PHYSICAL REVIEW B VOLUME 54, NUMBER 15 15 OCTOBER 1996-1

Integer quantum Hall effect in double-layer systems
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We consider the localization of independent electron orbitals in double-layer two-dimensional electron
systems in the strong magnetic-field limit. Our study is based on numerical Thouless number calculations for
realistic microscopic models, and on transfer-matrix calculations for phenomenological network models. The
microscopic calculations indicate a crossover regime for weak interlayer tunneling in which the correlation-
length exponent appears to increase. Comparison of network model calculations with microscopic calculations
casts doubt on their generic applicabilifs0163-182626)06240-6

[. INTRODUCTION proved understanding of the disappearance of the quantum
Hall effect at weak magnetic fields in high-mobility samples.
The integer quantum HaflQHE) effect is generally well In each case, we believe that double-layer quantum Hall sys-
understood in single-layer two-dimensional electron systemgems offer advantages for both theoretical studies and for the
(2DES’s which are sufficiently disordered that interactions experimental studies which we hope to motivate.
do not play an essential role, and are in a field sufficiently In single-layer two-dimensional electron systems, local-
strong that Landau level mixing does not play an essentiakation properties appear experimentally to be changed when
role. In this limit, single-electron orbitals are localized ex- the exchange-enhanced spin-splitting between Landau levels
cept at a critical energ§, near the center of each disorder- With the same orbital index collaps&&The interpretation of
broadened Landau level. For Fermi enerdsk=E,, these experiments is c_onfgsed by uncert.ainties involved in
theory~ predicts that (rﬁx,crﬁy)=(l,2n+l)e2/2h, whereas mpdelmg the spin-orbit disorder scattering necessary for
on the Hall plateausH #E.,) (axx,axy)z(o,n)ezlh, where  Mixing the two Landau levels, and by the apparent impor-

N is the number of extended-state eneraies below the Fer tance of interaction effects in controlling the degree of mix-
g ing. The interaction complications are not so troublesome in

level. As the critical energy is approached, the Iocalizationdouble_Ialyer systems and, in addition, the degree of mixing
length for electrons at the Fermi level is expected to have Petween Landau levels ir’] separate ;quantum wells can be
power-law divergencé~|Ex—E.|"*, andw, the correlation  ¢onirolled by adjusting the strength of the barrier separating

length exponent, is expected to be independenti.oft IS the wells, or by adding an external bias potential which
believed that the transition is well described by quantummoves the double-layer system off balance.

percolation® models and semiclassical calculatibrizave In high-mobility ~two-dimensional electron systems
estimated the correlation length exponentste 3. This pic-  (E-7/4>1), the quantum Hall effect appears to become un-
ture has been corroborated by a large number of thorougbbservable in practice once Landau-level mixing by disorder
numerical studi€s*which are in agreement with theoreti- pecomes strong, i.e., once.r is of order 1. (Here
cal predictions foroy, and oy, . Localization properties and «.=eB/m*c is the cyclotron frequency.The loss of an
the divergence of the localization length have been studiedbservable quantum Hall effect in these systems appears to
extensively:3~?°with the most recent estimate of the corre- be associated with a dramatic increase in the localization
lation length exponent being=2.35+0.03°. On the experi- length in the middle of the Hall plateaus, rather than with the
mental side, measurements of the widtB of the peak of floatation of extended-state energiés®’” which occurs in
pxx as well as dpxy/dB)_l, both predicted to scale with more strongly disordered systems. It seems likely that the
temperature a'#", yield values 1/=0.42+0.0422?2with ~ same dramatic increase in localization lengths on Hall pla-
z assumed to be 1. Higher derivatives @f, yield teaus will occur in double-layer systems when the Landau
exponent& of nv in agreement with scaling theories of the levels in the two layers are strongly mixed. The ability to
transition between Hall plateauéExperiments in the frac- control systematically the number of Landau levels which
tional quantum Hall regime find similar valufédor this ex- are mixed motivates working with double-layer and
ponent) Recently the dynamical critical exponenhas been multilayer systems.
measuretP?®to bez=1. Since much of the physical picture underlying the quan-
In this paper we report on a numerical study of the local-tum Hall effect is specific to two dimensions, it was not
ization properties of single-electron orbitals in double-layerinitially clear that it was even possible to observe quantized
two-dimensional electron systems. This work is motivatedplateaus in three-dimensional systems. Early experimental
by recent experiments hinting at changes in localizatiorwork, focused on widely separated 2D lay&dpund the
properties when two different Landau levels are nearlylQHE with quantized resistivity,,= h/N,ie?, whereN, is
degeneraté?~2>27-2%py growing interest in the conditions the number of quantum wells consistent with parallel con-
necessary for the occurrence of the quantum Hall effect imluction in many quantum wells. Stuer et al2® performed
three-dimensional electron systems, and by the need for inexperiments on coupled GaAs superlattices with 30 periods,

