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Surface acoustic-wave attenuation by a two-dimensional electron gas in a strong magnetic field
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The propagation of a surface acoustic wg8A&W) on GaAs/ALGa; _,As heterostructures is studied in the
case where a two-dimensional electron ¢ZI3EG ) is subject to a strong magnetic field and a smooth random
potential with correlation lengtih and amplitudeA. The electron wave functions are described in a quasi-
classical picture using results of percolation theory for two-dimensional systems. In accordance with the
experimental situation) is assumed to be much smaller than the sound wavelength.2This restricts the
absorption of surface phonons at a filling facﬁe% to electrons occupying extended trajectories of fractal
structure. Both piezoelectric and deformation potential interactions of surface acoustic phonons with electrons
are considered and the corresponding interaction vertices are derived. These vertices are found to differ from
those valid for three-dimensional bulk phonon systems with respect to the phonon wave-vector dependence.
We derive the appropriate dielectric functiefw,q) to describe the effect of screening on the electron-phonon
coupling. In the low-temperature, high-frequency regifeA (o A/v )", wherew, is the SAW frequency
and vp is the electron drift velocity, both the attenuation coeffici€éhtand ¢(w,q) are independent of
temperature. The classical percolation indices giV2v=3/7. The width of the region where a strong absorp-
tion of the SAW occurs is found to be given by the scaling |M~(qu/vD)“’2”. The dependence of the
electron-phonon coupling and the screening due to the 2DEG on the filling factor leads to a double-peak
structure forl’(v). [S0163-182(06)06739-7

. INTRODUCTION netic lengthlg=\ch/eB and the localization length &.
While qlg<<1 is always fulfilled under typical experimental

Surface acoustic wavéSAW's) (Refs. 1 and Pprovide a  conditions, the localization length can be much larger than
useful tool for experimental studies of the two-dimensionalthe surface acoustic wavelengthrZy.
electron ga42DEG) in GaAs/Al,Ga; _,As heterostructures. A series of experiments® has shown a reasonable agree-
In particular, SAW'’s have been used in recent years in iniment with the predictions of classical models in a wide range
vestigations of the integ&l’ and the fractiondr® quantum  of frequenciesn, and magnetic-field strengths. On the other
Hall regimes. Due to the quantum Hall effect, the interactionhand, some deviations have also been detected. For example,
of the SAW with the charge carriers can lead to strong osdeviations of the SAW attenuation from classically predicted
cillations in the attenuation and the velocity of the soundbehavior with increasing frequency have been repotted.
waves as function of the applied magnetic field. QuantunThese were attributed to nonlocal effects of the interaction
oscillations have also been reported for the sound-inducedetween the SAW and the 2DEG which should occur when
currents and voltage's:’ the sound wavelength becomes of the order of or smaller

Previous theoretical descriptions of these experimentthan a characteristic length scale of the electron gas. In the
have been based essentially on classical models for thfeactional quantum Hall regime, an anomaly in the absorp-
propagation of SAW'$1'? According to these models, tion coefficient for filling factorv=3 was found® This
which are originally derived for systems in the absence of aranomaly was discussed in the framework of the composite
applied magnetic field, the sound attenuation is expressed fiermion model of Ref. 14. According to this approach, elec-
terms of the electrical dc conductivity. This relation is de-trons are replaced by composite fermions moving in an ef-
rived under the assumptions thgt<1l and wy7<<1 (local  fective magnetic field of zero averagat v=3). Then the
regimg, whereq and w, are the wave vector and the fre- sound absorption due to these particles is described by clas-
guency of the sound, respectively, dndnd r are the mean sical formulas, except that the dc conductivity is replaced by
free path and the scattering time of the conduction electrongshe wave-vector-dependent nonlocal conductivity which,
respectively. If gclassical magnetic field is applied, the first however, represents a very important differefeee Ref. 14
condition has to be replaced lyR.<1, whereR. is the for details.
cyclotron radius? It is much more difficult, however, to In this paper we study the propagation of SAW'’s in the
determine under which conditions the above-mentionednteger quantum Hall regime. The calculation of the SAW
theories are valid when the 2DEG is subject to a quantizingttenuation is carried out for filling factors negr and is
magnetic field. In this case, the electron system is charactebased on a percolation approach to the electronic states in a
ized by (at least two more length scales, namely, the mag-very strong magnetic field. From this point of view we may
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anticipate a nonlocal behavior of the attenuation arising frontrystal surfacé® This implies that it is by no means clear
large characteristic length scal@sg., the size of a percola- that the interaction of a SAW with the 2DEG is described
tion cluster>q~1) inherent in that framework. The effect of well by the formulas which are valid in the case of bulk
electron-electron interaction is taken into account by thephonons. In fact, we find that the interaction vertices appear-
screening of the electron-phonon coupling. The same proghg in the general electron-phonon interaction Hamiltonian
lem has also been studied in Ref. 15. These authors calclsee Eq(11)] differ from those for 3D phonons not only by
lated the nonlocal conductivity due to variable-range hop/umerical constants but also in the phonon wave-vector de-
ping between pairs of localized states. Then, in the spirit oP€ndence and the relative phase between the deformation

the classical description of sound absorption, this conductivPetential and the piezoelectric interactions.

ity is related to the SAW attenuation coefficient. A compari- The p;p(_ar '3 orgdagl_zed as (;O_“OVSVS' Tlrllel mtSeractlllclnn Ver(;"
son with our results will be given in Sec. VI. ces are derived and discussed In sec. 1. 1 Sec. Tl We de-

scribe the quasiclassical electron states of a 2DEG in a strong
¥nagnetic field and a random potential We show that the

- . . . . absorption of the SAW and the dielectric function depend
The pot_entlal can be charactenz_ed by its ampllmda_nd Its cruciaIIDIy on the occupation and the properties of elerc):tron
correlation lengthA. The amplitude also determines the gi51e5 which correspond to very long EL's. The structure of
width of the Landau levels. The correlation length is of theihese EL’s is deduced from 2D percolation theory. The ma-
order of the spacer layer that separates the 2DEG from thgjx elements for transitions between different electron states
dopant layers. Under the assumption tha& A is a quasi-  are given in Sec. IV. The screening of the electron-phonon
classical description of the electron states can be appliegnteraction due to the 2DEG is accounted for by a dielectric
That is, one considers the drift motion of the guiding centefunction e(wq,0) which is calculated in Sec. V. Based on
of an electron on the equipotential linéSL's) of V sepa- these results, the SAW attenuation coefficient is obtained in
rately from the rapid motion relative to . The drift veloc-  Sec. VI. Its dependence on the filling fact@r the Fermi

ity is given byvp=c|VV|/eB. Using|VV|=A/A, the drift  energy, the SAW frequency, and the temperature are dis-
velocity can be estimated to log=13A/%A. Depending on cussed. A short summary is given in Sec. VII.

the ratio between the correlation length and the sound

strong magnetic field and a smooth random potentl

wavelength, two regimes can be distinguished. a1, II. INTERACTION HAMILTONIANS
the electron-phonon interaction can be considered locally ne- . .
glecting the global structure of the EL'&!7 (For single- A. Displacement field

phonon absorption and emission processes to occur, one hasTo simplify the calculations we use the following assump-
also to require that the sound velocity is smaller than the tions. Since the SAW wavelengthr2q is much longer than
drift velocity. This is usually referred to as theef@nkov the lattice constant, the crystal can be approximated by a
condition!® This regime is valid for, e.g., thermal continuous medium. Its elastic properties are assumed to be
phonons® However, SAW’s have a much larger wave- isotropic. Furthermore, we disregard the fact that the GaAs
length, and hencgA <1 is typically fulfilled. In this case, substrate is coated with layers which differ slightly in their
the local absorption and emission of phonons is exponerelastic properties. The overall thickness of these ldyers
tially small, and the EL as a whole has to be considered. 1td=100 nm is much smaller than the wavelength of sound. It
becomes important that the motion of the guiding center ofhas been showrthat for qd<1 the deviations of the wave

an extended EL(with a length>A) resembles a random propagation resulting from a thin overlayer coating an homo-
walk, with a diffusion coefficienD=vpA. Since the ratio geneous substrate can be accounted for by a systematic ex-
vplvs, for real systems, is not very different from unity, one pansion in this small parameter. In our cagé<101, i.e.,
deals with the Iimitwq>Dq2 of this diffusion procesg.To  these corrections are indeed negligible. Thus we end up with
be precisé® the parametev /v has to lie in the range the standard problem of sound waves which are propagated
gA<vp/vs<(qA)~%4] Indeed, forB=10 T (Ig=8 nm), in an isotropic medium bounded by a plafié.(Effects re-
A=1 meV,A~50 nm,q=10* cm™!, andvs~3x10° cm sulting from the anisotropy of the lattice become important
s~ ! we find gA=0.05 andvp~0.7v. It is this particular for qd~1; see Ref. 2].

