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The propagation of a surface acoustic wave~SAW! on GaAs/AlxGa12xAs heterostructures is studied in the
case where a two-dimensional electron gas~2DEG! is subject to a strong magnetic field and a smooth random
potential with correlation lengthL and amplitudeD. The electron wave functions are described in a quasi-
classical picture using results of percolation theory for two-dimensional systems. In accordance with the
experimental situation,L is assumed to be much smaller than the sound wavelength 2p/q. This restricts the
absorption of surface phonons at a filling factorn̄' 1

2 to electrons occupying extended trajectories of fractal
structure. Both piezoelectric and deformation potential interactions of surface acoustic phonons with electrons
are considered and the corresponding interaction vertices are derived. These vertices are found to differ from
those valid for three-dimensional bulk phonon systems with respect to the phonon wave-vector dependence.
We derive the appropriate dielectric function«(v,q) to describe the effect of screening on the electron-phonon
coupling. In the low-temperature, high-frequency regimeT!D(vqL/vD)

a/2n, wherevq is the SAW frequency
and vD is the electron drift velocity, both the attenuation coefficientG and «(v,q) are independent of
temperature. The classical percolation indices givea/2n53/7. The width of the region where a strong absorp-
tion of the SAW occurs is found to be given by the scaling lawuDn̄u'(vqL/vD)

a/2n. The dependence of the
electron-phonon coupling and the screening due to the 2DEG on the filling factor leads to a double-peak
structure forG( n̄). @S0163-1829~96!06739-2#

I. INTRODUCTION

Surface acoustic waves~SAW’s! ~Refs. 1 and 2! provide a
useful tool for experimental studies of the two-dimensional
electron gas~2DEG! in GaAs/AlxGa12xAs heterostructures.
In particular, SAW’s have been used in recent years in in-
vestigations of the integer3–7 and the fractional7–9 quantum
Hall regimes. Due to the quantum Hall effect, the interaction
of the SAW with the charge carriers can lead to strong os-
cillations in the attenuation and the velocity of the sound
waves as function of the applied magnetic field. Quantum
oscillations have also been reported for the sound-induced
currents and voltages.7,10

Previous theoretical descriptions of these experiments
have been based essentially on classical models for the
propagation of SAW’s.11,12 According to these models,
which are originally derived for systems in the absence of an
applied magnetic field, the sound attenuation is expressed in
terms of the electrical dc conductivity. This relation is de-
rived under the assumptions thatql!1 andvqt!1 ~local
regime!, whereq andvq are the wave vector and the fre-
quency of the sound, respectively, andl andt are the mean
free path and the scattering time of the conduction electrons,
respectively. If a~classical! magnetic field is applied, the first
condition has to be replaced byqRc!1, whereRc is the
cyclotron radius.12 It is much more difficult, however, to
determine under which conditions the above-mentioned
theories are valid when the 2DEG is subject to a quantizing
magnetic field. In this case, the electron system is character-
ized by ~at least! two more length scales, namely, the mag-

netic length l B5Ac\/eB and the localization length13 j.
While qlB!1 is always fulfilled under typical experimental
conditions, the localization length can be much larger than
the surface acoustic wavelength 2p/q.

A series of experiments3–9 has shown a reasonable agree-
ment with the predictions of classical models in a wide range
of frequenciesvq and magnetic-field strengths. On the other
hand, some deviations have also been detected. For example,
deviations of the SAW attenuation from classically predicted
behavior with increasing frequency have been reported.5

These were attributed to nonlocal effects of the interaction
between the SAW and the 2DEG which should occur when
the sound wavelength becomes of the order of or smaller
than a characteristic length scale of the electron gas. In the
fractional quantum Hall regime, an anomaly in the absorp-
tion coefficient for filling factor n̄5 1

2 was found.8,9 This
anomaly was discussed in the framework of the composite
fermion model of Ref. 14. According to this approach, elec-
trons are replaced by composite fermions moving in an ef-
fective magnetic field of zero average~at n̄5 1

2!. Then the
sound absorption due to these particles is described by clas-
sical formulas, except that the dc conductivity is replaced by
the wave-vector-dependent nonlocal conductivity which,
however, represents a very important difference~see Ref. 14
for details!.

In this paper we study the propagation of SAW’s in the
integer quantum Hall regime. The calculation of the SAW
attenuation is carried out for filling factors near12, and is
based on a percolation approach to the electronic states in a
very strong magnetic field. From this point of view we may
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anticipate a nonlocal behavior of the attenuation arising from
large characteristic length scales~e.g., the size of a percola-
tion cluster@q21) inherent in that framework. The effect of
electron-electron interaction is taken into account by the
screening of the electron-phonon coupling. The same prob-
lem has also been studied in Ref. 15. These authors calcu-
lated the nonlocal conductivity due to variable-range hop-
ping between pairs of localized states. Then, in the spirit of
the classical description of sound absorption, this conductiv-
ity is related to the SAW attenuation coefficient. A compari-
son with our results will be given in Sec. VI.

The system considered is a 2DEG, subject to a very
strong magnetic fieldB and a smooth random potentialV.
The potential can be characterized by its amplitudeD and its
correlation lengthL. The amplitude also determines the
width of the Landau levels. The correlation length is of the
order of the spacer layer that separates the 2DEG from the
dopant layers. Under the assumption thatl B!L is a quasi-
classical description of the electron states can be applied.
That is, one considers the drift motion of the guiding center
of an electron on the equipotential lines~EL’s! of V sepa-
rately from the rapid motion relative to it.13 The drift veloc-
ity is given byvD5cu¹Vu/eB. Using u¹Vu.D/L, the drift
velocity can be estimated to bevD. l B

2D/\L. Depending on
the ratio between the correlation lengthL and the sound
wavelength, two regimes can be distinguished. ForqL@1,
the electron-phonon interaction can be considered locally ne-
glecting the global structure of the EL’s.16,17 ~For single-
phonon absorption and emission processes to occur, one has
also to require that the sound velocityvs is smaller than the
drift velocity. This is usually referred to as the Cˇ erenkov
condition.18! This regime is valid for, e.g., thermal
phonons.16 However, SAW’s have a much larger wave-
length, and henceqL!1 is typically fulfilled. In this case,
the local absorption and emission of phonons is exponen-
tially small, and the EL as a whole has to be considered. It
becomes important that the motion of the guiding center on
an extended EL~with a length@L) resembles a random
walk, with a diffusion coefficientD5vDL. Since the ratio
vD /vs , for real systems, is not very different from unity, one
deals with the limitvq@Dq2 of this diffusion process.@To
be precise,18 the parametervD /vs has to lie in the range
qL!vD /vs!(qL)23/4.# Indeed, forB510 T (l B58 nm!,
D51 meV,L'50 nm,q5104 cm21, andvs'33105 cm
s21 we find qL50.05 andvD'0.7vs . It is this particular
~diffusive! regime which will be addressed in this paper. In
the same regime, the electron lifetime and the energy relax-
ation time due to interaction with 3D bulk phonons have
been calculated in Ref. 18.

The quantum-mechanical calculation of the attenuation
coefficient ~as well as of other quantities associated with
SAW’s! requires a knowledge of the Hamiltonians which
describe the interaction of electrons with acoustic surface
phonons. As far as we know these interaction Hamiltonians
have not yet been derived. Instead, many theoretical investi-
gations have addressed the interaction of 2D electrons with
3D ~bulk! or 2D phonon systems. The latter one, a single
layer of vibrating atoms, represents merely a theoretical con-
struction. Three-dimensional phonons do not provide an ap-
propriate approach when the 2DEG is located near a free-

crystal surface.19 This implies that it is by no means clear
that the interaction of a SAW with the 2DEG is described
well by the formulas which are valid in the case of bulk
phonons. In fact, we find that the interaction vertices appear-
ing in the general electron-phonon interaction Hamiltonian
@see Eq.~11!# differ from those for 3D phonons not only by
numerical constants but also in the phonon wave-vector de-
pendence and the relative phase between the deformation
potential and the piezoelectric interactions.