0163-1829/96/54.5)/1067513)/$10.00 54 10675 © 1996 The American Physical Society



10676 ERIK S. SORENSEN AND A. H. MacDONALD 54

ny

FIG. 2. The flow diagram in the presence of tunneling, from
Ref. 27.

FIG. 1. The two different forms of disorder. to as uncorrelated disorder, and the form where the disorder

is identical in the layergcorrelated disordérsince the latter

where the dispersion relations explicity showed three-has a much smaller effect on the localization length. Related
dimensional effects in zero magnetic field. Measurements ofvork on the double-layer system was previously done by
the resistivity tensor showed thag, again was quantized as Ohtsuki, Ono, and Kraméf. Our study has clear analogies
h/nie? despite the 3D nature of the system, but it was foundo previous work on the spin-degeneratéhere the two spin
thatn#N,. This was later explained in terms of band bend-levels are not resolve@nd spin-resolved transitions. Experi-
ing, which raised the energy of states in quantum wells closgentally, the spin-degenerate transition has been investi-
to the sample surface above the Fermi |é¥efubsequent gated in several different studies. Wi al?® observed that
experiments on a 200-period superlattice seem to confirdB as well as (p,,/dB) ' both behave as a power law in
this picture, since only a fixed number of apparently emptyT with a much smaller exponent than observed for the spin-
quantum wells occut® In later work, Stomer et al*2 dem-  resolved transitions. Later experimefitsound AB~T%2
onstrated thatr,, also has deep minima on quantum Hall Experiments on the frequencyf)tdependent conductivity
plateaus. Significantly for the physics addressed here, nbave shown thaior,, peaks broadens asAB)~f” with
Hall plateaus with intermediate integer indices were ob-y=0.41+0.04 for the spin-split transition, and
served. y=0.20+0.05 for the spin-degenerate c&3dhis tantaliz-

The phase diagram of disordered three-dimensional sysng effect was explained in terms of an unstable critical
tems in a magnetic field has been investigdfed® and the  point, so that the enhancement of the exponent is understood
possibility of a metal-insulatofMI) transition has been pur- as an artifact of crossover phenom@&n@ee Fig. 2. How-
sued. The study of the quantum Hall effect in three-ever, other work® has proposed the possibility of an effec-
dimensional systems may also be relevant to quasi-ondively stablefixed point due to a disorder induced destruction
dimensional systems such as the BecHgslts, which form  of the exchange enhancement of the electydactor. In the
a spin-density-wavéSDW) state in a magnetic fieft]. In double-layer system this would correspond to a finite critical
such a state the Hall conductance is also quantized. Recetduplingt. needed to see the symmetric and antisymmetric
theoretica®“°as well as experimental wotksupports a pic-  states appear. Network model calculatidné find that the
ture in which a complex phase diagram arises from the inuniversality class is unchanged in the presence of strong
terplay between SDW formation and the quantum Hall ef-Landau-level mixing between the polarized Landau sub-
fect. bands. However, it is presently not clear to what extent these