(diffusive) regime which will be addressed in this paper. In  Let the surface be in the-y plane and the medium in the
the same regime, the electron lifetime and the energy relaxqalf-spacez=0. The longitudinal and transversal compo-
ation time due to interaction with 3D bulk phonons havenents of the displacement field(r,t), r=(x,y,z)=(R,z)

been calculated in Ref. 18. obey the wave equations
The quantum-mechanical calculation of the attenuation
coefficient (as well as of other quantities associated with &Zuu 2
SAW’s) requires a knowledge of the Hamiltonians which 2 CLAu =0, @

describe the interaction of electrons with acoustic surface

phonons. As far as we know these interaction Hamiltoniangvherec, ; are the corresponding sound velocities. By defini-
have not yet been derived. Instead, many theoretical investtion, curlu;=0 and diw;= 0. Surface waves are composed of
gations have addressed the interaction of 2D electrons witparticular solutions of Eqg1) that decay exponentially with
3D (bulk) or 2D phonon systems. The latter one, a singleincreasing distance from the surface. In addition, these solu-
layer of vibrating atoms, represents merely a theoretical contions have to satisfy the boundary conditions at the free sur-
struction. Three-dimensional phonons do not provide an apfacez=0, namely, the normal components of the stress ten-
propriate approach when the 2DEG is located near a freesor should vanish there. It turns out that these boundary
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conditions can only be fulfilled by a linear combination of with a numerical factor
u, andu,, i.e., pure longitudinal or transversal surface waves

do not exist® The full displacement field for a mode with a .3 o’
e : a(a)=f3—2f+——
two-dimensional wave vectay can be written as K| K
Uy(r,t)=C.e @R~y (7)+c.c., 2 1 [(1+«?)2
{r0=C {2 28 | (L4 12) = 26 (L1 ki) |.
with &l 2k
vy(2)=—ig(e” 19— fre” 9%+ Z( ke M9~ fe 197, (8b)

(2b) Equations(8) show that the normalization leads merely to a
constant prefactor; i.e., in contrast to the case of bulk
phonons,C does not introduce a further dependence on the
wave numbeq.

We are now in a position to quantize the displacement
field uq [Eqgs.(2)] of a SAW. According to the familiar rules,

ki(@)=1—a&® and k(a)=1- &, (3 we define the phonon annihilation and creation operaigrs
and b:; and for the complete wave field find the expression

That is, the displacement; is polarized in the sagittal plane
which is spanned by the propagation directigpag/q and
the surface normal The decay of the displacements into the
interior of the medium is described by

wherea=c?/c?, and¢ is a root of an algebraic equation of
sixth order containing the parameteronly (see Ref. 2

. . . R — i(g-R—wgt)
¢ enters the dispersion relation of the surface waves in the u(r,t)—C% [bge" 4™ “dvy(2) +H.c. ©)
form
wq=£Cq=v4Q, 4) B. Deformation-potential interaction
whereu, is the SAW velocity. Finally, the factof is given The deformation potential is proportional to the change in
by volume, diw, which an infinitesimal volume element under-
goes due to the wav&.Introducing an electron-phonon in-
1+ k2 (k|2 teraction constari, the Hamiltonian of the deformation po-
fla)= 25, = PA (5 tential can be written as

In order to quantize the displacement fi€Rj, the normal- Hpa=Edivu(r,t). (10

|_zat|or_1 constant, qf each mdmdugl mode has first to _be The spread of the transversal component of the electron
fixed in an appropriate way. That is, the energy associated : :

) ) L wave function as well as the distandeof the 2DEG from
with the modeug(r,t) in the normalization volume has to

coincide with the energjiw, of the corresponding phonon the surface are small compareddo!. Thus, in evaluating
; . G wq P gp “EQ. (10), one can set all exponentials y(z), Eq. (2b),
Since the wave is propagated freely along the surface, thgqual 0 1

energy is normalized with respect to a large but finite square ientl h | h . . i
of areal.? in thex-y plane. Conversely, no such restriction is (_Zonvementy,_t e electron-phonon interaction Hamil-
: ’ tonian can be written in the general form

necessary with respect to taecoordinate becausg, decays
exponentially with increasing distance from the surface. 1 '
Thus the normalization volume can be extended froaD H= EE yqe'q'quJr H.c. (11
to z=o under the chosen surface area. q

Adding a kinetic-energy term to the potential enéfgy For a deformation potential interaction, from Eq8) and
associated with a displacement fialdthe total energy can (10) we derive the interaction vertex

be written as
1/2

aé’Eq. (12

DA _
yq -

(oul gt)?+ (c2—2c¢?)(divu)? pusa

E(u)=3p f d°r
Following a notation introduced in Ref. 22, the electron-
©) phonon interaction constaf can be replaced by a nominal
' scattering timerp, . This gives

+2Ct2% (Up)?

f’zzvsq2

3
Po7pa

wherep is the mass density of the medium, and

('YSA)ZZaDA ' (13
1/9du; duy .

u‘k_i(a_erﬁ_xi)’ hk=xy.z ™ \Where fipo=(2M*fwe)? and apy=2maé?a. w, is the
frequency of longitudinal-optical phonons, amd is the ef-

is the strain tensor. Inserting,, Eq.(2), into this formula, fective mass of the electrons.

and imposing the conditioB(uy) =% v, determines the nor-

malization as . L .
C. Piezoelectric interaction

1/2

: (8a)

h
pusa

Along with the deformation potential interaction, the pi-
ezoelectric electron-phonon interaction appears in crystals

qcf
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which lack a center of symmetry, cf., for example, Ref. 22. 9 9
In this case, an elastic wave leads to a polarizaRauf the SRP|z=+0TR® (20b
lattice, z=-0
Note that the boundary conditior0) differ from the re-
PJ:E :éjkluklr (14) quirementg,_,=0 for a sample which is covered with a

thin metallic film. An appropriate ansatz for the electric po-
tential outside of the crystalz&0) is p=c,e' (@R~ @aed?,
Substituting this ansatz and the general solutitf) for
z>0 into the boundary condition&0) yields that the con-
stant of integration is

where',éjm is the tensor of the piezoelectric moduli. The
corresponding interaction Hamiltonian follows from the
electric potentialp(r,t) associated with the polarization, and

reads
1
Hpa=ep(r,t). (15 C1=2—?[—3K|a71(1+/<|80)+f(1+ 2k2)(1+ kee0)
The polarization and the electric potential are related to one )
another via Poisson’s equation —eo&(1-fry)], (21)
divD= ¢ odiv(47P— gradp) =0 (16) wheree = (go+1)/2 is the average of the dielectric constants

of GaAs and the space above the sample surfeaeuun),

whereD is the dielectric displacement, amg~12.8 is the respectively. For large values ef,, o> 1, this result coin-
dielectric constant of GaAs. cides with the one which follows from the approximate