The paper is organized as follows. The interaction verti-
ces are derived and discussed in Sec. II. In Sec. III, we de-
scribe the quasiclassical electron states of a 2DEG in a strong
magnetic field and a random potentialV. We show that the
absorption of the SAW and the dielectric function depend
crucially on the occupation and the properties of electron
states which correspond to very long EL’s. The structure of
these EL’s is deduced from 2D percolation theory. The ma-
trix elements for transitions between different electron states
are given in Sec. IV. The screening of the electron-phonon
interaction due to the 2DEG is accounted for by a dielectric
function «(vq ,q) which is calculated in Sec. V. Based on
these results, the SAW attenuation coefficient is obtained in
Sec. VI. Its dependence on the filling factor~or the Fermi
energy!, the SAW frequency, and the temperature are dis-
cussed. A short summary is given in Sec. VII.

II. INTERACTION HAMILTONIANS

A. Displacement field

To simplify the calculations we use the following assump-
tions. Since the SAW wavelength 2p/q is much longer than
the lattice constant, the crystal can be approximated by a
continuous medium. Its elastic properties are assumed to be
isotropic. Furthermore, we disregard the fact that the GaAs
substrate is coated with layers which differ slightly in their
elastic properties. The overall thickness of these layers5

d.100 nm is much smaller than the wavelength of sound. It
has been shown2 that for qd!1 the deviations of the wave
propagation resulting from a thin overlayer coating an homo-
geneous substrate can be accounted for by a systematic ex-
pansion in this small parameter. In our caseqd<1021, i.e.,
these corrections are indeed negligible. Thus we end up with
the standard problem of sound waves which are propagated
in an isotropic medium bounded by a plane.20,2 ~Effects re-
sulting from the anisotropy of the lattice become important
for qd'1; see Ref. 21.!

Let the surface be in thex-y plane and the medium in the
half-spacez>0. The longitudinal and transversal compo-
nents of the displacement fieldu(r,t), r5(x,y,z)[(R,z)
obey the wave equations

]2ul ,t
]t2

2cl ,t
2 Dul ,t50, ~1!

wherecl ,t are the corresponding sound velocities. By defini-
tion, curlul50 and divut50. Surface waves are composed of
particular solutions of Eqs.~1! that decay exponentially with
increasing distance from the surface. In addition, these solu-
tions have to satisfy the boundary conditions at the free sur-
facez50, namely, the normal components of the stress ten-
sor should vanish there. It turns out that these boundary
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conditions can only be fulfilled by a linear combination of
ul andut , i.e., pure longitudinal or transversal surface waves
do not exist.20 The full displacement field for a mode with a
two-dimensional wave vectorq can be written as

uq~r,t !5Cqe
i ~q•R2vqt !vq~z!1c.c., ~2a!

with

vq~z!52 i q̂~e2k l qz2 fk te
2k tqz!1 ẑ~k le

2k l qz2 f e2k tqz!.
~2b!

That is, the displacementuq is polarized in the sagittal plane
which is spanned by the propagation directionq̂5q/q and
the surface normalẑ. The decay of the displacements into the
interior of the medium is described by

k l~a!5A12aj2 and k t~a!5A12j2, ~3!

wherea5ct
2/cl

2 , andj is a root of an algebraic equation of
sixth order containing the parametera only ~see Ref. 20!.
j enters the dispersion relation of the surface waves in the
form

vq5jctq[vsq, ~4!

wherevs is the SAW velocity. Finally, the factorf is given
by

f ~a!5
11k t

2

2k t
5S k l

k t
D 1/2. ~5!

In order to quantize the displacement field~2!, the normal-
ization constantCq of each individual mode has first to be
fixed in an appropriate way. That is, the energy associated
with the modeuq(r,t) in the normalization volume has to
coincide with the energy\vq of the corresponding phonon.
Since the wave is propagated freely along the surface, the
energy is normalized with respect to a large but finite square
of areaL2 in thex-y plane. Conversely, no such restriction is
necessary with respect to thez coordinate becauseuq decays
exponentially with increasing distance from the surface.
Thus the normalization volume can be extended fromz50
to z5` under the chosen surface area.

Adding a kinetic-energy term to the potential energy20

associated with a displacement fieldu, the total energy can
be written as

E~u!5 1
2rE d3r F ~]u/]t !21~cl

222ct
2!~divu!2

12ct
2(
i ,k

~uik!
2G , ~6!

wherer is the mass density of the medium, and

uik5
1

2 S ]ui
]xk

1
]uk
]xi

D , i ,k5x,y,z ~7!

is the strain tensor. Insertinguq , Eq. ~2!, into this formula,
and imposing the conditionE(uq)5\vq determines the nor-
malization as

Cq[C5
1

L S \

rvsa
D 1/2, ~8a!

with a numerical factor

a~a!5 f 322 f1
1

k l
2

a2j2

k l

1
1

j2 F ~11k l
2!2

2k l
1k l~11 f 2!22 f ~11k lk t!G .

~8b!

Equations~8! show that the normalization leads merely to a
constant prefactor; i.e., in contrast to the case of bulk
phonons,C does not introduce a further dependence on the
wave numberq.

We are now in a position to quantize the displacement
field uq @Eqs.~2!# of a SAW. According to the familiar rules,
we define the phonon annihilation and creation operatorsbq
andbq

† and for the complete wave field find the expression

u~r,t !5C(
q

@bqe
i ~q•R2vqt !vq~z!1H.c.#. ~9!

B. Deformation-potential interaction

The deformation potential is proportional to the change in
volume, divu, which an infinitesimal volume element under-
goes due to the wave.22 Introducing an electron-phonon in-
teraction constantJ, the Hamiltonian of the deformation po-
tential can be written as

HDA5Jdivu~r,t !. ~10!

The spread of the transversal component of the electron
wave function as well as the distanced of the 2DEG from
the surface are small compared toq21. Thus, in evaluating
Eq. ~10!, one can set all exponentials invq(z), Eq. ~2b!,
equal to 1.

Conveniently, the electron-phonon interaction Hamil-
tonian can be written in the general form

H5
1

L(q gqe
iq•Rbq1H.c. ~11!

For a deformation potential interaction, from Eqs.~9! and
~10! we derive the interaction vertex

gq
DA5S \

rvsa
D 1/2aj2Jq. ~12!

Following a notation introduced in Ref. 22, the electron-
phonon interaction constantJ can be replaced by a nominal
scattering timetDA . This gives

~gq
DA!25aDA

\2vsq
2

p0
3tDA

, ~13!

where \p05(2m* \v0)
1/2 and aDA52paj2/a. v0 is the

frequency of longitudinal-optical phonons, andm* is the ef-
fective mass of the electrons.

C. Piezoelectric interaction

Along with the deformation potential interaction, the pi-
ezoelectric electron-phonon interaction appears in crystals
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which lack a center of symmetry, cf., for example, Ref. 22.
In this case, an elastic wave leads to a polarizationP of the
lattice,

Pj5(
k,l

b̃ jklukl , ~14!

where b̃ jkl is the tensor of the piezoelectric moduli. The
corresponding interaction Hamiltonian follows from the
electric potentialw(r,t) associated with the polarization, and
reads

HPA5ew~r,t !. ~15!

The polarization and the electric potential are related to one
another via Poisson’s equation

divD5«0div~4pP2gradw!50, ~16!

whereD is the dielectric displacement, and«0'12.8 is the
dielectric constant of GaAs.

In the case of interest here, the general expression~14! is
simplified because the GaAs samples used in experiments
are cubic crystals and a crystal cut is chosen@the ~100! sur-
face# where the surface is spanned by two lattice axes.5 Then
the tensorb̃ jkl has only components in which all three indi-
ces j , k, andl differ from each other and all components are
equal tob/8p. Hence Eq.~14! reduces to

Px5~4p!21buyz , Py5~4p!21buzx ,

Pz5~4p!21buxy . ~17!