Theoretical model calculations have examined the Andermodels actually describe Landau-level mixitig® The ef-
son transition in a strong magnetic field for three-fect of spin-orbit scattering has also been considetéd,
dimensional systems. Transfer-matrix calculattdié and again leading to crossover phenomena without a change of
recursive Green’s-functions studid@fave shown that the lo- the universality class. In the language of the double-layer
calization length at the mobility edge diverges with an expo-systems these studies consider completely random tunneling
nentr=1.35+ 0.15%2 similar to what is found in the absence between the two layers, and in most cases the disorder is
of a magnetic field@* Calculations performed on network strongly correlated between the two layers. Since the experi-
models® indicate an exponent of=1.45+0.25 in, perhaps, mental situation for double-layer systems is much closer to a
surprisingly good agreement. Note that the exponens  weakand uniform tunneling between the two layers, which
significantly smaller than the approximatefyfound at the to our knowledge was not considered previously, we inves-
2D quantum Hall transitions. tigate this limit in detail. In the case of the spin-degenerate

In our studies of double-layer systems, we assume that thepin-resolved transition, the controlling parameter is the
disorder potentials in the two layefsee Fig. 1 are uncor- electrong factor which is not readily tuned experimentally.
related. As sketched in Fig. 1, it is crucial to make the dis-However, for double-layer systems, it should be experimen-
tinction between this form of disorder, which we shall refertally possible to tune the coupling between the two layers by
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tilting the magnetic field. This is a very convenient circum- tunneling will have no effect on even the most extended
stance, since it igconceivably possible to investigate if a orbitals in the system, and we should expect negligible
finite couplingt, is needed in order to split the Landau-level changes due to tunneling in our finite-size system calcula-
subbands corresponding to the symmetric and antisymmetrigons. Whenl, is smaller thané, electrons will typically
states. Assuming that the interesting interaction effects ass@unnel before Comp|eting a closed orbit around an equipoten-
ciated with tilting the magnetic fiefd°can be ignored in  tal. Note that this condition is satisfied at smaller and
the more disordered samples to which the considerations &mallert values as the center of the Landau level is ap-
the present paper would apply, the only effect of tilting theproached. When an electron tunnels to the other layer, it will
magnetic field in a sample with uncorrelated disorder is tomove along an equipotential of a statistically independent
reducé” the effective tunneling parameter smooth disorder potential. When it later returns to the origi-
: nal layer, it will not in general return to the same equipoten-
t =t exd — (d tan(6)/2/)*], (1.0 tial contour from which it departedven neglecting tunnel-
whered is the layer separation;2/2B, =®,, with B, the ing events near saddle points within a lay®elated ideas
component of the magnetic field perpendicular to the sampldlave been discussed in Ref. 60. In our view the possibility
and @ is the angle by which the magnetic field is tilted away that localization physics is qualitatively altered by tunneling
from the normal to the layers. between the layers deserves serious attention. The situation
Our paper is organized as follows. In Sec. Il we discuspecomes simple again only whey is smaller thanA, so
several different arguments, all at the semiclassical levetthat an electron tunnels many times before its local potential
which indicate that even very weak coupling between theprofile changes. In this limit, electronic eigenstates will be
layers can give rise to dramatic increases in localizatiorsymmetric and antisymmetric combinations of the individual
lengths and possibly change the apparent localization lengtiayer eigenstates, and the effective disorder potential will be
exponent. In Sec. Il we present the results of a numericathe mean of the independent disorder potentials in the two
study of a realistic microscopic model of a double-layer syslayers. Note that the limit of infinite system size and the limit
tem. Localization properties are discussed in terms of the@f vanishing tunneling amplitudes are not interchangeable. In
Thouless numbeg,. Section IV is concerned with a net- the thermodynamic limit, tunneling will always be important
work model suitably defined to describe the weakly coupledor those states near the critical energy which have a local-
double-layer system. Using transfer-matrix techniques, wdgzation length larger thahy,.
calculate the reduced correlation length. Finally in Sec. V we In Fig. 2 we show the flow diagram proposed in Ref. 27.