In the case of interest here, the general expresdidhis  poundary condition 4/9z)¢|,— _o=0, cf. Eq. (20a. The
simplified because the GaAs samples used in experimentsiectric potential19) associated with a single displacement
are cubic crystals and a crystal cut is chob (100 sur-  mode is now completely determined.
face] where the surface is spanned by two lattice &Eken Assigning the amplitudels, andb] to the first and second
the tensor,BJk| has only components in which all three indi- terms in Eq.(19), respecuvely, summmg over all wave vec-
cesj, k, andl differ from each other and all components aretors, and introducing the result into the Hamilton{@®), the

equal toB/8w. Hence Eq(14) reduces to piezoelectric verteXsee Eq(11)] becomes
Px:(477)_lﬂuy21 Py:(477)_1ﬁuzxv v _2€0. A
?’EA: va pes ZZ_ZqXQy
=(4m) " Buyy. (17) pUs
Substituting the displacement fiel®) into Eq. (7) for the X[3kja Y (1— k) = F(1+2k])(1— &)
strain tensor yields the polarizatiqid7). Then the Poisson C2(1-try)] 22
equation(16) for ¢ can be solved most easily by a Fourier v
transform in thex-y plane, leading to where we sez=0 in ¢4(r,t), Eq.(19). Obviously, the stron-
5 gest piezoelectric interaction occurs when the SAW is propa-
17 . = -
o 5 _ —iwgtr — Kz gated along a diagonal d|rect|oqx© +3). In the experi
9z° ¢(2,0)=pCaqye el —3re ments just this piezoelectric actlve directipg|[011]] is
2 iz chosen. In terms of a nominal timss4 [cf. Eq. (13)], the
+f(1+2xp)e” % ]+cc. (18 jnteraction vertex reads
The solution of this inhomogeneous differential equation can 72y
be constructed in the usual way. Discarding the exponen- (78)%=apa(0x0y)? > (23
tially increasing terne9%, one obtains that every mode with a PoTpa
wave vectorg is associated with an electric potential where all the numerical quantities are absorbed in the pref-
an actorapp.
¢q(r,1) = BE2COQye! TR 3 a " te o
_ f(1+2Kt2)e_ 924 coe” 93 4 c.c., (19) D. Discussion of the interaction vertices

Let us compare the results for the interaction vertiggs
in the Hamiltonian (11) with those valid for 3D bulk
honons(or a fictitious 2D phonon systemThere are two
ignificant differences. First, the interaction vertices for
SAW'’s have a different dependence on the wave vector:
3f SAW|2 exhibits an additional factorq compared to
vouil 2. This applies to both the deformation potential and
he piezoelectric interaction. Consequently, the use of the
SAW interaction vertices in calculations of various physical
guantities can give rise to results which deviate from those
which are based on the assumption of two- or three-

whereq,=q-X/q andg,=q-y/q. We note that for the geom-
etry under consideration the total number of decay length
for the elastic displacements and the electric potential i
three, cf. Ref. 2 for comments on the general caseis a
constant of integration which is determined by the boundar
conditions at the surface=0. In view of the experiments,
we assume that the surface of the crystal is an electricall
free boundaryto vacuum. That is, the normal component of
the dielectric displacement, E(L6), and the parallel com-
ponents of the electric field are continuous at the surface,

9 P dimensional phonon systems. Second, for surface phonons,
4meoP, €0 ¢|z=+0= " 5o ¢ , (209  the deformation potential and the piezoelectric interaction
z2=-0 arein phase. This is in contrast to the case of bulk phonons
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where these vertices amut of phase, i.e., they contribute gauge-dependent phase, @fis the period associated with
additively o]yl ?=| ymﬁ mG 2= yELﬁk|2+ | ymk %, see, one revolution around the EL of an electron moving with the
for example, Ref. 22. The absolute value squaregi @6 the  drift velocity vy . That is,

relevant quantity which determines the total electron-phonon

interaction. Clearly, the out-of-phase or the in-phase property i 1 _ 2
is of importance only when the interaction vertices for the 7= fﬁ du—vD(u,v)’ vp=|VV|lg/h. (25
deformation potential and the piezoelectric interaction are of ) )

the same order of magnitude. This depends on the wavé-0r the wave functiori24) to be single valuede(u,v) has
length of the SAW becausg™, Eq. (22), does not depend to ch_a_nge by an integral mul_tlpl_e ofr2around an EL. This
on the magnitude off whereasy®?, Eq. (12), increases lin- condition leads to the quantization of the allowed constant-

early with g. In the case of GaAs, the relative strength of €N€rgy lines. In other words, only a discrete sequence of
these two interaction mechanisms is thusEL'S corresponds to the electron eigenstates. Two adjacent

yPAyPA~ q10~7cm, where we have used the numerical val-éigenstates enclose an areal% and are, on the average, a
ues given below. Thus for the range of wavelengths used iflistanceAv =15/ apart, where_ is the length of one of the
recent experiments on the attenuation of a SAW in GaAdL's. An important quantity is the differenckw; of the
samples (see, for example, Refs. 3-6, 8, and),28he  corresponding eigenenergies, where the frequengis de-
deformation-potential scattering can be neglected in comtermined by
parison with the piezoelectric interaction, except for propa-
gation along(100) directions. This result corroborates very w7=2mlT. (26)
well with the fact that the experimental findings could be The quasiclassical description of the electron states that we
explained ig terms of the piezoelectric electron-phonon couhave outlined above is a valid approximation wfen
pling alone?

For easy reference, we summarize the numerical values lg/re<1 and m*|VV(R)|I3/h%<1, (27)

for the parameters appearing in the interaction vertiggs . , .
For GaAs,c,~5X10P cm/s, c,~3x 10° cm/s, and, hence, wherer . is the local radius of curvature of the EL, amd is

«=0.36. The corresponding solution of the aIgebraicthe effective electron mass. The first condition is related to
equatioR® for ¢ is é~0.9. Substituting these values in Eq. the smoothness of the potential, while the second one pre-
(8) yieldsa=1.4. Usingrpa=4 ps,7pa=8 ps,fiwo=421 K vents the mixing of different LL's. Additionally, one should
(this corresponds toEA:7A oV and éﬂ=02.4>< 107 keep in mind that quantum tunnelfigbetween classical
evicm), and p=5.3 glcn? (see Ref. 22 we obtain EL’s is important wherje| is smaller thamA (1g/A)2.

yPA=5 6x 10 174 eV cm? and ,ygA:&?aqulo— 10 o\ cm. In what followsV(R) is a smoottrandompotential. The

The above calculations are restricted, with respect to thQOtem"”1I is assumed to be Gaussian, with

piezoelectric interaction, to cubic crystals and a particular (V(R)V(0))=A2¢(RIA) (28)
crystal cut. It is straightforward, however, to perform calcu- '
lations for different crystals or surfaces along the same lineswhereA = (V?) defines its amplitude and its correlation
length. (A determines also the broadening of the LIThe
zero of energy is chosen such tHa(R))=0, i.e., the en-
lll. ELECTRON STATES AND PERCOLATION THEORY ergy e is measured from the center of the lowest LL. Using

Consider a 2DEG in a strong magnetic fi@8dperpen- A and A, we can rewrite the condition®7) in the form

dicular to the plane of the 2DEG and in a smooth potential |
V(R) (see, for instance, the paper by Trugriffaand refer- lg/A<1 and _B<1, (29
ences therein The potentiaM(R) is assumed to vary slowly haoc A
on the scale of the magnetic lendtg= yc#i/eB. Electron-  wherew,=eB/cm* is the cyclotron frequency. These con-
electron interactions are neglected. The wave functionjitions are fulfilled, for example, for the following experi-
W(R) of a state with energy is appreciable only in the mental valuesB=10 T (=8 nm, w,=2wX4.2 TH2,
vicinity of an equipotential line(EL) of the potential A =1 meV andA =50 nm. The separation between two con-
V(R)=e. The width of the wave functions perpendicular 10 secutive LL's is much larger than their broadening,
the EL islg . Explicitly, the electron states of theh Landau £, /A~ 60.

level (LL) can be approximated, in the lim#—c, by As discussed in Ref. 18, most EL’s within the tail of

the LL, i.e.,|e|>A, have diameter® which are small com-
pared toA and their lengthC is of the order ofD. When the
energy approaches the center of the LL, the size of the EL's
grows?® In particular, for|e|=A, £L=D=A holds for most
[We have omitted the pa®¥ (z) of the wave function which  of the EL’s. Such EL'’s will be denoted as standard. A further
corresponds to the lowest occupied subband perpendicular teduction of|e| does not lead to an increase in the size of
the plane of the 2DEG.The orthogonal variables andv almost all EL’s, i.e., most of them remain standard ones.
parametrize the distances along and perpendicular to the EHowever, a minority of the EL's merges and forms large
respectively. The functiony,(v) is the nth harmonic- extended EL’s with diameter®> A. The structure of these
oscillator function. Below, we shall restrict ourselves to theextended EL'’s is described by percolation thébmhen the
lowest Landau level, i.en=0. In Eq. (24), ¢(u,v) is a energies|e| are near the percolation threshokd=0 (or

W(R)=V(u,v)=[Top(u,v)] xn(v)e ¢ (24)
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|e|//A<1). The subsequent calculations show that just thigotal average length of the EL’s in an area of siZeto the
range of energies is of interest justifying the use of the perresult given in the literaturésee Sec. Il A in Refs. 29 or 30
colation picture.