Substituting the displacement field~9! into Eq. ~7! for the
strain tensor yields the polarization~17!. Then the Poisson
equation~16! for w can be solved most easily by a Fourier
transform in thex-y plane, leading to

F ]2

]z2
2q2Gw~z,t !5bCqxqye

2 ivqt@23k le
2k l qz

1 f ~112k t
2!e2k tqz#1c.c. ~18!

The solution of this inhomogeneous differential equation can
be constructed in the usual way. Discarding the exponen-
tially increasing termeqz, one obtains that every mode with a
wave vectorq is associated with an electric potential

wq~r,t !5bj22Cq̂xq̂ye
i ~q•R2vqt !$3k la

21e2k l qz

2 f ~112k t
2!e2k tqz1c1e

2qz%1c.c., ~19!

whereq̂x5q• x̂/q andq̂y5q• ŷ/q. We note that for the geom-
etry under consideration the total number of decay lengths
for the elastic displacements and the electric potential is
three, cf. Ref. 2 for comments on the general case.c1 is a
constant of integration which is determined by the boundary
conditions at the surfacez50. In view of the experiments,
we assume that the surface of the crystal is an electrically
free boundary1 to vacuum. That is, the normal component of
the dielectric displacement, Eq.~16!, and the parallel com-
ponents of the electric field are continuous at the surface,

4p«0Pz2«0
]

]z
wUz51052

]

]z
wU

z520

, ~20a!

]

]R
wUz5105

]

]R
wU

z520

. ~20b!

Note that the boundary conditions~20! differ from the re-
quirementwz5050 for a sample which is covered with a
thin metallic film. An appropriate ansatz for the electric po-
tential outside of the crystal (z,0) is w5c2e

i (q•R2vqt)eqz.
Substituting this ansatz and the general solution~19! for
z.0 into the boundary conditions~20! yields that the con-
stant of integration is

c15
1

2«̄
@23k la

21~11k l«0!1 f ~112k t
2!~11k t«0!

2«0j
2~12 fk t!#, ~21!

where«̄5(«011)/2 is the average of the dielectric constants
of GaAs and the space above the sample surface~vacuum!,
respectively. For large values of«0 , «0@1, this result coin-
cides with the one which follows from the approximate
boundary condition (]/]z)wuz52050, cf. Eq. ~20a!. The
electric potential~19! associated with a single displacement
mode is now completely determined.

Assigning the amplitudesbq andbq
† to the first and second

terms in Eq.~19!, respectively, summing over all wave vec-
tors, and introducing the result into the Hamiltonian~15!, the
piezoelectric vertex@see Eq.~11!# becomes

gq
PA5S \

rvsa
D 1/2bej22

«0
2«̄

q̂xq̂y

3@3k la
21~12k l !2 f ~112k t

2!~12k t!

2j2~12 fk t!#, ~22!

where we setz50 in wq(r,t), Eq. ~19!. Obviously, the stron-
gest piezoelectric interaction occurs when the SAW is propa-
gated along a diagonal direction (q̂xq̂y56 1

2!. In the experi-
ments just this piezoelectric active direction@qi@011## is
chosen. In terms of a nominal timetPA @cf. Eq. ~13!#, the
interaction vertex reads

~gq
PA!25aPA~ q̂xq̂y!

2
\2vs
p0tPA

, ~23!

where all the numerical quantities are absorbed in the pref-
actoraPA .

D. Discussion of the interaction vertices

Let us compare the results for the interaction verticesgq
in the Hamiltonian ~11! with those valid for 3D bulk
phonons~or a fictitious 2D phonon system!. There are two
significant differences. First, the interaction vertices for
SAW’s have a different dependence on the wave vector:
ugSAWu2 exhibits an additional factorq compared to
ugbulku2. This applies to both the deformation potential and
the piezoelectric interaction. Consequently, the use of the
SAW interaction vertices in calculations of various physical
quantities can give rise to results which deviate from those
which are based on the assumption of two- or three-
dimensional phonon systems. Second, for surface phonons,
the deformation potential and the piezoelectric interaction
are in phase. This is in contrast to the case of bulk phonons
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where these vertices areout of phase, i.e., they contribute
additively to ugbulku25ugbulk

DA 1gbulk
PA u25ugbulk

DA u21ugbulk
PA u2; see,

for example, Ref. 22. The absolute value squared ofgq is the
relevant quantity which determines the total electron-phonon
interaction. Clearly, the out-of-phase or the in-phase property
is of importance only when the interaction vertices for the
deformation potential and the piezoelectric interaction are of
the same order of magnitude. This depends on the wave-
length of the SAW becausegPA, Eq. ~22!, does not depend
on the magnitude ofq whereasgDA, Eq. ~12!, increases lin-
early with q. In the case of GaAs, the relative strength of
these two interaction mechanisms is thus
gDA/gPA'q1027cm, where we have used the numerical val-
ues given below. Thus for the range of wavelengths used in
recent experiments on the attenuation of a SAW in GaAs
samples ~see, for example, Refs. 3–6, 8, and 23!, the
deformation-potential scattering can be neglected in com-
parison with the piezoelectric interaction, except for propa-
gation alonĝ 100& directions. This result corroborates very
well with the fact that the experimental findings could be
explained in terms of the piezoelectric electron-phonon cou-
pling alone.5

For easy reference, we summarize the numerical values
for the parameters appearing in the interaction verticesgq .
For GaAs,cl'53105 cm/s, ct'33105 cm/s, and, hence,
a50.36. The corresponding solution of the algebraic
equation20 for j is j'0.9. Substituting these values in Eq.
~8! yieldsa51.4. UsingtDA54 ps,tPA58 ps,\v05421 K
~this corresponds toJ57.4 eV and eb52.43107

eV/cm!, and r55.3 g/cm3 ~see Ref. 22!, we obtain
gq
DA55.6310217q eV cm2 andgq

PA53.7q̂xq̂y10
210 eV cm.

The above calculations are restricted, with respect to the
piezoelectric interaction, to cubic crystals and a particular
crystal cut. It is straightforward, however, to perform calcu-
lations for different crystals or surfaces along the same lines.

III. ELECTRON STATES AND PERCOLATION THEORY

Consider a 2DEG in a strong magnetic fieldB perpen-
dicular to the plane of the 2DEG and in a smooth potential
V(R) ~see, for instance, the paper by Trugman24 and refer-
ences therein!. The potentialV(R) is assumed to vary slowly
on the scale of the magnetic lengthl B5Ac\/eB. Electron-
electron interactions are neglected. The wave function
C(R) of a state with energye is appreciable only in the
vicinity of an equipotential line~EL! of the potential
V(R)5e. The width of the wave functions perpendicular to
the EL isl B . Explicitly, the electron states of thenth Landau
level ~LL ! can be approximated, in the limitB→`, by

C~R![C~u,v !5@TvD~u,v !#21/2xn~v !eiw~u,v !. ~24!

@We have omitted the partC(z) of the wave function which
corresponds to the lowest occupied subband perpendicular to
the plane of the 2DEG.# The orthogonal variablesu and v
parametrize the distances along and perpendicular to the EL,
respectively. The functionxn(v) is the nth harmonic-
oscillator function. Below, we shall restrict ourselves to the
lowest Landau level, i.e.,n50. In Eq. ~24!, w(u,v) is a

gauge-dependent phase, andT is the period associated with
one revolution around the EL of an electron moving with the
drift velocity vD . That is,

T5 R du
1

vD~u,v !
, vD5u¹Vu l B

2/\. ~25!