present our conclusions. The controlling parameter that describes the flow from the
unstable fixed pointP to the more conventional picture
Il. SEMICLASSICAL ARGUMENTS (solid lineg is the electrorg factor or the tunneling param-

_ o etert for the double-layer systems. Note that the unstable

When the disorder potentials in both layers are smooth ofxe(d point is at 0", since two uncoupled layers=0) can-
microscopic length scales, electronic orbitals are localizeghgt lead to new critical behavior. In Fig. 2 we have left out
along equipotentials. The quantum percolation theory of thene flow around the unstable critical poiRt leaving open
integer quantum Hall effect is based on a theory of percolatthe possibility of another unstable critical point at a finite
ing equipotentials supplemented by the possibility of quant  ~sych an unstable critical point would imply that the tran-
tum tunneling between equipotentials near saddle points ofition from ther=0 phase would be directly into the=2
the disorder potential. Semiclassically, thE trossB” drift phase without an intervening=1 state. This scenario has

velocity of an eleqtrqn along an equipotential is proportionalrecenﬂy been discussed by Tikofsky and Kivel€band re-

typical electric field isI'/eA, where A is the correlation could be interpreted as lending support to this
length of the disorder potential. Accordingly, the typical drift hogsibility 28:67-69
velocity is If, as suggested in Ref. 27, the enhanced exponent seen in
T the experiments on the spin-degenerate transition is indeed
P — (2.1  due to the presence of an unstable fixed point, one might ask
eBA why the crossover exponent should Bt Polyakov and
hklovskif® proposed a crossover form for the correlation
ength, based on the assumption that the effective correlation
ength is the square of the correlation length in the absence
of any coupling. We now give a brief argument, somewhat

We are interested in the influence of tunneling between th
layers on localization properties. Tunneling introduces
typical length scale into the physics of the system, the dri

length ) LS i X .
speculative and heuristic, in the spirit of the semiclassical
/2T calculation of Ref. 7, for why this could be the case. In the
lar=—7 (2.2 absence of any tunneling to the other layer we will, at a

given energ)E, relative to the middle of the Landau level,
l4 is the typical distance an electron drifts along an equipohave states localized on an equipotential contf(E). We
tential between tunneling events. Typical equipotentials ar¢hen introduce a very weak couplirigto the other layer.
closed paths with a perimeter which we can for present purFollowing the discussion in the beginning of this section, we
poses associate with the localization lengtivhich diverges  expect that fog,(E) <l there will not be sufficient time to
at a critical energy within each Landau le%2P. For weak  scatter into the next layer before the electron self-interacts.
tunneling,l 4 is long. Whenl 4, is larger than the sample size, Thus a nonzerd will not affect sufficiently small&y(E).
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However, whené&y(E)~1g4,, but still in the limit t<I" the . iy , Np ] .
electron will scatter a number of timd$, along thefinal (#i|H]#] y=2mN/ 5n,n/21 F(ro) e} (rp)
path £(E). Naturally, =

NSN 50( E)/Idr-

Furthermore, in the limit<I" we expect the electron to be
scattered amonglifferent orbits in different layersat ap-
proximately thesameenergy and spatial extendy(E) (see
the top panel in Fig. 1 We then find that