An extended EL has a fractal structure which is reflected > (7 2 , 12 €
in the relation between its length and diaméter S dl LEL(L) =53 [~ ¢"(0)]"exp — 5717, (39)
L=A(DIA)?", (30 where ¢ is defined in Eq(28).
wherea=8/7 is the scaling exponentFor the definition of While the distribution of the standard EL’s is not really

the perimeter of discrete percolation clusters and the transnoWn, percolation theory gives the following angatior
tion to continuum percolation see, e.g., Refs. 28 ang@p.  the distribution of extended EL's:
extended EL can be viewed as a self-avoiding random walk £\ ~l@2(p=1)+1]
path with steps of It_angtIA. Inqeed, 24=17/4 is close to the fE(,C)dL::CE(—) G( )d,c, LA,
value 2 which applies to a simple random walk. The expo- A Le(€)
nent is less than 2 due to the self-avoiding nature of the EL. (36)
The distribution of extended EL'’s of a given energys
described by one scale, the so-called critical diameter

whereC, is the normalization constant ai@{¢) is a func-
tion which is exponentially small fof>1 and of order unity
Do(€)=A(|el/A)~7, (31) for {<1. HenceG yie!ds a _smoo_th cutoff of the dis_tr_ibution
for £> L., whereL. is defined in Eq(34). An additional,
which is considered to be the localization length in the semienergy-independent cutoff appears in a finite sample. Here,
classical theory. The scaling index #s=4/3. EL’s with di-  the sizel of the system restricts the critical diamef@y (31)
ametersD>D(€) are exponentially rare, while the prob- to values such thatD,<L. This translates into
ability to find an extended EL with a diameter £<A(L/A)?*, using Eq.(30). Thus, in a finite system, the
A <D<D(e) is proportional toD~*, wherep=3. critical length £.(e) in Eq. (36) should be replaced by
An electron that moves on an extended EIXA) expe-  min{£.(e),A(L/A)?}.
riences different regions of the random potential. During one  To find the normalization constaf,, let us decompose
revolution, the drift velocity p(u,v) [see Eq(25)] follows  the normalization integra(35) into [+ /% and estimate
the varying slope of the potentiad(R) and takes on many poth terms of this decomposition. The second integral can be
different values. In other words, the motion on an extendedstimated from the distributiof86) of extended EL’s. With
EL corresponds to an averaging process with respect tthe value @/2)(p—1)+ 1= 2, this integral is determined by
vp(u,v). Itis therefore reasonable to introduce an averagets lower limit A and is of the orderl(A)2. Using a reason-
drift velocity'® v, defined by7=L/vp, that is assumed to aple ansatz for the distribution of standard and short EL's
be independent of the length of the EL under considerationfor examplef (L) = const), the first integral is determined
The dependence on the energyan be generally excluded py jts upper limitA and is again of the ordeiL(A)2. Thus
sinceV(R) andVV(R)~vp(R) are statistically independent the total normalization integral is also of this order. Up to a
for a Gaussian distributioff. Consequently, the energy-level factor of order unity, the normalization constad} is then
spacing(26) associated with the extended EL's is a function given by A ~3. The numerical factor can be absorbedGn
of £ alone and Eq(26) can be written conveniently in the |eading to the following distribution function for extended

form EL’s:
hos L) P (32 1 (£ Wee-n+11
w = -, _ nd
L f(L£)dL A—g(A) G<—£C(€)>dﬁ. (37)
where . ' .
We note that the above estimates confirm that the majority of
2mon Al EL’s belongs to the standard ones wifl=A, since these
hQ=h A P A—ZB. (33 EL'’s are relevant in the normalization integral.

The frequency) gives by order of magnitude the level spac- IV. MATRIX ELEMENTS
ing for standard EL’s since it is associated with the revolu- e . . .
tion around an EL withC=A. The corresponding frequen-  EMission and absorption of phonons are associated with

cies for the extended EL’s are lower. The lowest frequencie§'/€ctronic transitions with energy transten,. We saw in
belong to the longest EL’'s which have the critical Iengthsec- Il that the separation in energy between two consecu-

£, corresponding to the critical diamet®x, (31). From Egs. tive EL’s is given byfw; [Eq. (26)]. Thusreal transitions
(30) and (31), are generally restricted to EL’s for which;<w. For the

parameters used above for conditiof®9), the frequency
gc(e)zA|A/e|2vfa_ (34) Q, Eq.(33), is about 27X 10 GHz, whereas the frequencies
of the SAW’s used in experiments vary typically in the range
Below, we shall use the distribution of the EL’s with re- w,=2m7XxX1 MHz/1 GHz. We therefore conclude that only
spect to their lengths. Lét?f (£)d L be the number of EL’s  extended EL’s for whichu;= QA/£<( [see Eq(32)] con-
with energye and a length betweefi and£+d/.L. The nor-  tribute to the sound absorption. Thus the matrix elements of
malization of this distribution can be found by equating thethe interaction Hamiltonia11)
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. L1 . exponentially small. The first condition guarantees the over-
Mit= - ygMi = [7q<f|e_'q'R|'>: (38 lap of the wave functiong{" ; see Eq(24). The second one
is necessary to ensure that the integrand ofitlietegration

whereli) and|f) denote the initial and final wave functions along the perimeter of the EL’s is not a quickly oscillating
of the form (24), have to be calculated for extended trajec-function. Resul(41) agrees essentially with E¢B9) replac-
tories. This calculation has been performed in Ref. 18. Theng there the energy differen¢e;— ¢;| and the level spacing
matrix element, averaged over all trajectories with the samg, by the value Q) appropriate for standard EL's.
period 7 and the same energy reads

V. DIELECTRIC FUNCTION

ﬁwT
T2y 2 A2 a
(M7= caA%(A ) lei—el*t The matrix elemeni(38) includes the screening of the
electron-phonon interaction due to the lattiéa. (22)]. The
for |ei—€|=<hQ, (39 screening arising from the 2DEG can be accounted for by

where ¢ is a numerical factor of order unity. The matrix fenormalizing the matrix element
element is valid under the assumptions +q(2
gA<vp/vs<(qA) %4 where the exponeri follows from M52 | Mis ;
' le(wq.a)[*’
ql

(2— a)/a with a=2, cf. Eq.(30). Clearly, these inequalities
imply gA-<1. wheree(w,q) is the dielectric function of the 2DEG. For a
nearly half-filled LL, the dielectric function can be calculated

(42)

For |e;— &[>0, the matrix element|M{%?). 7 is ex-

ponentially small. This implies that transitions occur only 55 ming linear screenifyThat is, the change in the elec-
within the lowest LL, and that transitions to other LL's can ;.o density resulting from a small applied potential is pro-

.bglneglect'ed flo>A>hQ). It is also assumed that the rional to the strength of the perturbing potential. Indeed,
initial and final states are close to one another in real SPacea can estimate that for the SAW intensities used in experi-
In order that fo); and (xo)s will overlap, the separation in  nenis the electron density oscillates only weakly around its

real space,Av, should satisfyAv=<lg. The condition ayerage value; see, for example, Ref. 7. The assumption of
les— €|<h Q) is even more restrictive. This can be seen injjnaar screening leads to the general expression

the following way. As mentioned above, the mean distance

in real space between two adjacent EL’s is givenl BiC. 2 me?
Hence, the distance between the two stat@sdf is of order g(w,q)=1+
(13/L)|e;— €|/hw7. The maximum of this expression is

found for the Ilargest allowed energy difference where

|e;— €| =hQ. Using the definition ofv,in Eq. (32) and the

(w,q), (43

£9

estimate forQ) in Eq. (33), the corresponding maximum dis- 1 f(e)—Tf(er) q412
tance in real space is found to B/ A <Ig, cf. inequalities Mw.q)=12 Ef ef—ei—ﬁw—i0|M”| ’ (44)
(29). _ . )