For the wave function~24! to be single valued,w(u,v) has
to change by an integral multiple of 2p around an EL. This
condition leads to the quantization of the allowed constant-
energy lines. In other words, only a discrete sequence of
EL’s corresponds to the electron eigenstates. Two adjacent
eigenstates enclose an area 2p l B

2 and are, on the average, a
distanceDv. l B

2/L apart, whereL is the length of one of the
EL’s. An important quantity is the difference\vT of the
corresponding eigenenergies, where the frequencyvT is de-
termined by

vT52p/T. ~26!

The quasiclassical description of the electron states that we
have outlined above is a valid approximation when24

l B /r c!1 and m* u¹V~R!u l B
3/\2!1, ~27!

wherer c is the local radius of curvature of the EL, andm* is
the effective electron mass. The first condition is related to
the smoothness of the potential, while the second one pre-
vents the mixing of different LL’s. Additionally, one should
keep in mind that quantum tunneling25 between classical
EL’s is important whenueu is smaller thanD( l B /L)2.

In what followsV(R) is a smoothrandompotential. The
potential is assumed to be Gaussian, with

^V~R!V~0!&5D2f~R/L!, ~28!

whereD5A^V2& defines its amplitude andL its correlation
length. (D determines also the broadening of the LL.! The
zero of energy is chosen such that^V(R)&50, i.e., the en-
ergy e is measured from the center of the lowest LL. Using
D andL, we can rewrite the conditions~27! in the form

l B /L!1 and
D

\vc

l B
L

!1, ~29!

wherevc5eB/cm* is the cyclotron frequency. These con-
ditions are fulfilled, for example, for the following experi-
mental values:B510 T (l B58 nm, vc52p34.2 THz!,
D51 meV andL550 nm. The separation between two con-
secutive LL’s is much larger than their broadening,
\vc /D'60.

As discussed in Ref. 18, most EL’s withe in the tail of
the LL, i.e.,ueu@D, have diametersD which are small com-
pared toL and their lengthL is of the order ofD. When the
energy approaches the center of the LL, the size of the EL’s
grows.26 In particular, forueu.D, L.D.L holds for most
of the EL’s. Such EL’s will be denoted as standard. A further
reduction ofueu does not lead to an increase in the size of
almost all EL’s, i.e., most of them remain standard ones.
However, a minority of the EL’s merges and forms large
extended EL’s with diametersD@L. The structure of these
extended EL’s is described by percolation theory27 when the
energiesueu are near the percolation thresholde50 ~or
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ueu/D!1). The subsequent calculations show that just this
range of energies is of interest justifying the use of the per-
colation picture.

An extended EL has a fractal structure which is reflected
in the relation between its length and diameter27

L.L~D/L!2/a, ~30!

wherea58/7 is the scaling exponent.~For the definition of
the perimeter of discrete percolation clusters and the transi-
tion to continuum percolation see, e.g., Refs. 28 and 26.! An
extended EL can be viewed as a self-avoiding random walk
path with steps of lengthL. Indeed, 2/a57/4 is close to the
value 2 which applies to a simple random walk. The expo-
nent is less than 2 due to the self-avoiding nature of the EL.

The distribution of extended EL’s of a given energye is
described by one scale, the so-called critical diameter

Dc~e!.L~ ueu/D!2n, ~31!

which is considered to be the localization length in the semi-
classical theory. The scaling index isn54/3. EL’s with di-
ametersD@Dc(e) are exponentially rare, while the prob-
ability to find an extended EL with a diameter
L!D!Dc(e) is proportional toD2r, wherer53.

An electron that moves on an extended EL (L@L) expe-
riences different regions of the random potential. During one
revolution, the drift velocityvD(u,v) @see Eq.~25!# follows
the varying slope of the potentialV(R) and takes on many
different values. In other words, the motion on an extended
EL corresponds to an averaging process with respect to
vD(u,v). It is therefore reasonable to introduce an average
drift velocity18 v̄D , defined byT5L/ v̄D , that is assumed to
be independent of the length of the EL under consideration.
The dependence on the energye can be generally excluded
sinceV(R) and¹V(R);vD(R) are statistically independent
for a Gaussian distribution.29 Consequently, the energy-level
spacing~26! associated with the extended EL’s is a function
of L alone and Eq.~26! can be written conveniently in the
form

\vT~L!5\V
L

L , ~32!

where

\V5\
2p v̄D

L
.

D l B
2

L2 . ~33!

The frequencyV gives by order of magnitude the level spac-
ing for standard EL’s since it is associated with the revolu-
tion around an EL withL.L. The corresponding frequen-
cies for the extended EL’s are lower. The lowest frequencies
belong to the longest EL’s which have the critical length
Lc corresponding to the critical diameterDc ~31!. From Eqs.
~30! and ~31!,

Lc~e!.LuD/eu2n/a. ~34!

Below, we shall use the distribution of the EL’s with re-
spect to their lengths. LetL2f e(L)dL be the number of EL’s
with energye and a length betweenL andL1dL. The nor-
malization of this distribution can be found by equating the

total average length of the EL’s in an area of sizeL2 to the
result given in the literature~see Sec. III A in Refs. 29 or 30!

L2E
0

`

dL Lf e~L!5
L2

2L
@2f9~0!#1/2expF2

e2

2D2G , ~35!

wheref is defined in Eq.~28!.
While the distribution of the standard EL’s is not really

known, percolation theory gives the following ansatz27 for
the distribution of extended EL’s:

f e~L!dL5CeS LL D 2[ ~a/2!~r21!11]

GS L
Lc~e! DdL, L@L,

~36!

whereCe is the normalization constant andG(z) is a func-
tion which is exponentially small forz@1 and of order unity
for z!1. HenceG yields a smooth cutoff of the distribution
for L.Lc , whereLc is defined in Eq.~34!. An additional,
energy-independent cutoff appears in a finite sample. Here,
the sizeL of the system restricts the critical diameterDc ~31!
to values such that Dc&L. This translates into
L&L(L/L)2/a, using Eq.~30!. Thus, in a finite system, the
critical length Lc(e) in Eq. ~36! should be replaced by
min$Lc(e),L(L/L)2/a%.

To find the normalization constantCe , let us decompose
the normalization integral~35! into *0

L1*L
` and estimate

both terms of this decomposition. The second integral can be
estimated from the distribution~36! of extended EL’s. With
the value (a/2)(r21)115 15

7 , this integral is determined by
its lower limit L and is of the order (LL)2. Using a reason-
able ansatz for the distribution of standard and short EL’s
~for examplef e(L)5const), the first integral is determined
by its upper limitL and is again of the order (LL)2. Thus
the total normalization integral is also of this order. Up to a
factor of order unity, the normalization constantCe is then
given byL23. The numerical factor can be absorbed inG
leading to the following distribution function for extended
EL’s:

f e~L!dL5
1

L3 S LL D 2[ ~a/2!~r21!11]

GS L
Lc~e! DdL. ~37!

We note that the above estimates confirm that the majority of
EL’s belongs to the standard ones withL.L, since these
EL’s are relevant in the normalization integral.

IV. MATRIX ELEMENTS

Emission and absorption of phonons are associated with
electronic transitions with energy transfer\vq . We saw in
Sec. III that the separation in energy between two consecu-
tive EL’s is given by\vT @Eq. ~26!#. Thus real transitions
are generally restricted to EL’s for whichvT<vq . For the
parameters used above for conditions~29!, the frequency
V, Eq. ~33!, is about 2p310 GHz, whereas the frequencies
of the SAW’s used in experiments vary typically in the range
vq52p31 MHz/1 GHz. We therefore conclude that only
extended EL’s for whichvT5VL/L!V @see Eq.~32!# con-
tribute to the sound absorption. Thus the matrix elements of
the interaction Hamiltonian~11!
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Mi f
6q5

1

L
gqMif

6q[
1

L
gq^ f ue6 iq•Ru i &, ~38!

whereu i & and u f & denote the initial and final wave functions
of the form ~24!, have to be calculated for extended trajec-
tories. This calculation has been performed in Ref. 18. The
matrix element, averaged over all trajectories with the same
periodT and the same energye, reads

^uMif
6qu2&e,T5cq2L2~\V!a

\vT
ue f2e i ua11

for ue f2e i u&\V, ~39!

where c is a numerical factor of order unity. The matrix
element is valid under the assumptions
qL!vD /vs!(qL)23/4, where the exponent34 follows from
(22a)/a with a5 8

7, cf. Eq.~30!. Clearly, these inequalities
imply qL!1.