E(E)~Ng(E)&(E)~ (&(E))>~|E| 2",

In a given orbit of extenty(E), which makes up a part of
the final path of lengtlg, this argument assumes only a few imatiol . :
scattering events intdifferentorbits. That is, we implicitly approximation” I'scga, in our units we have

exclude events where the electron immediately is scattered _

back into the same orbit. Clearly, wheénbecomes large, FSCBA_2|)\|V”p/N¢. (3.9
many scattering events will occur and we effectively formand we therefore choga|=(1/2)yN,/n,. With this choice
symmetric and antisymmetric states. This will occur whenwe have effectively chosen our energy scale, and all of our
t>T" or, equivalently, results have energl in units of I'scga. For different sizes
we always keeph |, and therefore the ratio, /N, , constant.
From exactly solvable modékit is known that the density

of states exhibit peculiarites when,/N,<2; we have
fherefore chosen always to work withy/N,=3. We have
explicitly checked that in the case of a single layer we find,
with the above-mentioned definitions, that the calculated
density of states is well described by the approximate for-
mula

_t5i,j(5n',nfl+5n’,n+1)a (3-3)

where\ contains the random sign of th&function scatter-
ers and their strength,, is the number of scatterers. The first
term in Eq.(3.3) is the potential energy in each of the wells,
while the second describes the tunneling between the two
wells in the tight-binding approximation, withthe tunneling
parameter. We shall always use periodic boundary condi-
tions in thez direction, so that layeN,+ 1 is identical to the
layer 1. We chosé\| so as to fix the width of the Landau
levels to be of the order of 1 in the self-consistent Born

(2.3

(2.4)

| <A. (2.9

Thus we expect an enhanced correlation length and an effe
tive doubling of the correlation length exponent whenever

A<l g<E. (2.6)

[ll. EXACT DIAGONALIZATION RESULTS
(3.5

We now turn to a discussion of our exact diagonalization
results for double-layer systems. We shall work exclusively
in the lowest Landau-level approximation. Since we are conwith I'=1. In the case where we do not include the random
sidering a finite system of dimensiohs,L,, we want to  sign of the scatterers we have also checked that the density
impose periodic boundary conditions. In this case one usesf states corresponds to the exact result of Ref. 72. Note that

the following set of basis functions for the lowest Landauwe use the standard definition @fE), which integrates over

lIZh ,
27Tp(E)=(;) Fe72(E/F) ,

level 47t E to 1/(2ml?).
" We note, with our definition of the potential, the variance
#xy)= 2 ( : ) R T
=T Ly/\/; (V(NOV(r'))y=6m/2\28(r—r1")=0v2/26(r—1").

(3.9

(3.6

Here X; s=j2m/?/L,+sly, /'=\/fic/2eB is the magnetic With our choice ofA we then havev=m/2. We could
length, andj runs from 1 toN,=L,L,/27/? whereN, is  equally well have chosen our energy scale by making the
the number of flux quanta or the degeneracy factor of thehoicev =1, and thereby fixing..

lowest Landau level. Since we describe each quantum well
by this set of lowest Landau-level wave functions, we in-

clude the dummy inder to denote the different layers. It is . .
easy to see that the individual terms in the infinite sum all are The Thouless numbEt gy(E) is defined as the absolute

invariant undely—y+L, . The sum oves makes the wave value of the shift of a given energy level, under a change in
function invariant up to phase factors also under the trans?oundary conditions from periodic to antiperiodicAE|,
formation x—x+L,. We model the randomness as Multiplied by the total density of state¢(E),
é-function scatterers at random position with random sign:

P g 9s(E)=N(E)AE.

A. Computational method

(3.7)

HereN(E) integrated over all energies is the total number of
states,N,N,, for an N,-layer system, or, in other words,

N(E)=L2N,p(E). Clearly extended states are much more
Although this is not a realistic model of real randomness, itsensitive to a change in the boundary conditions than local-
is generally believed that the form of the randomness is irized, andgg(E) therefore measures the stiffness at a given
relevant; see, however, Ref. 12. The Hamiltonian can then benergyE. In our calculations we change the boundary con-
written ditions in they direction in the individual layers simply by