While the sound absorption is due to transitions betwee@nde is defined in Eq(21). .
extended states, the calculation of the dielectric functiee To evaluatell explicitly, we transform the sur;.; in

Sec. \J also necessitates matrix elements between standafefl- (44) into Z; ¢, wherei<f meanse;<e;. Let us first

EL’s. (Transitions between a standard EL and an extendefpcus on the case of zero temperature, i.e., all levels below

EL are exponentially rare due to their large separation irfhe Fermi energy are occupiedf(e;) =1, whereas all lev-

space). Since the majority of the EL’s belongs to the stan-€ls aboveer are empty f(e;)=0. Then

dard ones, one might even expect that the standard EL'’s

dominate the dielectric function. This is not the case, as is M(w,q)= 2 D € €i IM

shown below. ; L? & (e;— €)°— (ho+i0)?
Noting that for typical phonon wave vectoré.g.,

q~10* cm™ 1), one hagjA <1, the matrix element for stan-

dard EL's with£=A can be approximated by

2. (45

In order to yield an appreciable matrix element, EL’s corre-
sponding toe; and e; must be closgin real space and in
energy to an EL withe= e . This Fermi EL(FEL) need not
<f|eiq‘R|i>:eiq‘Ri<f|eiQ(R7Ri)|i>%eiq'Riiq<f|R— Rili), to be an electron state. We can therefore represent the sum-
(40) mation over states in Eq45) as a sum over EL's near a
certain FEL and then sum over all FEL's. In the first sum the

where the zero-order term in the expansion of the EXPONENiates are distributed nearly equidistantly with an energy

tial function disappears due to the orthogona_lity_of the t.WospacingﬁwTw const, cf. below. In the summation over FEL’s
sfta.te5| and f.‘ The vectorR, dgnotes some point n the vi- we may first sum over the FEL's with the same perifd
c!nlty of the 'th_ EL. The matrix element on _t_he right-hand Since these EL’s are situated in different regions of the ran-
side of Eq.(40) |s,0f orderA. Hence, for transitions between dom potential, this summation is equivalent to an average of
two standard EL s, the matrix element over FEL's with the same period. Thus

Q2 2 A2 the averaged matrix elemen®9) and(41) for extended and
(M5 ~a"A%, 1) standard EL'’s, respectively, can be substituted in (#§).
where it is understood that the ELi'sandf are very close in We begin with the contribution of the extended EL'’s to

real space and in energy; otherwise the matrix element i§l. As we shall see, this is the dominant contribution. It is
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easy to see that the energy spacing for the relevant states
near a fixed FEL is given by the value b, at the Fermi
energy. To this end, we have to calculate the changen
arising from a change in the energy of the EL by at most
Q) [see Eq(39)]. Since the frequencyfor the extended
EL's is merely a function of £, one has
Awrw=ALIL=AAIA, whereA is the area enclosed by
the EL. To obtain the second equality, we have used
L=A(AIA?)*, with?” \=%_ The change in the enclosed
area is given by #12Q/w;, and thus Aw /w,=
(13/A?)(A/L)1<1. Consequently, the sum over EL’s
which are near a given FEL can be simplified by introducing
an explicit representation for the energies

ef—ei=(m—n)hw7. (46)

The integersm and n are subject to the restrictions
|m—n|<Q/w;[see Eq(39)] andm—n+0. Using represen-
tation (46) and matrix element39), the double sum over
states near one FEL in E@5) can be reduced to a sum over
s=m—n, and one obtains

FIG. 1. The real and imaginary parts of the functiddy) de-
fined in Eqs.(52). G(z) was replaced by Réxp@+1]. The par-
ticular choice of the functios has no influence on the qualitative
behavior ofH when the cutoff introduced b$ is smooth enough to
wash out all discrete features of the sums in E§8). The follow-
ing figures are based on the curvestbgiven here.

1 hor [ x \*"t In a finite system of sizé, yr has to be replaced by the
“ (61— €)?— (ho+i0)? [e—€|* \hw S(x), maximum ofyg andy, =(Q/w)(A/L)?*, see the discussion
(47 following Eq. (36). Using the explicit form for the distribu-
wherex=w/w; and tion functionf with p=3 yields
=S 1 1 H(y)=f°°dx G(xy)S(X). (51)
SX=2 =TT 5T (48) 0

We have replaced the upper limit in the sum by infinity, The quantitygw has a very intuitive int_erpretation: it is the
since the relevans are of orderx<Q/w;, and the above- €nergy at which the energy level spacih@(Lc(¢)) for an
mentioned restriction fofm—n| can be neglected. In other EL With the critical length is equal to the phonon energy

words, the EL’s which contribute significantly are separated?® Of the SAW. In other wordse,, determines the absorp-
in energy byfiw. tion threshold in the sense that real transitions occur only for

For extended states, using E§2), x=(w/Q)(L/A), and
hence the contribution tbl(w,q) from a FEL is a function
of its length alone. As a result the tothl(w,q) can be

|eg| =€, . This is reflected in the imaginary part bF, cal-
culated below.
The real and imaginary parts of the functibnare given

written as a sum over all lengths. Using the distribution func-°Y

tion f (L) given in Eq.(37), we find

A)2Q«
H(w,q;ep>=2c% J dLf o (L)X S(x)
q2
=2c5—H(y), (49
where
QA €r - w al2v
yF_—wﬁc(eF) —|€—w| and €,=A aQ

(50)

& o1
ReH(y) = fo dx G(X)/);1 ST Z 2 (529
e 1
ImH(y)= 52> ZG(sy), (52b)
s=1S

where P denotes the principal part of the integral. The be-
havior of H(y) in an infinite system is shown in Fig. 1. The
y axis in Fig. 1 has been scaled in termsydf correspond-
ing to the dependence ¢ on the Fermi energy; see Eq.
(50). The limiting behaviors for large and small arguments
are given by

ReH~{(1+a)ly=1.5l, ImH~(#/2)G(y), y>1,
ReH=y* 1 ImH=1-y* 1 y<1, (53
ReH=0, ImH=(m/2){(a)=11.9, y=0,
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where {(x)==Z_;s *. In order to discuss the analytic ex-
pressions o (y) we note that the sum in E¢52b) and the
integral in Eq.(52a are truncated a or x of order 1y, as
implied by G, Eqg.(36). The imaginary part52b) is therefore
exponentially smal~G(y) for y>1, and of order unity in
the opposite case. Thus, the sum osedncreases with de-
creasingy, and approaches its maximum agjoes to zero.
In a finite systemy is restricted from below by, imposing
an upper limit 1y, on the sum. This leads to a smaller maxi-
mum value of InH. As for the real part oH (y), we are able
to study the limiting cases. For both>1 and y<1,

ReH(y) goes to zero according to a power law. In the inter-

mediate regiory<1 but noty<1, ReH is slowly varying
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replaced by the integral given on the right-hand side of Eq.
(55). The limits of integration have been extended with neg-
ligible error. The resulting integral ovel coincides with the
right-hand side of Eq(49) except for the value of the en-
ergy: instead of the fixed Fermi energy, there appears
now the variableg; . Thus we finally arrive at

0

of
H(w,q)=f de( — g)ﬂ(w,q;e), (56)
where we have dropped the indéxof ¢ . This equation
shows that a finite temperature leads to an average of the
T=0 result over energies within an interval of ord&r

and of order unity. In a finite system, the real part approache@/ound the Fermi level. Since the functibi{w,q; €) varies

a small but finite value ag goes toy, .