For ue f2e i u@\V, the matrix element̂uMif
6qu2&e,T is ex-

ponentially small. This implies that transitions occur only
within the lowest LL, and that transitions to other LL’s can
be neglected (\vc@D@\V). It is also assumed that the
initial and final states are close to one another in real space:
In order that (x0) i and (x0) f will overlap, the separation in
real space,Dv, should satisfyDv& l B . The condition
ue f2e i u&\V is even more restrictive. This can be seen in
the following way. As mentioned above, the mean distance
in real space between two adjacent EL’s is given byl B

2/L.
Hence, the distance between the two statesi and f is of order
( l B
2/L)ue f2e i u/\vT . The maximum of this expression is

found for the largest allowed energy difference
ue f2e i u.\V. Using the definition ofvT in Eq. ~32! and the
estimate forV in Eq. ~33!, the corresponding maximum dis-
tance in real space is found to bel B

2/L! l B , cf. inequalities
~29!.

While the sound absorption is due to transitions between
extended states, the calculation of the dielectric function~see
Sec. V! also necessitates matrix elements between standard
EL’s. ~Transitions between a standard EL and an extended
EL are exponentially rare due to their large separation in
space.! Since the majority of the EL’s belongs to the stan-
dard ones, one might even expect that the standard EL’s
dominate the dielectric function. This is not the case, as is
shown below.

Noting that for typical phonon wave vectors~e.g.,
q'104 cm21), one hasqL!1, the matrix element for stan-
dard EL’s withL.L can be approximated by

^ f ueiq•Ru i &5eiq•Ri^ f ueiq~R2Ri !u i &'eiq•Ri iq^ f uR2Ri u i &,
~40!

where the zero-order term in the expansion of the exponen-
tial function disappears due to the orthogonality of the two
statesi and f . The vectorRi denotes some point in the vi-
cinity of the i th EL. The matrix element on the right-hand
side of Eq.~40! is of orderL. Hence, for transitions between
two standard EL’s,

^uMif
6qu2&e,T'q2L2, ~41!

where it is understood that the EL’si and f are very close in
real space and in energy; otherwise the matrix element is

exponentially small. The first condition guarantees the over-
lap of the wave functionsx0

i ( f ) ; see Eq.~24!. The second one
is necessary to ensure that the integrand of theu integration
along the perimeter of the EL’s is not a quickly oscillating
function. Result~41! agrees essentially with Eq.~39! replac-
ing there the energy differenceue f2e i u and the level spacing
\vT by the value\V appropriate for standard EL’s.

V. DIELECTRIC FUNCTION

The matrix element~38! includes the screening of the
electron-phonon interaction due to the lattice@Eq. ~22!#. The
screening arising from the 2DEG can be accounted for by
renormalizing the matrix element

uMi f
6qu2→

uMi f
6qu2

u«~vq ,q!u2
, ~42!

where«(v,q) is the dielectric function of the 2DEG. For a
nearly half-filled LL, the dielectric function can be calculated
assuming linear screening.31 That is, the change in the elec-
tron density resulting from a small applied potential is pro-
portional to the strength of the perturbing potential. Indeed,
one can estimate that for the SAW intensities used in experi-
ments the electron density oscillates only weakly around its
average value; see, for example, Ref. 7. The assumption of
linear screening leads to the general expression

«~v,q!511
2pe2

«̄q
P~v,q!, ~43!

where

P~v,q!5
1

L2 (
iÞ f

f ~e i !2 f ~e f !

e f2e i2\v2 i0
uMif

q u2, ~44!

and «̄ is defined in Eq.~21!.
To evaluateP explicitly, we transform the sum( iÞ f in

Eq. ~44! into ( i, f , where i, f meanse i,e f . Let us first
focus on the case of zero temperature, i.e., all levels below
the Fermi energyeF are occupied,f (e i)51, whereas all lev-
els aboveeF are empty,f (e f)50. Then

P~v,q!5
2

L2 (
i, f

e f2e i
~e f2e i !

22~\v1 i0!2
uMif

q u2. ~45!

In order to yield an appreciable matrix element, EL’s corre-
sponding toe i and e f must be close~in real space and in
energy! to an EL withe5eF . This Fermi EL~FEL! need not
to be an electron state. We can therefore represent the sum-
mation over states in Eq.~45! as a sum over EL’s near a
certain FEL and then sum over all FEL’s. In the first sum the
states are distributed nearly equidistantly with an energy
spacing\vT'const, cf. below. In the summation over FEL’s
we may first sum over the FEL’s with the same periodT.
Since these EL’s are situated in different regions of the ran-
dom potential, this summation is equivalent to an average of
the matrix element over FEL’s with the same period. Thus
the averaged matrix elements~39! and~41! for extended and
standard EL’s, respectively, can be substituted in Eq.~45!.

We begin with the contribution of the extended EL’s to
P. As we shall see, this is the dominant contribution. It is
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easy to see that the energy spacing for the relevant states
near a fixed FEL is given by the value of\vT at the Fermi
energy. To this end, we have to calculate the change invT
arising from a change in the energy of the EL by at most
\V @see Eq.~39!#. Since the frequencyvT for the extended
EL’s is merely a function of L, one has
DvT /vT.DL/L.DA/A, whereA is the area enclosed by
the EL. To obtain the second equality, we have used
L.L(A/L2)l, with27 l5 12

13. The change in the enclosed
area is given by 2p l B

2V/vT , and thus DvT /vT.
( l B
2/L2)(L/L)1/l21!1. Consequently, the sum over EL’s

which are near a given FEL can be simplified by introducing
an explicit representation for the energies

e f2e i5~m2n!\vT . ~46!

The integersm and n are subject to the restrictions
um2nu&V/vT @see Eq.~39!# andm2nÞ0. Using represen-
tation ~46! and matrix element~39!, the double sum over
states near one FEL in Eq.~45! can be reduced to a sum over
s5m2n, and one obtains

(
i, f

1

~e f2e i !
22~\v1 i0!2

\vT
ue f2e i ua

5S x

\v D a11

S~x!,

~47!

wherex5v/vT and

S~x![(
s51

`
1

s22~x1 i0!2
1

sa21 . ~48!

We have replaced the upper limit in the sum by infinity,
since the relevants are of orderx!V/vT , and the above-
mentioned restriction forum2nu can be neglected. In other
words, the EL’s which contribute significantly are separated
in energy by\v.

For extended states, using Eq.~32!, x5(v/V)(L/L), and
hence the contribution toP(v,q) from a FEL is a function
of its length alone. As a result the totalP(v,q) can be
written as a sum over all lengths. Using the distribution func-
tion f e(L) given in Eq.~37!, we find

P~v,q;eF!52c
~qL!2Va

\va11 E dLf eF
~L!xa11S~x!

52c
q2

\v
H~yF!, ~49!

where

yF5
VL

vLc~eF!
5u

eF
ev

u2n/a and ev5DS v

V D a/2n

.

~50!

In a finite system of sizeL, yF has to be replaced by the
maximum ofyF andyL[(V/v)(L/L)2/a, see the discussion
following Eq. ~36!. Using the explicit form for the distribu-
tion function f with r53 yields

H~y!5E
0

`

dx G~xy!S~x!. ~51!

The quantityev has a very intuitive interpretation: it is the
energy at which the energy level spacing\vT(Lc(e)) for an
EL with the critical length is equal to the phonon energy
\v of the SAW. In other words,ev determines the absorp-
tion threshold in the sense that real transitions occur only for
ueFu&ev . This is reflected in the imaginary part ofP, cal-
culated below.