n

V(r)=277)\/22p1 S(r—rp). (3.2
P
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performing the transformatioX; s— X; ;15 in EQ. (3.3). It 0.4 r . T T T
is known that in the absence of a magnetic field the Thouless
number is related to the longitudinal conductivity,(E)." \
For a recent account of Thouless number calculations, see sl ,.:‘., ]
Ref. 59 and references therein. We follow Ref. 59 in deriving *'
a scaling function for the integrated Thouless number. If we ; i
assume that the correlation length divergegasE| ", we £ ; ?“
can write a finite-size scaling form fa5(E), 5 02 ! ]
8
9s=0s(EL™"), (3.9 g |
whereg; is a universal function. From this it follows that o1 F /ﬂ 1
_ * —1 v * — —1lv p /
A(L)= f_mgs(E)dE—L f_wgs(x)dx—CL , e R
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
(3.9 E

whereC is a constant_ independent 'of the system size. In FIG. 3. The Thouless numbey, as a function of energy for a
order to perform the disorder averaging we consider 40 000Q. | I' : TN — S " lculati
samples for N,=12, 10000 for N,=20, 2000 for single-layer system _Wl_t ¢—72_ andnp—5N¢_. C_acu ations are
N.—80. 1000 f¢N _’300 d 200 f ‘Iﬁ\l —]:000 | h shown using the elliptio@ functions (thick solid ling as well as

¢= 30, O =390, an 0N = LU0 IN €aCh yithout themi(thick dashed ling We also show results fag, cal-
case the system consistsief=2 layers each withN, states.  ¢,jated using a geometric mean and ehteinctions(thin solid line
We have also preliminary results fbf,>2. Since we exclu-  ang without themthin dashed ling

sively consider systems with,=L,, we shall in the follow-

ing useL=/"y27N,. ., along thez direction, we remove the off-diagonal tunneling
Building on the work of Thouless and co-workérs)!  elements, and obtain a matrix that is block diagonal with

that relatesgg(0) to oy, Andc™ proposed that a similar N4x N, blocks,M,,. If we denote the wave vector along the

relation should hold in a magnetic field, z directon by Kk:=2mn/L,, n=1,...N,, where
2 N,=L,/ais the nymber of layers, we find that each of these
ox(E)=lim 5 FgS(E,L)_ (3.10  blocks can be written
LM M,=B— 2t cod?l, (3.1

This is, however, not true in any strict sense and one would

only expect the left-hand side of the above expression to bevhereB is the matrix describing the disorder in one layer.
proportional too,,. However, in the absence of a magnetic The presence of thetZod¢| term will not affect the Thou-
field the root-mean-square level curvature can be related tizss numbers since it is independent of the boundary condi-
the dissipative conductanélf the scaling theory of the  tions in thexy plane. Thus, except for some accidental de-
guantum Hall effect is correct, we would expect tlagt= generacies, we should find that the Thouless numbers are a
3e%/h at the critical point, and thugs(0)=1/7. This seems simple superposition of the the one-layer result displaced by
to be consistent with what is found numerically for short-2t cod¢,

range scattererd;*® although the range of the potential can

change the value significantt§:>>*? A more rigorous ap- |

proach would be to calculate the Chern numbérg;1811.3 gs(E)=2, gi"™e(E—2t cosk?). (3.12
which confirms the results of the scaling theory. In our cal- "
culations we findgs(0)~ 0.2 (see Fig. 3, where calculations
are shown with(thick solid line or without (thick dashed
line) the sum overs in Eq. (3.1). Clearly the results are
markedly different. Also, since the density of states differ

significantly without the infinite sum in Eq3.1), we find a transform in thez direction. In the limitt— o we can neglect

densﬁy of states that is no longer well described by(B_cﬁ). the block-off-diagonal matrices, and we again obtain a
In Fig. 3 we also show results where the geometric mean

exp(In|AE]),) has been used instead|&fE|. With the sum ?r:?scl;-rgfg\gl\?en:lnanatnx WittN ;X N,, blocksM,,. However,
overs in Eq. (3.1), the Thouless number is indicated as the
thin solid line in Fig. 3, and without the sum as the thin