Up to this point, the evaluation dil, Eq. (44), has been
performed for zero temperatur@=0. The calculation of
II for finite temperatures such thé&# w can be done along

the same lines. Therefore, we give only a brief description

The calculations forT=0 have shown that the real and
imaginary parts oH reach a value of order unity when the
Fermi energy becomes of ordey,. This energy range cor-
responds to the contribution of EL's with a length
L.,=L.(€,)=A(Q/w), and an energy-level spacing of or-

der# w to the transition processes. Therefore, these extended

EL’s make the dominant contributions i, Eq. (44). This
remains true for finite temperatures. However, now states
and f need not be in the immediate vicinity of the FEL's.
Instead, we can fix some initial stateand consider transi-
tions to final states above;>¢;, and below,e;<e;, the
chosen ondessentially in a rang& aroundeg). To do this,
we use representatid@6), wherew; now refers to the en-
ergy € . Expanding the Fermi distributiof(e;) in Eq. (44)
arounde; leads to— df(¢€;)/de; (for the relevant transitions,
|€;— €] is much smaller thaif). The sum over the energies
€; is reduced to twice expressi@a8). Hence

of £ ) %S w+
" e (hwg o

(54)

The sum over the initial statéscomprises a summation over
all EL’s with the same energy; but with different lengths
L, and a summation ovet;. The first sum can be again

A 2
H(w,q)=2c(qT) (ﬁmaZi (

on the scalee,,, finite-temperature effects are negligible if
T<e,. This is the condition for Eq(49 to hold. For
T=e€,, the width ofll(w,q) as function of the Fermi energy
increases with temperature, i.e., the behavioflofleviates
substantially from thél' =0 result. In the following we as-
sumeT<e, .

Substituting thelT =0 result forll(w,q) [EQ. (49), which
is based on transitions between extended ElrisEqg. (43)
yields, for the dielectric function,

2

2 ocH(yp), 57)

1 2me
g(w,q)=1+ o

re
and, for the renormalization of the matrix element in Eq.
(42),

2

ehvg

e(wq,q)=1+ AdmcH(yg). (58

The contribution to the dielectric function resulting from
standard EL’s is derived below; see E§9). The compari-
son of that result with Eqs(57) and (58) shows that the
dielectric function is essentially given by the contribution
due to extended EL’s, whereas the influence of transitions
between standard EL's can be neglected. We therefore con-
sider Eq.(58) as the final result foe(wq,q).

The dielectric function58) renormalizes the matrix ele-
ment(42) via the expressiofe (wq,q)|*. The dependence of
|€|? on the Fermi energy is given b |?, Egs.(52). The
latter is of order unity foleg|<e¢, and decreases for larger

replaced by an integral using the distribution functionvalues of the Fermi energy according to the power law
f.(£), EQ.(37). Then the order of summation and integration (€, /| €c|)*"'¢, 4vla=%. Thus the magnitude of, Eq. (58),

is inverted to obtain

déi

e ae s - [Cec] L de
2ifo o IsilsEecw) 0 —<hwA L)

(59

The condition |€;|<e€.(£) ensures that only those initial
states which possess a critical lengih equal to or larger
than L.(e;) are included. Here (£)=A(A/L)*?"; see Eq.
(34). However, the dominant contributions . follow

from a particular group of EL’s, rendering this condition

is determined by the large dimensionless parameter
e’levsh (~110 for GaAs. This is the ratio of the electro-
static energy of two electrons a distange! apart and the
energy of a surface phonoe?g/e)(fwg,) ™.

Let us now show that the contribution of the standard
EL’s to the dielectric function is negligible. We start afresh
from expressior(45) for I, substituting the matrix element
(41) for transitions between standard EL's. The energy dif-
ference between two standard EL'’s is of ordé€}, Eq. (32),
i.e., much larger thafi . The latter can thus be neglected in
comparison withe; — €; in Eq. (45). Then the imaginary term

unnecessary. Taking also into account that the relevant EL'8 can be dropped, as no real transitions can occur. The sum
have an energy-level spacing which is small compared to thever all final stated leads merely to a factor of order 1,
thermal energyh w/T<1, and that the number of states per since only a few EL’s in the immediate vicinity of the initial

energy interval is given by{w,) ~!, the sum oveg; can be

EL contribute to the matrix elemef41). The remaining sum
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over the initial states counts the standard EL’s which are justereN is the phonon occupation number. The net change in
below the Fermi level. The number of these EL's is essenNy is given by
tially the number of all FEL's, because the number of very

short (C<A) and very long £> A) EL’s is negligibly small

for Fermi energies near the center of the LL. The required

qguantity may therefore be deduced from Eg5), which

states that the total length of all EL’s is, up to a numerical

factor, equal td_2/A=A(L%/A?). Since the mean length of
all EL’s is of orderA, the number of FEL's in a system of
sizeL is of orderL?/A2.

Collecting these results, we obtain the contribution due t
standard EL'’s,

2

e

e’q
and g(w,q)—1l=——.

]

I(w,q (59

It can be shown that this estimate is valid independent of the

ratio #Q/T as long as ma&%Q,T}<A. The comparison of

Egs.(59) and(57) shows that the contribution of the standard

EL'’s to the dielectric function isv/) times smaller than the
term resulting from the extended EL's.

It is instructive to consider briefly an alternative deriva-
tion of the dielectric function which reproduces correctly the

order of magnitudés|=e?/sv¢h. This derivation relies on

the fact that the motion of an electron on a fractal trajectory
can be considered as a self-avoiding random walk with

single steps of length\. In fact, the relation between the

diameter and the length of an extended EL is similar to what

one would expect for a simple random walk; cf. E8Q). For
the diffusive regime, the density correlattr, Eq. (44), is
given by

Dg?

“w+De? (50

H(w!Q) = gF
whereD is the diffusion constant angl- the density of states
at the Fermi level. In our case, we can assibrevpA. The
density of states of the LL is given bg;Fz(Alé)*l for
ex<<A. Substituting these quantities into E¢.3) yields

2

g(wgq,q) —1=i— (61)

evgh

where the ternDg? has been neglected compared-tow,

. 2
Ng= —zE f(€)(L—F (e[| M2 (Ng+1)

file(wq,0)|*7
X 5(€— e~ hwg) — | Mt I°NgS(€— e+ Fiwg) ],
(63)
wheref(e€) is the Fermi distribution function andA;;% are

c;he unscreened matrix elemeris8) for emission or absorp-

tion of a phonon with wave vectay. For a SAW induced by
interdigital transducers, the phonon occupation nunhhgis
macroscopically large. The difference betwddg+1 and
N, is therefore negligible. Combining Eq$62) and (63)
yields

1 27
7(Q) ﬁls wq,q)|2 2 |MEIP[f(e)—f(er)]
X &(€— i+ hag). 64)

Replacing the § function by the imaginary part of
— 7 Y e&—e+hog+i0] 1, we find

1 :E |7q|2
) # |e(wq,0)
wherell is defined by Eq(44).
Using the zero-temperature results idrand the dielec-
tric function, Eqs.(49) and(58), respectively, as well as the

relation between the lifetime(q) and the attenuation coef-
ficient, we find

|2ImH(quq)wq>Or (65

P=Tq®(yr), Ye=lerle,, (66)
with
1 qs
o= 272 mA(0) 7d* e
and

D(y)=ImH(0) oY) 67

=Im —_—,

Y HY)P?

where the term 1 in expressi@b8) for € has been neglected.