The real and imaginary parts of the functionH are given
by

ReH~y!5E
0

`

dx G~xy!(
s51

`
1

sa21

P

s22x2
, ~52a!

ImH~y!5
p

2(
s51

`
1

sa G~sy!, ~52b!

whereP denotes the principal part of the integral. The be-
havior ofH(y) in an infinite system is shown in Fig. 1. The
y axis in Fig. 1 has been scaled in terms ofy3/7 correspond-
ing to the dependence ofH on the Fermi energy; see Eq.
~50!. The limiting behaviors for large and small arguments
are given by

ReH'z~11a!/y51.5/y, ImH'~p/2!G~y!, y@1 ,

ReH.ya21, ImH.12ya21, y!1 ,

ReH50, ImH5~p/2!z~a!511.9, y50,
~53!

FIG. 1. The real and imaginary parts of the functionH(y) de-
fined in Eqs.~52!. G(z) was replaced by 2/@exp(z)11#. The par-
ticular choice of the functionG has no influence on the qualitative
behavior ofH when the cutoff introduced byG is smooth enough to
wash out all discrete features of the sums in Eqs.~52!. The follow-
ing figures are based on the curves ofH given here.
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wherez(x)5(s51
` s2x. In order to discuss the analytic ex-

pressions ofH(y) we note that the sum in Eq.~52b! and the
integral in Eq.~52a! are truncated ats or x of order 1/y, as
implied byG, Eq.~36!. The imaginary part~52b! is therefore
exponentially small;G(y) for y@1, and of order unity in
the opposite case. Thus, the sum overs increases with de-
creasingy, and approaches its maximum asy goes to zero.
In a finite system,y is restricted from below byyL imposing
an upper limit 1/yL on the sum. This leads to a smaller maxi-
mum value of ImH. As for the real part ofH(y), we are able
to study the limiting cases. For bothy@1 and y!1,
ReH(y) goes to zero according to a power law. In the inter-
mediate regiony&1 but noty!1, ReH is slowly varying
and of order unity. In a finite system, the real part approaches
a small but finite value asy goes toyL .

Up to this point, the evaluation ofP, Eq. ~44!, has been
performed for zero temperature,T50. The calculation of
P for finite temperatures such thatT@\v can be done along
the same lines. Therefore, we give only a brief description.
The calculations forT50 have shown that the real and
imaginary parts ofH reach a value of order unity when the
Fermi energy becomes of orderev . This energy range cor-
responds to the contribution of EL’s with a length
Lv[Lc(ev).L(V/v), and an energy-level spacing of or-
der\v to the transition processes. Therefore, these extended
EL’s make the dominant contributions toP, Eq. ~44!. This
remains true for finite temperatures. However, now statesi
and f need not be in the immediate vicinity of the FEL’s.
Instead, we can fix some initial statei and consider transi-
tions to final states above,e f.e i , and below,e f,e i , the
chosen one~essentially in a rangeT aroundeF). To do this,
we use representation~46!, wherevT now refers to the en-
ergy e i . Expanding the Fermi distributionf (e f) in Eq. ~44!
arounde i leads to2] f (e i)/]e i ~for the relevant transitions,
ue f2e i u is much smaller thanT). The sum over the energies
e f is reduced to twice expression~48!. Hence

P~v,q!52cS qL

L D 2~\V!a(
i

S 2
] f

]e i
D ~\vT!

2aSS v1 i0

vT
D .

~54!

The sum over the initial statesi comprises a summation over
all EL’s with the same energye i but with different lengths
L, and a summation overe i . The first sum can be again
replaced by an integral using the distribution function
f e(L), Eq.~37!. Then the order of summation and integration
is inverted to obtain

(
e i

E
0

`

dL→E
0

`

dL (
ue i u&ec~L!

→E
0

`

dLE
2`

` de i
\vT~L!

.

~55!

The condition ue i u&ec(L) ensures that only those initial
states which possess a critical lengthLc equal to or larger
thanLc(e i) are included. Hereec(L).D(L/L)a/2n; see Eq.
~34!. However, the dominant contributions to(e i

follow
from a particular group of EL’s, rendering this condition
unnecessary. Taking also into account that the relevant EL’s
have an energy-level spacing which is small compared to the
thermal energy\v/T!1, and that the number of states per
energy interval is given by (\vT)

21, the sum overe i can be

replaced by the integral given on the right-hand side of Eq.
~55!. The limits of integration have been extended with neg-
ligible error. The resulting integral overL coincides with the
right-hand side of Eq.~49! except for the value of the en-
ergy: instead of the fixed Fermi energyeF , there appears
now the variablee i . Thus we finally arrive at

P~v,q!5E
2`

`

deS 2
] f

]e DP~v,q;e!, ~56!

where we have dropped the indexi of e i . This equation
shows that a finite temperature leads to an average of the
T50 result over energies within an interval of orderT
around the Fermi level. Since the functionP(v,q;e) varies
on the scaleev , finite-temperature effects are negligible if
T!ev . This is the condition for Eq.~49! to hold. For
T*ev , the width ofP(v,q) as function of the Fermi energy
increases with temperature, i.e., the behavior ofP deviates
substantially from theT50 result. In the following we as-
sumeT,ev .

Substituting theT50 result forP(v,q) @Eq. ~49!, which
is based on transitions between extended EL’s# in Eq. ~43!
yields, for the dielectric function,

«~v,q!511
2pe2

«̄

q

\v
2cH~yF!, ~57!

and, for the renormalization of the matrix element in Eq.
~42!,

«~vq ,q!511
e2

«̄\vs
4pcH~yF!. ~58!

The contribution to the dielectric function resulting from
standard EL’s is derived below; see Eq.~59!. The compari-
son of that result with Eqs.~57! and ~58! shows that the
dielectric function is essentially given by the contribution
due to extended EL’s, whereas the influence of transitions
between standard EL’s can be neglected. We therefore con-
sider Eq.~58! as the final result for«(vq ,q).

The dielectric function~58! renormalizes the matrix ele-
ment~42! via the expressionu«(vq ,q)u2. The dependence of
u«u2 on the Fermi energy is given byuHu2, Eqs. ~52!. The
latter is of order unity forueFu&ev and decreases for larger
values of the Fermi energy according to the power law
(ev /ueFu)4n/a, 4n/a5 14

3 . Thus the magnitude of«, Eq. ~58!,
is determined by the large dimensionless parameter
e2/ «̄vs\ ('110 for GaAs!. This is the ratio of the electro-
static energy of two electrons a distanceq21 apart and the
energy of a surface phonon (e2q/ «̄)(\vq)

21.
Let us now show that the contribution of the standard

EL’s to the dielectric function is negligible. We start afresh
from expression~45! for P, substituting the matrix element
~41! for transitions between standard EL’s. The energy dif-
ference between two standard EL’s is of order\V, Eq. ~32!,
i.e., much larger than\v. The latter can thus be neglected in
comparison withe f2e i in Eq. ~45!. Then the imaginary term
i0 can be dropped, as no real transitions can occur. The sum
over all final statesf leads merely to a factor of order 1,
since only a few EL’s in the immediate vicinity of the initial
EL contribute to the matrix element~41!. The remaining sum
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over the initial states counts the standard EL’s which are just
below the Fermi level. The number of these EL’s is essen-
tially the number of all FEL’s, because the number of very
short (L!L) and very long (L@L) EL’s is negligibly small
for Fermi energies near the center of the LL. The required
quantity may therefore be deduced from Eq.~35!, which
states that the total length of all EL’s is, up to a numerical
factor, equal toL2/L5L(L2/L2). Since the mean length of
all EL’s is of orderL, the number of FEL’s in a system of
sizeL is of orderL2/L2.

Collecting these results, we obtain the contribution due to
standard EL’s,

P~v,q!.
q2

\V
and «~v,q!21.

e2q

«̄\V
. ~59!