Strong tunneling, uncorrelated disordeNow we con-
sider the case of uncorrelated disorder. In the limit where
tends tox the tunneling completely dominates over the dis-
order, and it is again advantageous to perform a Fourier

! 1
dashed line. anN—Z Bm— 2t col, (3.13
zm
B. Results where B, is the matrix describing the disorder in tineth
Before we turn to a discussion of the numerical results letayer. Let us consider the two-layer cd$g=2. Forp(E) we
us begin by looking at a few simple limits: obtain two widely separated peaks, each corresponding to a

Correlated disorder: In this case we can treat the single layer with double the number of impurities at half the
N,-layer case straightforwardly. By Fourier transforming strength. Each of these peaks then have a withti'/ 2.
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N
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0.0 o 0.0 bt N FIG. 5. The density of states for a couplitig 0.1 between the
06 [ t=025 1 o3l =025 1 two layers.n,=3N, random pinning centers, modeled as random
@Q oa b .02 sign ¢ functions, were used in the calculation. The position of the
- 1ol r . . . .
& pinning centers was taken to be random and independent in the two
0z p oty layers. The two dashed lines indicates the position of the two de-

0 S 05 00 0e 10 s %%is 10 05 o0 os 10 15 Qenerate Landau levels in the absence of any disorder.

E E
_ are large. Well-separated localized states appear for suffi-
FIG. 4. The density _of states(E) and the Thouless number ciently larget/T'. In the top row our results for two un-
9s f(;)r a range of COUp"nQSEdbletéveen thj wo layers,=3N, oo nled layerst= 0.0, are shown. We see that the Thouless
random pinning centers, modeled as random ﬁgun_cnons, WETe  umber is exactly twice the value of a single laysee Fig.
used in the calculation. The position of the pinning centers waz,o For very weak tunneling, the peak g becomes signifi-
taken to be random and independent in the two layers, correspond-’ ' . .
ing to uncorrelated disorder. In all figures the curves corresponds tgamly broadened, and for the sizes We_ have considered we
N,=12, 20, 80, 300, and 1000. The eneryis in the units of do lnot observe two separate pegks_ untilo.1. As the tun-
T'scsa. The dashed lines indicate the position of the extended statB€ling between the two layers, is increased, two peaks
energies in the absence of disorder. corresponding to the antisymmetric and symmetric state be-
come apparent. Far=0.25 we find thayg and the density of
states essentially behave as the superposition of two indepen-
Hence the integrated Thouless numBgL) shouldincrease  dent peaks for the symmetric and antisymmetric states, in
by a factor of\2 compared to the single-layer result. agreement with our considerations above. We also observe
Zero tunneling, uncorrelated disordelf: we sett=0, the that the width of the density of states in the individual peaks
Hamiltonian matrix again becomes block diagonal and weapproximately obeys the relatidh~1“1_,ayer/\/§. Our results
should obtain results similar to the single-layer case for largare in good agreement with prior calculations by Ohtsuki,
enough system sizes. The density of stat@&) should re- Ono, and Kramer® In Fig. 4 the position of the degenerate
main unchanged, and(E)~N,g:"™°(E), since the total Landau levels in the absence of disorder is indicated as
energy of statedl(E) is proportional toN, . dashed lines in the panels fgg. For larget, level repulsion
We shall mainly be concerned with disorder that is notis clearly visible, and the two extended-state energies are
correlated between the laydtbe top panel in Fig. 1 butwe  further apart when disorder is included.
shall briefly also discuss the case of correlated disofither Before discussing the scaling properties of the transition,
bottom panel in Fig. 1 The bulk of our results are shown in we compare results for disorder that is independent in the
Fig. 4, where we display the density of staj@E) along two layers(uncorrelated disordgror the same(correlated
with the Thouless numbeg, for a range of couplings, disordej. In Figs. 5, and 6 we show the density of states and
t=0.0, 0.05, 0.15, 0.20, and 0.25, between the two layergys for the case of uncorrelated disorder in two layers coupled
In all cases the disorder was taken to be independent in thaith a tunneling parameter df=0.1. The density of states
two layers. For the uncorrelated disorder model we consideshown in Fig. 5 is markedly broader than what we found for
here, the effective correlation length of the disorder potentiaiwo uncoupled layeréop row, Fig. 4. In Fig. 6 we show the
is the microscopic lengtk. We therefore expect that tunnel- Thouless numbers fdr=0.1; only for the largest sizes does
ing will be important when the localization length of decou- it become clear that in the thermodynamic limit extended-
pled layers exceedsy~/T/t, or, equivalently,é exceeds State energies exist at two discrete energies rather than across
l4r- Accordingly the influence of tunneling on the density of @ band of finite width between low- and high-energy mobil-
states and especially on the Thouless numbers appears fiitt edges. Note also that the peak value of the Thouless num-
near the center of the levels where the localization lengthber is in this casegl®{(t=0.1)~0.22, whereas we found
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FIG. 6. The Thouless numbe for a couplingt=0.1 between FIG. 8. The Thouless numbeg, for a couplingt=0.1 between
the two layersn,=3N,, random pinning centers, modeled as ran-the two layersn,=3N,, random pinning centers, modeled as ran-
dom signé functions, were used in the calculation. The position of 4om signs functions, were used in the calculation. The position of
the pinning centers was taken to be random and independent in thge pinning centers was taken to be random bustraein the two
two layers. The two dashed lines indicate the position of the twoayers, corresponding to a form of correlated disorder. The two
states in the absence of any disorder. The results correspond to tdgshed lines indicates the position of the two degenerate Landau
density of states in Fig. 5 levels in the absence of any disorder. The results correspond to the

