
that is not present in the PR line shape. This shoulder is due
to the fact that for this particular sample condition
DE G

(s)1DE G
(h)!g is not fulfilled. Thus, in this case the RD

line shape is described by Eq.~21! rather than by Eq.~22!.
By fitting the derived experimental RD spectrum in Fig.

6~a! to the second derivative of the theoretical model,22 Eq.
~21!, we can obtain the numerical values forDE G

(h) and
DE G

(s). Such a fitting is given by the continuous line spec-
trum in Fig. 6~a!. We note that to build this spectrum we
have made use of the fact that for theE0 critical point of
GaAs, DE G

(h)/DE G
(s)'1.62. We have also employed the

broadening energyg528 meV and the gap energyE051.416
eV obtained from the fitting of the photoreflectance~PR!

FIG. 6. ~a! Second energy-derivative spectra of the RD line
shape around the GaAs fundamental gap~filled circles! and line-
shape fitting~continuous line!. ~b! Photoreflectance spectrum for
GaAs:Cr~filled circles! and line-shape fitting~continuous line!.
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experimental spectrum to a low-fieldM0 line shape22 @con-
tinuous line in Fig. 6~b!#. From the fitting of Fig. 6~a! we
obtainedDE G

(h)510.5 meV andDE G
(s)56.5 meV.

We note that from the fitting of the RD spectrum ampli-
tude we can calculate the productl 2pDr, which, by assum-
ing p5 l at E0, allows us to determine the average change
Ddeff in lattice spacing along thê110& directions parallel to
the surface. The absolute value ofDdeff normalized to lattice
spacingd is given by u(Dd)eff/du5^e22& l

3Dr. The strain-
tensor component̂e22& can be obtained from theDE G

(h) and
DE G

(s) determined from the RD line-shape fitting. From the
above we obtain u(Dd)eff/du values in the range of
1025–1024 for our samples.

Regarding the contribution of theE01D0 critical point to
the RD spectrum, we can see from Fig. 2 that it is negligible,
as anticipated in Sec. III D 1.

Let us now considerE1 and E11D1 transitions. Filled
circles in Fig. 7 show the second derivative of the experi-
mental RD spectra of our samples in the energy range around
theE1 andE11D1 energies. In Fig. 7 we also show the PR
spectrum of undoped GaAs~continuous line!, which closely
coincides with the RD spectrum of the same figure. In this
case, due to the larger broadening energies as compared to
transitions around the fundamental gap, the dislocation-
induced component of the RD line shape is well described by
a first-derivative line shape, in agreement with our model.

Regarding interband transitions above 4 eV, we note that
in this case, both the larger broadening energies and the in-
creased noise prevented us from obtaining meaningful spec-
trum energy derivatives. From Fig. 2, however, it appears
that the contributions of theE08 andE081D081D0 transitions
to the RD spectrum are aboutp radians out of phase with
respect to each other, in accordance with the discussion of
Sec. III D 2. Furthermore, the contribution of theE081D08
critical point to the RD spectrum appears to be negligible, a
fact that also agrees with our model~Sec. III D 3!.

We note that in GaAs theE081D081D0 transition is al-
most degenerate with the transition labeledE2, and that the
broadening of the RD spectrum of Fig. 2 makes it difficult to
resolve both transitions. However, and although the symme-
try of theE2 is unknown,

23 we can see from Fig. 2 that the
contribution of theE2 transition to the RD line shape has the
same phase as that ofE081D081D0.

Furthermore, we note that the relative phases of theE1
andE11D1 critical-point components in the RD spectra of
Fig. 2 with respect to the corresponding phases for theE08
andE081D081D0 components are congruent with the predic-
tions of our model~Secs. III D 2 and III D 4!. This is, how-
ever, not the case for theE0-point component, whose RD
line shape is predicted to bep radians out of phase with
respect to that observed experimentally~see Sec. III D 1!.
This may be associated with the fact that around the funda-
mental gap the light penetration depth~a few micrometers! is
two orders of magnitude larger than the penetration depth at
higher energies, that is, 100–200 Å. Thus, at high energies
we are actually sensing a region that is different from that
sensed by photons aroundE0, each region having its own
distribution of dislocations. We may expect that for the RD
spectrum aroundE0 the line shape is associated with dislo-
cations formed during crystal growth, while at higher ener-
gies the RD line shape is to a great extent determined by
sample surface preparation.