It can be shown that this estimate is valid independent of the
ratio \V/T as long as max$\V,T%!D. The comparison of
Eqs.~59! and~57! shows that the contribution of the standard
EL’s to the dielectric function isv/V times smaller than the
term resulting from the extended EL’s.

It is instructive to consider briefly an alternative deriva-
tion of the dielectric function which reproduces correctly the
order of magnitudeu«u.e2/ «̄vs\. This derivation relies on
the fact that the motion of an electron on a fractal trajectory
can be considered as a self-avoiding random walk with
single steps of lengthL. In fact, the relation between the
diameter and the length of an extended EL is similar to what
one would expect for a simple random walk; cf. Eq.~30!. For
the diffusive regime, the density correlatorP, Eq. ~44!, is
given by

P~v,q!5gF
Dq2

2 iv1Dq2
, ~60!

whereD is the diffusion constant andgF the density of states
at the Fermi level. In our case, we can assumeD.vDL. The
density of states of the LL is given bygF.(D l B

2)21 for
eF!D. Substituting these quantities into Eq.~43! yields

«~vq ,q!21. i
e2

«̄vs\
, ~61!

where the termDq2 has been neglected compared to2 ivq
in the denominator of the density correlator. Interestingly,
this approach predicts an essentially imaginary result for
«21 which agrees with the behavior of Eq.~58! for
ueFu→0, i.e., in the case when some the EL’s become arbi-
trarily long.

VI. SURFACE ACOUSTIC-WAVE ATTENUATION

The intensity of the SAW decreases due to absorption of
phonons by the 2DEG with the distancex as exp(2Gx). The
attenuation coefficientG can be expressed in terms of the
sound velocityvs @cf. Eq. ~4!# and the life timet(q) as
G5„vst(q))

21, wheret(q) is defined by the rate equation

Ṅq52
1

t~q!
Nq . ~62!

HereNq is the phonon occupation number. The net change in
Nq is given by

Ṅq5
2p

\u«~vq ,q!u2(iÞ f
f ~e i !„12 f ~e f !…@ uMi f

2qu2~Nq11!

3d~e i2e f2\vq!2uMi f
1qu2Nqd~e i2e f1\vq!#,

~63!

where f (e) is the Fermi distribution function andMi f
7q are

the unscreened matrix elements~38! for emission or absorp-
tion of a phonon with wave vectorq. For a SAW induced by
interdigital transducers, the phonon occupation numberNq is
macroscopically large. The difference betweenNq11 and
Nq is therefore negligible. Combining Eqs.~62! and ~63!
yields

1

t~q!
5

2p

\u«~vq ,q!u2 (
iÞ f

uMi f
q u2@ f ~e i !2 f ~e f !#

3d~e i2e f1\vq!. ~64!

Replacing the d function by the imaginary part of
2p21@e i2e f1\vq1 i0#21, we find

1

t~q!
5
2

\

ugqu2

u«~vq ,q!u2
ImP~vq ,q!vq.0 , ~65!

whereP is defined by Eq.~44!.
Using the zero-temperature results forP and the dielec-

tric function, Eqs.~49! and~58!, respectively, as well as the
relation between the lifetimet(q) and the attenuation coef-
ficient, we find

G5GqF~yF!, yF5ueF /evu2n/a, ~66!

with

Gq5
1

4p2c ImH~0!
ugqu2

q«̄2

e4

and

F~y!5ImH~0!
ImH~y!

uH~y!u2
, ~67!

where the term 1 in expression~58! for « has been neglected.
The functionF(y) is defined such thatF(0)51 @since
ReH(0)50, cf. Eqs.~53!#, i.e.,Gq coincides with the attenu-
ation coefficient at the center of the LL,G(eF50)5Gq . We
begin with the discussion of the magnitude ofGq and con-
sider the functionF(y) afterwards.

Substituting expressions~13! and ~23! for the interaction
vertices in Eqs.~67! yields

~Gq!DA5
aDA

4p2c ImH~0!

q3

vsp0
3tDA

S «̄vs\
e2 D 2

52.6310221q3 cm2, ~68a!

~Gq!PA5
aPA

4p2c ImH~0!

q

vsp0tPA
S «̄vs\
e2 D 258.031026q.

~68b!

That is, despite the fractal structure of the extended EL’s on
which these results are based, the frequency dependence of
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the magnitude ofG is simple and is not characterized by
scaling exponents. Moreover,Gq is independent of the mag-
netic field and the parametersL andD of the random poten-
tial. The numerical values on the right-hand side of Eqs.~68!
have been calculated replacing the parametersp0 ,tDA , etc.
by their values given in Sec. II, and assumingc51. For a
finite system, ImH(0) @see Eqs.~53!# has to be replaced by
ImH(yL),ImH(0); see thediscussion following Eq.~50!,
leading to an increase of the attenuation coefficient at the
center of the LL.

The functionF(yF) in Eq. ~66! accounts for the depen-
dence ofG on the Fermi energy~or the filling factorn̄ or the
magnetic fieldB). This dependence is determined by the
ratio of ueFu and the energyev5D(vq /V)a/2n as follows.
The absorption of the SAW is very small when the Fermi
energy is far from the center of the LLueFu@ev , i.e.,
yF@1. A strong increase ofF and, hence, ofG occurs when
ueFu is reduced toueFu'ev . In this region the number of
occupied extended EL’s with an energy-level spacing
\vT(L)&\vq , Eq. ~32!, undergoes the change from an ex-
ponentially small quantity to some power-law function of
L21. ~Nevertheless, the number of these states is negligible
compared to the majority of EL’s withL.L.! A further rise
of the absorption is prevented by the enhanced screening
;(ImH)2 at ueFu!ev , which even reducesG as the Fermi
energy goes to zero. This results in a shallow double-peak
structure with a cusp at the center of the LL. In fact, if we
use the limiting forms ofH(y!1), Eqs. ~53!, we find
dG/deF.sgn(eF)/ueFu2n(22a)/a. We believe, therefore, that
the double-peak structure ofG(eF) is independent of the
functionG(z) used to describe the exponential cutoff of the
extended EL’s; see the discussion following Eq.~36!. The
maxima ofG(eF) are located near6ev ; see Fig. 2. It is
clear, however, that such a particular feature as the cusp has
to be considered with caution, for it is exclusively based on
the quasiclassical model for the electron states. Quantum
tunneling between critical trajectories may modify this re-
sult. It is worth noting that the tunneling band of width25

V @Eq. ~33!# arounde50 @cf. the discussion after Eq.~27!#
is narrow compared to the characteristic energy rangeev ;
indeed,V/ev'( l B /L)Av/D!1. One may speculate that
the absorption coefficient is only weakly affected by quan-
tum tunneling. Indeed, most of the EL’s contributing toG
cannot be connected by low saddle points with transmission
coefficients of order unity, and so quantum tunneling in-
between them is insignificant.

To simplify the estimates, we rewriteev in the form

ev50.3 meVS D

1 meVD
4/7S vq

2p31 GHzD
3/7

3S L

50 nmD 6/7S B

5 TD
3/7

. ~69!

As discussed in Sec. V, the zero-temperature result~49! for
P remains valid for finite temperatures such thatT!ev .
This is also the condition for Eq.~66! to hold. Using the
values forD andL given above andvq52p3100 MHz, we
obtain ev'1 K. For temperatures of the order of or larger
than ev , the attenuation coefficient is found from Eq.~65!
using expression~56! in the calculation of the dielectric

function and ImP. Two results forG at finite temperatures
are shown in Fig. 2. With increasing temperature the mini-
mum of the attenuation near the center of the LL is reduced
and the absorption peak becomes broader. The increasing
magnitude ofG results from the significant broadening of the
imaginary part ofP and the reduced screening; see Eq.~65!.
ForT*ev , the magnitude ofG and the width of the absorp-
tion region are strongly temperature dependent.