The function ®(y) is defined such thatb(0)=1 [since
ReH(0)=0, cf. Egs.(53)], i.e., Iy coincides with the attenu-

in the denominator of the density correlator. Interestingly, tion coefficient at the center of the LL(ep=0)=T. We

this approach predicts an essentially imaginary result fobegm with the discussion of the magnitude o and con-
£—1 which agrees with the behavior of E¢58) for sider the functionb(y) afterwards.

|er|—0, i.e., in the case when some the EL’s become arbi- Substituting expressiond3) and (23) for the interaction

trarily long. vertices in Eqs(67) yields
VI. SURFACE ACOUSTIC-WAVE ATTENUATION (T pa= 8pa q° (Svsﬁ ?
i . _ @’DA™ 47r%c ImH(0) USDSTDA e?
The intensity of the SAW decreases due to absorption of
phonons by the 2DEG with the distancas exp-I'x). The =2.6x10 ?'g® cn?, (683
attenuation coefficienf” can be expressed in terms of the —
sound velocityv [cf. Eq. (4)] and the life time7(qg) as (F)pam apa q Svsﬁ) —8.0x10°6
I'=(vsr(g)) "1, wherer(q) is defined by the rate equation WPAT 47%c IMH(0) v PoTpa| €° ' a
(68b)
N.=— i N 62) That is, despite the fractal structure of the extended EL’s on
T (g v which these results are based, the frequency dependence of
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the magnitude ofl” is simple and is not characterized by
scaling exponents. Moreovdry, is independent of the mag- 5
netic field and the parametefssandA of the random poten-
tial. The numerical values on the right-hand side of EG8)
have been calculated replacing the paramegrsp,, etc.

by their values given in Sec. Il, and assumiog 1. For a
finite system, Ik (0) [see Eqs(53)] has to be replaced by
ImH(y,)<ImH(0); see thediscussion following Eq(50),
leading to an increase of the attenuation coefficient at the
center of the LL.

. . FIG. 2. The attenuation coefficieht, Eq. (66), as a function of
The function®(yg) in Eg. (66) accounts for the depen- the Fermi energy near the center of the lowest Landau lewd.

dence ofl’ on the Fermi energyor the filling factorv orthe  tpe three curves correspond to the following temperatuFeso
magnetic fieldB). This dependence is determined by the ggjiq ling), T=0.15, (broken ling, andT=0.3¢, (dotted ling.

ratio of |ez| and the energysw=A(wq/Q)“’2V as follows.

The absorption of the SAW is very small when the Fermifynction and Inil. Two results forl" at finite temperatures
energy is far from the center of the Lleg[>€,, i€,  are shown in Fig. 2. With increasing temperature the mini-
yr>1. A strong increase oP and, hence, of occurs when  mum of the attenuation near the center of the LL is reduced
|ee| is reduced toleg|~e¢,. In this region the number of and the absorption peak becomes broader. The increasing
occupied extended EL's with an energy-level spacingmagnitude of” results from the significant broadening of the
hwfL)=hwq, EQ.(32), undergoes the change from an ex- imaginary part ofil and the reduced screening; see &)
ponentially small quantity to some power-law function of ForT= ¢, , the magnitude of and the width of the absorp-
,C_l. (Nevertheless, the number of these states is negllglblﬁon region are Strong|y temperature dependent_

Compared to the majority of EL’s witli=A.) A further rise The dependence &f on the SAW frequencwq is shown

of the absorption is prevented by the enhanced screening Fig. 3. The curve is calculated for the low-temperature
~(ImH)? at |eg|<e,,, which even reduceF as the Fermi regimeT<e, and the piezoelectric electron-phonon interac-
energy goes to zero. This results in a shallow double-peajion. The attenuation coefficient has been written in the form
structure with a cusp at the center of the LL. In fact, if WeT =T'g(wq/wp)P(wp/wg), with Tr=(Tq/aq)(wg/vy),

use the limiting forms ofH(y<1), Egs.(53), we find  ,_—Q|e-/A|?/% (Note thatl'4/q does not depend on fre-
dI'/der=sgn(eg)/|ec|*">'*. We believe, therefore, that quency) The Fermi energy is fixed to some valeg<A,

the double-peak structure df(er) is independent of the and defines the smallest level spacihgg for extended
function G(z) used to describe the exponential cutoff of the g|'s, Consequentlyw,= wr marks the onset of strong SAW
extended EL’s; see the discussion following E86). The  attenuation. For high frequencies,;>wg, the attenuation
maxima of I'(eg) are located nearte,, ; see Fig. 2. Itis coefficient increases linearly with frequency. This is just the
clear, however, that such a particular feature as the cusp h@ghavior predicted by the classical description of sound ab-
to be considered with caution, for it is exclusively based onsorption for piezoelectric interaction; see Ed4) below.

the quasiclassical model for the electron states. Quantum For T< e, the width of the absorption region is deter-
tunneling between critical trajectories may modify this re-mined by |er|=€,. This is merely the condition for real

sult. It is worth noting that the tunneling band of witfth
Q [Eq. (33)] arounde=0 [cf. the discussion after E¢27)]
is narrow compared to the characteristic energy range

transitions to occur, and is not associated with the interaction
verticesy, nor is it a consequence of the matrix elemes)
whose derivation is based on the particular assumptisn

indeed, O /e,~(lg/A)Jo/A<1. One may speculate that i We believe, therefore, that this result applies to other half-
the absorption coefficient is only weakly affected by quan-integer filling factorsv as well. To express the relation
tum tunneling. Indeed, most of the EL’s contributinglfo | ¢ |=¢, in terms of the filling factorr=2=12n, we write
cannot be connected by low saddle points with transmissiofhe electron density as an integral over the Gaussian den-
coefficients of order unity, and so quantum tunneling in-gjty of states,
between them is insignificant.

To simplify the estimates, we rewrite, in the form

g(e)=(2m) 32(12A) Lexp — €4/2A2), (70)

A a/7 ® 3/7
€,=03 me\{ 1 mev) X1 GHZ) 047
A 6/7 B 3/7
X WW) (5—T> : (69) LF
As discussed in Sec. V, the zero-temperature regd@it for
IT remains valid for finite temperatures such tiake,, . 0.0 ,

This is also the condition for Eq66) to hold. Using the 0 1

values forA andA given above and,=2m7>x100 MHz, we w,/wr

obtain e,~1 K. For temperatures of the order of or larger

than e, , the attenuation coefficient is found from E®§5) FIG. 3. The attenuation coefficiefit, Eq. (66), as a function of
using expression(56) in the calculation of the dielectric the SAW frequencyw, for a fixed Fermi energy.



54 SURFACE ACOUSTIC-WAVE ATTENUATION BY A TWO- ... 10 707

and the Fermi distribution functiof, that the width and the shape of their peaks as function of
are identical. The calculation of the ac conductivity in Ref.
15 is based on the concept of variable-range hopping be-
_ 1 o 22 tween pairs of localized states. Fbw,>T, the absorption
v(ep)= N J_mdf e fle=er), (7D of SAW's is due to resonant phononless transitions of the
& electrons from one site of a pair to the other. This mecha-
nism is strongly affected by the electron-electron
and expand around the center of the LL with respect tdnteraction'® The width of the absorption peak at half-
leel/A<1. ForT<A, this gives integer filling factors was found to be

€F |AV[=(q&p) ", (75

AV_(EF) :V_(GF) _V_(O): (72

V2mA ) ) o
where y=2.3 is the scaling exponent of the localization
Then the width of the absorption region is obtained as length
al2v al2v é:: §0|V__V_(O)| N y! (76)
(O] v
B A .
Q Up and ¢, is assumed to be of the order of the magnetic length.

[Note the differences between the last equation and the semi-
The exponent is given bw/2v=o/\=32~0.42. This value classical definition of the localization length in E®D.]
agrees with the exponenrt which determines the shrinking The result of Ref. 15, Eq75), agrees with our result, Eq.
of the peaks in the longitudinal conductivity® o, as the (73), in both the numerical value of the exponent and the
temperaturd goes to zerojA ]~ T*. In our case the broad- dependence og. However, the widtAv[ in Eq. (75) ex-
ening of the absorption peak arises from the frequengy hibits a c_illf/fzere_nt dependence on the/gnagnet_lc field, namely,
In this sensefiw, may be considered as an effective tem-1A»[~B~"?, in contrast to|Av]~B**" predicted by Eq.