As an additional mechanism to help understand the above
phase discrepancy, we note that the inhomogeneity alongx
of the average strain field Eq.~3! may introduce a shift in the
phase of the RD line shape. Such a phase shift is a function
of the dislocation-length–to–light-penetration-depth ratio
and is largest aroundE0. The effect of a spatial inhomoge-
neity in the perturbation field in modulated reflectance line
shapes has been considered by various authors.25,26 Aspnes
and Frova25 have shown that for light-penetration depths
large compared to the thickness of the inhomogeneous per-
turbation, substantial modifications in the modulated reflec-
tance line shape are obtained as compared to the line shape
for a homogeneous perturbation. In a similar way, Behn and
Roppischer26 report on both theoretical and experimental
electroreflectance spectra showing dramatic changes in spec-
tral line shapes as a function of bias voltage. If the observed
phase discrepancies in the RD spectrum were entirely due to
the strain-field inhomogeneity, the difference in phase fac-
tors for energies aroundE0 andE1 should be'p. Work is
under way in an attempt to settle this issue.

V. CONCLUSIONS

We have developed a model to describe RD spectra for
the ~100! surface of zinc-blende semiconductors due to
strains induced bya andb 60° dislocations. The model takes
into account the strain contributions of alla andb disloca-
tions present within the penetration depth of the light. Pro-
vided that we have a difference ina andb dislocation den-
sities, it is shown that such contributions result in an
anisotropic average strain near the semiconductor surface
that changes the sample symmetry from cubic to orthorhom-
bic, thus leading to a reflectance anisotropy. The model pre-
dicts RD line shapes for critical points of bothG and L
symmetry that are proportional to the first energy derivative

FIG. 7. Second energy-derivative spectra of the RD line shape
aroundE1 andE11D1 ~filled circles! and photoreflectance spectrum
for undoped GaAs~continuous line!.
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of the reflectance spectrum as long as the strain-induced en-
ergy shifts are small compared to the spectrum broadening
energies. The overall RD spectrum is predicted to be a linear
combination of the individual line shapes associated with
each critical point. The amplitude and phase of each of these
line shapes in the linear combination are dependent on the
specific critical point considered. We presented RD spectra
of semi-insulating~100! GaAs:Cr in the 1.2–5.5-eV energy
range that confirm the predictions of our model.
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APPENDIX A

We will consider in this appendix the effect of the
dislocation-induced strains on the anisotropy ofE0 ~G8→G6!,
E01D0 ~G7→G6!, andE081D08 ~G8→G8! critical-point inter-
band transitions. We will choose coordinated axisx8,y8,z8
along @100#, @010#, and@001#, respectively. Let us first con-
sider E0 and E01D0. The conduction-bandG6 wave func-
tions areuS↑& and uS↓&. The valence-band states ofG8 sym-
metry can be written as21

U32 3

2L ~ jk !

5
1

&
S x81 i

1

&
~z82 jky8!D u↑&, ~A1a!

U322
3

2L ~ jk !

5
1

&
S x82 i

1

&
~z82 jky8!D u↓&, ~A1b!

U32 1

2L ~ jk !

5
1

)
~z81 jky8!u↑&

2
1

A6 S x81 i
1

&
~z82 jky8!D u↓&, ~A1c!

U322
1

2L ~ jk !

5
1

)
~z81 jky8!u↓&

1
1

A6 S x82 i
1

&
~z82 jky8!D u↑&, ~A1d!

while the spin-orbit-splitG7 valence-band states are given
by21

U12 1

2L ~ jk !

5
1

A6
~z81 jky8!u↑&

1
1

)
S x81 i

1

&
~z82 jky8!D u↓&, ~A2a!

U122
1

2L ~ jk !