The dependence ofG on the SAW frequencyvq is shown
in Fig. 3. The curve is calculated for the low-temperature
regimeT!ev and the piezoelectric electron-phonon interac-
tion. The attenuation coefficient has been written in the form
G5GF(vq /vF)F(vF /vq), with GF5(Gq /q)(vF /vs),
vF5VueF /Du2n/a. ~Note thatGq /q does not depend on fre-
quency.! The Fermi energy is fixed to some valueeF!D,
and defines the smallest level spacing\vF for extended
EL’s. Consequently,vq.vF marks the onset of strong SAW
attenuation. For high frequenciesvq@vF , the attenuation
coefficient increases linearly with frequency. This is just the
behavior predicted by the classical description of sound ab-
sorption for piezoelectric interaction; see Eq.~74! below.

For T!ev , the width of the absorption region is deter-
mined by ueFu.ev . This is merely the condition for real
transitions to occur, and is not associated with the interaction
verticesgq nor is it a consequence of the matrix element~39!
whose derivation is based on the particular assumptionn̄'
1
2. We believe, therefore, that this result applies to other half-
integer filling factors n̄ as well. To express the relation
ueFu.ev in terms of the filling factorn̄52p l B

2n, we write
the electron densityn as an integral over the Gaussian den-
sity of states,

g~e!5~2p!23/2~ l B
2D!21exp~2e2/2D2!, ~70!

FIG. 2. The attenuation coefficientG, Eq. ~66!, as a function of
the Fermi energy near the center of the lowest Landau levele50.
The three curves correspond to the following temperatures:T50
~solid line!, T50.15ev ~broken line!, andT50.3ev ~dotted line!.

FIG. 3. The attenuation coefficientG, Eq. ~66!, as a function of
the SAW frequencyvq for a fixed Fermi energy.
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and the Fermi distribution functionf ,

n̄~eF!5
1

A2pD
E

2`

`

de e2e2/2D2
f ~e2eF!, ~71!

and expand around the center of the LL with respect to
ueFu/D!1. ForT!D, this gives

Dn̄~eF!5 n̄~eF!2 n̄~0!5
eF

A2pD
. ~72!

Then the width of the absorption region is obtained as

uDn̄u.S vq

V D a/2n

.S qL
vs

v̄D
D a/2n

. ~73!

The exponent is given bya/2n5s/l5 3
7'0.42. This value

agrees with the exponentk which determines the shrinking
of the peaks in the longitudinal conductivity32,15 sxx as the
temperatureT goes to zero,uDn̄u;Tk. In our case the broad-
ening of the absorption peak arises from the frequencyvq .
In this sense,\vq may be considered as an effective tem-
perature which replaces the real temperatureT. Frequency
scaling in the integer quantum Hall regime has been ob-
served in microwave experiments.33 For spin-split LL’s, the
width of the peaks in Resxx corresponding to different LL’s
was found to scale asuDn̄u;vk, with k'0.41.

Due to the drift velocityv̄D , the width ~73! depends
weakly on the absolute value of the magnetic field. In terms
of the filling factor, Eq. ~73! can be written in the form
uDn̄u'(nL2\vq /D)

a/2n( n̄)2a/2n. Thus, uDn̄u is smaller for
higher ~half-integer! filling factors n̄. The width of the ab-
sorption region scales with the phonon wave vector as
uDn̄u;qa/2n. In contrast, in the fractional quantum Hall re-
gime, the width increases linearly withq for n̄5 1

2. This lin-
ear dependence is derived within the composite fermion
model14 and is well confirmed experimentally8,9.

The absorption of SAW’s in the integer quantum Hall
regime has also been studied in Ref. 15. These authors first
determine the ac conductivity of the 2DEG, which is then
related to the attenuation coefficient using the equation

G5
1

2
Keff
2 qs8

~11s9!21~s8!2
, ~74!

where Keff
2 represents the effective piezoelectric coupling

constant @56.431024 for GaAs ~Ref. 5!# and
s85Resxx(vq ,q)/sM , s95Imsxx(vq ,q)/sM, and sM5
vs«̄/2p. @Note that Eq.~74! can be obtained from Eq.~66!
writing the dielectric function of the 2DEG in the form
«(v,q)511 isxx(vq ,q)/sM .# Assuming that usxxu!sM
for sufficiently high frequencies,15 Eq. ~74! reduces to
G(vq ,q);q Resxx(vq ,q). That is, in this case, the sound
absorption and the longitudinal conductivity are related such

that the width and the shape of their peaks as function ofn̄
are identical. The calculation of the ac conductivity in Ref.
15 is based on the concept of variable-range hopping be-
tween pairs of localized states. For\vq@T, the absorption
of SAW’s is due to resonant phononless transitions of the
electrons from one site of a pair to the other. This mecha-
nism is strongly affected by the electron-electron
interaction.15 The width of the absorption peak at half-
integer filling factors was found to be

uDn̄u.~qj0!
1/g, ~75!

where g'2.3 is the scaling exponent of the localization
length

j.j0un̄2 n̄~0!u2g, ~76!

andj0 is assumed to be of the order of the magnetic length.
@Note the differences between the last equation and the semi-
classical definition of the localization length in Eq.~31!.#
The result of Ref. 15, Eq.~75!, agrees with our result, Eq.
~73!, in both the numerical value of the exponent and the
dependence onq. However, the widthuDn̄u in Eq. ~75! ex-
hibits a different dependence on the magnetic field, namely,
uDn̄u;B21/2g, in contrast touDn̄u;Ba/2n predicted by Eq.
~73!. The authors of Ref. 15 did not give a definite descrip-
tion of the shape of the absorption peak, but rather suggested
two scenarios which eventually lead to a flat peak with a
broad maximum or a double peak, respectively. Our results
support the latter one; see Fig. 2.

VII. SUMMARY

We have calculated the dielectric function«(v,q) and the
attenuation coefficientG of a surface acoustic wave for a
2DEG in a smooth random potential~with amplitudeD and
correlation lengthL) and a strong magnetic field corre-
sponding to a filling factorn̄ close to1

2. Both quantities be-
come independent of temperature as the temperature is re-
duced below a frequency-dependent valueev5
D(v/V)a/2n, wherea/2n5 3

7, V52p v̄D /L, and v̄D is the
average drift velocity of the electrons on the equipotential
lines of the random potential. In this low-temperature, high-
frequency regime~e.g.,ev.1K for v52p3100 MHz!, Im
«(v,q) and G are only appreciable wheneF is within a
narrow region around the center of the Landau level, and Re
«(v,q) decreases according to a power law with increasing
distance from the center. In particular, the attenuation of the
SAW is exponentially small except for a region whose width
uDn̄u;va/2n. This scaling is nonuniversal becauseuDn̄u de-
pends on the absolute value of the magnetic field; see Eq.
~73!. The dependence ofG on the Fermi energy~or the filling
factor! yields a double peak which is centered at the filling
factor n̄5 1

2; cf. Fig. 2. The minimum of the absorption at
n̄5 1

2 results from the enhanced screening due to the 2DEG,
i.e., from the large magnitude of the dielectric function
u«(vq ,q)u.e2/ «̄vs\, where«̄ is the average of the dielectric
constants of GaAs and vacuum, andvs is the sound velocity.
The double peak inG is most pronounced for an infinite
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system where the critical diameterDc , Eq. ~31!, of the equi-
potential lines of the random potential is allowed to take on
arbitrarily large values. A real system of sizeL restricts the
diameter toDc&L, resulting in an increase of the attenuation
coefficient near the center of the Landau level. While this
effect is weak for a macroscopic sample size, a similar but
more pronounced effect may arise from a nonuniform elec-
tron density associated with a spatially varying filling factor.

In the high-temperature, low-frequency regime, the di-
electric function decreases with rising temperature, leading
to an increase of the magnitude of the attenuation coefficient

and a significant increase of the width of the absorption re-
gion aroundn̄5 1

2.
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