perature which replaces the real temperafGreFrequency (73). The authors of Ref. 15 di(_j not give a definite descrip-
scaling in the integer quantum Hall regime has been option of the shape of the absorption peak, but rather suggested

served in microwave experimeritsFor spin-split LL’s, the WO scenarios which eventually lead to a flat peak with a
width of the peaks in Re,, corresponding to different LL’s broad maximum or a double peak, respectively. Our results

was found to scale d&\v[~w*, with k~0.41. support the latter one; see Fig. 2.
Due to the drift velocityvp, the width (73) depends
weakly on the absolute value of the magnetic field. In terms VIl. SUMMARY

of the filling factor, Eq.(73) can be written in the form
~ 2 al2vi N—al2v H
lAW (NA"7 g /A)"*(v) ’ Thus,|AW is smaller for attenuation coefficien” of a surface acoustic wave for a

h|ghgr (half-lntege) filling fgctors v. The width of the ab- 2DEG in a smooth random potenti@bith amplitudeA and
sorption region scales with the phonon wave vector as

|A7r~q“’2”. In contrast, in the fractional quantum Hall re- correlation lengthA) and a strong magnetic field corre-

i - — 1 " )
gime, the width increases linearly withfor v=1. This lin- sponding to a filling factow close tos. Both quantities be

ear dependence is derived within the composite fermioy o e independent of temperature as the temperature is re-

model and is well confirmed experimentafty. duced ~below a  frequency-dependent value,=

The absorption of SAW'’s in Ft)he integer.quantum Hall gt\fg’r; %éalg:{ft“(/fggi ictv;ngii,e Qe ;gt?gnDs/gr,l ?kr]‘g lga Ljisp(t)rt](Sntial
regime has also been studied in Ref. 15. These authors fir . . i e
determine the ac conductivity of the 2DEG, which is then Ines of the random potential. In this low-temperature, high

related to the attenuation coefficient using the equation frequency regimee.g., €, ~1K fqr w=2mX 10(.) MHZ)Z Im
e(w,q) and " are only appreciable whesg is within a

narrow region around the center of the Landau level, and Re
1 qo’ e(w,q) decreases according to a power law with increasing
F=-K%——7——7, (74  distance from the center. In particular, the attenuation of the
2 (1+0")7+(0") SAW is exponentially small except for a region whose width
|Av[~w®?”. This scaling is nonuniversal becaygev| de-
where K2 represents the effective piezoelectric couplingpends on the absolute value of the magnetic field; see Eq.
constant [=6.4x10"% for GaAs (Ref. 5] and (73). The dependence &f on the Fermi energgor the filling
o' =Reo(wq,q) oy, o"=Imoy(wq,9)/ oy, and oy = factor) yields a double peak which is centered at the filling
vsel2m. [Note that Eq.(74) can be obtained from Eq66)  factor v=13; cf. Fig. 2. The minimum of the absorption at
writing the dielectric function of the 2DEG in the form v»=3 results from the enhanced screening due to the 2DEG,
e(w,q)=1+iox(wq,0)/oy.] Assuming that|oy|<oy i, from the large magnitude of the dielectric function
for sufficiently high frequencieX, Eq. (74) reduces to le(wq ,0)|=e?/svsh, wheree is the average of the dielectric
I'(wq,0)~q Reoy,(wq,q). That is, in this case, the sound constants of GaAs and vacuum, angis the sound velocity.
absorption and the longitudinal conductivity are related sucffhe double peak i’ is most pronounced for an infinite

We have calculated the dielectric functie(w,q) and the
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system where the critical diametBx,, Eq.(31), of the equi- and a significant increase of the width of the absorption re-

potential lines of the random potential is allowed to take ongion aroundv= ;.

arbitrarily large values. A real system of sikerestricts the

diam.et.er taD.<L, resulting in an increase of the atten_uatio_n ACKNOWLEDGMENTS

coefficient near the center of the Landau level. While this

effect is weak for a macroscopic sample size, a similar but Financial support by the German-Israeli Foundation is

more pronounced effect may arise from a nonuniform elecgratefully acknowledged. We thank J. Hajdu and D. Polya-

tron density associated with a spatially varying filling factor. kov for valuable discussions and comments. One of us
In the high-temperature, low-frequency regime, the di-(A.K.) thanks the Deutsche Forschungsgemeinschaft for fi-

electric function decreases with rising temperature, leadingancial support and B. Zingermann for a discussion of some

to an increase of the magnitude of the attenuation coefficierfiroperties of Gaussian distributions.

1G. W. Farnell, inAcoustic Surface Wavesdited by A. A. Oliner  *®I. L. Aleiner and B. I. Shklovskii, Int. J. Mod. Phys. B, 801
(Springer, Berlin, 1978 (1994.

2A. Mayer, Phys. Rep256, 237 (1995. 18H. L. Zhao and S. Feng, Phys. Rev. Létf), 4134(1993.

3V, W. Rampton, K. McEnaney, A. G. Kozorezov, P. J. A. Carter, 170. Heinonen, P. L. Taylor, and S. M. Girvin, Phys. Rev38
C. D. W. Wilkinson, M. Henin, and O. H. Hughe, Semicond. 3016(1984).

Sci. Technol.7, 641 (1992. 183 lordansky and Y. B. Levinson, Phys. Rev3B 7308(1996.
4A. Wixforth, J. P. Kotthaus, and G. Weimann, Phys. Rev. Lett.1°S. M. Badalyan and Y. B. Levinson, Fiz. Tverd. Télaningrad
56, 2104(1986. 30, 2764(1988 [Sov. Phys. Solid Statg0, 1592(1988].
5A. Wixforth, J. Schriba, M. Wassermeier, J. P. Kotthaus, G. We-2°L. D. Landau and E. M. LifschitzTheory of Elasticity(Perga-
imann, and W. Schlapp, Phys. Rev.4B, 7874(1989. mon, Oxford, 1979 Vol. 7.
6A. Schenstrom, Y. J. Qian, M. F. Xu, H. P. Baum, M. Levy, and 2!S. H. Simon(unpublisheil
B. K. Sarma, Solid State Commu65, 739 (1988. 22y, F. Gantmakher and Y. B. LevinsoBarrier Scattering in Met-

"A. Esslinger, R. W. Winkler, C. Rocke, A. Wixforth, J. P. Kot- als and Semiconductof®orth-Holland, Amsterdam, 1987
thaus, H. Nickel, W. Schlapp, and R. éch, Surf. Sci305, 83 23F, Guillion, A. Sachrajda, M. D’lorio, R. Boulet, and P. Col-

(1994. eridge, Can. J. Phy$9, 461 (1991.
8R. L. Willet, M. A. Paalanen, R. R. Ruel, K. W. West, L. N. 2*S. A. Trugman, Phys. Rev. B7, 7539(1983.

Pfeiffer, and D. J. Bishop, Phys. Rev. Le6, 112 (1990. 25H. A. Fertig and B. I. Halperin, Phys. Rev. 8, 7969 (1987).
9R. L. Willet, Surf. Sci.305, 76 (1994). 26R. Mehr and A. Aharony, Phys. Rev. &, 6349(1988.

103, M. Shilton, D. R. Mace, V. I. Talyanskii, M. Y. Simmons, M. 27D. Stauffer and A. Aharonyintroduction to Percolation Theory
Pepper, A. C. Churchill, and D. A. Ritchie, J. Phys. Condens. (Taylor and Francis, London, 1992

Matter 7, 7675(1995. 28T Grossman and A. Aharony, J. Phys.18, L745 (1986.
113, H. McFee, irPhysical Acousticsedited by W. P. MasofAca-  2°M. S. Longuet-Higgins, Philos. Trans. R. Soc. London Ser. A
demic, London, 1966 Vol. 4A. 249, 321(1957.
123, W. Tucker and V. W. RamptoriMiicrowave Ultrasonics in  *°M. B. Isichenko, Rev. Mod. Phy&4, 961 (1992.
Solid State Physic&North-Holland, Amsterdam, 1972 31y. Wulf, V. Gudmundsson, and R. R. Gerhardts, Phys. Re38,B
13M. JanRen, O. Viehweger, U. Fastenrath, and J. Hajdtpduc- 4218(1988.
tion to the Theory of the Integer Quantum Hall Eff¢/CH,  32H. P. Wei, Y. Lin, D. C. Tsui, and A. M. M. Pruisken, Phys. Rev.
Weinheim, 1994 B 45, 3926(1992.

14B. 1. Halperin, P. A. Lee, and N. Read, Phys. Rev4B 7312  33L. W. Engel, D. Shahar, C. Kurdak, and D. C. Tsui, Phys. Rev.
(1993. Lett. 71, 2638(1993.