5
1

6
~z81 jky8!u↓&

2
1

)
S x82 i

1

&
~z82 jky8!D u↑&. ~A2b!

The Hamiltonian describing the combined spin-orbit and
elastic interactions of the dislocation-induced strain tensor
(6a) with the crystal can be written21

H52a^e22&kF12
c12
c11

G2
3

2
b^e22&kF22

c12
c11

Lx8
2

1Ly8
2

1Lz8
2

1
2

3 S c12c11
21DL2G2)d^e22&k

~Ly8Lz81Lz8Ly8!

2

1kL•S, ~A3!

whereL is the angular momentum,a, b, andd are the de-
formation potentials for hydrostatic, tetragonal, and ortho-
rhombic deformations, respectively, andk5D0/3.

Valence-band eigenvectors of Hamiltonian~A3! are a
mixture ofG7 andG8 states and are written as

uE0
~1 !&5lU32 , 32L ~ jk !

1mU32 ,2 1

2L ~ jk !

1&h
^e22&
D0

U12 ,2 1

2L ~ jk !

, ~A4a!

uE0
~2 !&5lU32 ,2 1

2L ~ jk !

2mU32 , 32L ~ jk !

1
j

&

^e22&
D0

U12 ,2 1

2L ~ jk !

, ~A4b!

uE01D0&5U12 ,2 1

2L ~ jk !

2
j

&

^e22&
D0

U32 ,2 1

2L ~ jk !

2&h
^e22&
D0

U32 , 32L ~ jk !

, ~A4c!

where

l5
h

$h21@j2~j21h2!1/2#2%1/2
, ~A4d!

h5
)

4 FbS 112
c12
c11

D 2
d

)
G , ~A4e!

j5
1

4 FbS 112
c12
c11

D1)dG , ~A4f!
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and

l21m251. ~A4g!

From the above eigenvectors, we obtain the energy shifts
for statesuE0

~6!& given by Eq.~15!, as well as the following
interband matrix elements:

u^S↑up•êyuE0
~2 !&u25MG

~2 !~ êy!

5MGH Fl21lj
^e22&
D0

Gd jk

1F14 l22
)

2
lm2

1

2
lj

^e22&
D0

G
3~12d jk!J , ~A5a!

u^S↑up•êzuE0
~2 !&u25MG

~2 !~ êz!

5MGH F14 l22
)

2
lm2

1

2
lj

^e22&
D0

Gd jk

1Fl21lj
^e22&
D0

G~12d jk!J , ~A5b!

u^S↑up•êyuE0
~1 !&u25MG

~1 !~ êy!

5MGH 2mh
^e22&
D0

d jk

1F34 l21
)

2
lm2)lh

^e22&
D0

G
3~12d jk!J , ~A5c!

u^S↑up•êzuE0
~1 !&25MG

~1 !~ êz!

5MGH F34 l21
)

2
lm2)lh

^e22&
D0

Gd jk

12mh
^e22&
D0

~12d jk!J , ~A5d!

u^S↑up•êyuE01D0&u25MGH F112j
^e22&
D0

Gd jk

1F12j
^e22&
D0

G~12d jk!J , ~A5e!

u^S↑up•êzuE01D0&u25MGH F12j
^e22&
D0

Gd jk

1F112j
^e22&
D0

G~12d jk!J , ~A5f!

where êy and êz are polarization vectors along@011# and
@01̄1#, respectively, andMG is the square matrix element in
the absence of strain.

Taking into account thatm'0.05l for GaAs, we can ne-
glect in the first approximation terms depending onm in Eqs.

~A5!. In this way, by makingl51 and by neglecting any
mixing of the valence-bandG8 wave functions with the spin-
orbit-splitG7 states~i.e., by assuminĝe22&/D0!1!, we obtain
from Eqs.~A5! the differencesDM G

~6! given in Eq.~16!.
On the other hand, from Eqs.~A5e! and~A5f! we can see

that by neglecting any mixing of the valence-bandG8 andG7
wave functions, the interband transitions involvinguE01D0&
states do not contribute to RD spectra.

We will now consider theE081D08 ~G8→G8! interband
transition. As discussed above, each one of the states in-
volved in this transition are split by the dislocation strain into
two states. These two states will be termedC~6!, where plus
and minus signs stand for upward- and downward-shifted
states, respectively. In the perturbed crystal, four different
interband transitions are then possible, with Eqs.~A2! and
Hamiltonian~B3! leading to the following interband matrix
elements:

^C~6 !up•êyuC~6 !&5 4
3Q

2l2m2d jk , ~A6a!

^C~6 !up•êyuC~7 !&5 1
3Q

2~l22m2!2d jk1
1
3Q

2~l21m2!2

3~12dk j!, ~A6b!

^C~6 !up•êzuC~6 !&5 4
3Q

2l2m2~12dk j!, ~A6c!

^C~6 !up•êzuC~7 !&5 1
3Q

2~l21m2!2dk j1
1
3 ~l22m2!2

3~12dk j!. ~A6d!

As can be seen from Eqs.~A6!, differences in matrix el-
ements for polarizationsêy andêz for a given interband tran-
sition are either zero or of second order inm. Thus, E08
1D08 transitions contribute only in second order to the RD
line shape and will be neglected.

APPENDIX B

We will consider interband transitions at theE1
~L4,5→L6! and E11D1 ~L6→L6! critical points, which in-
volve the conduction-band wave functions21

uL6
c&~ jk !5AuS↑&1

B

A3
~6 jk~x86y8!1z8!u↑& ~B1!

and the valence-band wave functions21

uL4,5&
~ jk !5

1

2 Fz87 jky81 i
1

)
~z86 jk~y822x8!!G u↑&,

~B2a!

uL6
n&~ jk !5

1

2 Fz87 jky82 i
1

)
~z86 jk~y822x8!!G u↑&,

~B2b!

where the upper and lower signs stand for the@111# and
@111̄# bands, respectively. The Hamiltonian~A3!, with
k5)D1/2, is still appropriate for describing the strain inter-
action at theL points, as the termk•p is not dependent on
strain in first order.21 The eigenvectors of Hamiltonian~A3!
are given by
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uE1
~6 !&5uL4,5&

~ jk !6z
^e22&
D1

uL6
n&~ jk !, ~B3a!

u~E11D1!
~7 !&5uL6

n&~ jk !7z
^e22&
D1

uL4,5&
~ jk !, ~B3b!

where plus and minus signs stand for upward- and
downward-shifted critical points, respectively, and

z5F d
)

2bS 121
c12
c11

D G . ~B4!

Hamiltonian ~A3! and eigenvectors~B3! lead to the en-
ergy splittings given in Eq.~23!, as well as to the interband
momentum matrix elements

u^L6
cup•êyuE1

~6 !&u25ML
~6 !~ êy!

5
ML

2

2 F ~271!S 12r
1

2
z

^e22&
D1

D d jk

1~261!S 11r
1

2
z

^e22&
D1

D ~12d jk!G ,
~B5a!

u^L6
cup•êzuE1

~6 !&u25ML
~6 !~ êz!

5
ML

2

2 F ~261!S 11r
1

2
z

^e22&
D1

D d jk

1~271!S 12r
1

2
z

^e22&
D1

D ~12d jk!G ,
~B5b!

wherer51 andML is the square of the momentum matrix
element for interband transitions in the unperturbed crystal.
Equations~B5a! and~B5b! also apply for transitions involv-
ing the u~E11D1!

~7!& states withr521.
From Eqs.~B5a! and ~B5b! we obtain the following dif-

ferences in matrix elements forêy and êz polarizations for
transitions involving bothuE1

7& and u~E11D1!
~7!& states:

DML
~6 !5ML

~6 !~ êz!2ML
~6 !~ êy!

5MLS 16r z
^e22&
D1

D ~122d jk!, ~B6!

whereD1 is the spin-orbit interaction energy. Finally, by ne-
glecting the mixing of theuL6

n& anduL4,5& states we obtain Eq.
~24!.
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