density of states in Fig. 7.

ge”~0.20 for the single-layer case, andgl™
~0.35(=0.0) for two layers in the absence of any tunnel-States at the center of the Landau band. The Thouless number
ing. gs is also significantly different for the case of correlated

The case of correlated disorder is very different. In Figs. 7disorder.gl'®* is approximately 0.28 for the smaller sizes
and 8 we show our results for the density of states@nd before approaching a value gf'®*~0.20 for the largest sys-
respectively. The disorder in this case is the same in the tweems. As expected, the Thouless numbers are well described
layers, and the tunneling parameter was, as above, taken by a simple superposition of single-layer results B12).
bet=0.1. If we comparep(E) for uncorrelated and corre- This is clearly not the case for the results in Fig. 6.
lated disorder to the single-layer results, we see plig) is The difference between correlated and uncorrelated disor-
decreased & =0 in both cases, but more so for the case ofder is also reflected in the scaling of the integrated Thouless
uncorrelated disorder. This corresponds to a depletion ofiumberA(L), Eqg. (3.9. In Fig. 9 we show results for the
integrated Thouless number for three different tunneling
strengths. We see from E(.9) that A(L), according to the
finite-size scaling form, should behave as a power law in
] with exponent—1/v. For the case of uncorrelated disorder,

] g
<C
] O—On=0.05
O—{In=0.10
4 - =+n=0.10, Columnar
2 10“ | [V—V¥n=0.25 p
FIG. 7. The density of states for a couplitig 0.1 between the '
two layers.n,=3N, random pinning centers, modeled as random 10' 10°
sign s-functions, were used in the calculation. The position of the L

pinning centers was taken to be random but shenein the two

layers, corresponding to a form of correlated disorder. The two FIG. 9. The integrated Thouless number as a functioh,dbr
dashed lines indicate the position of the two degenerate Landatwnneling strengths of=0.05, 0.1, and 0.25. The pluses denote
levels in the absence of any disorder. results fort=0.1 with correlated disorder.
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the results in Fig. 9 yield /~0.43 fort=0.25, in agreement el 0 costy, sinhg, | [ € 43 0
with previous results on single-layer systems. Correlated dis- o _ .. @2
order(pluses in Fig. §behaves in a similar way, and we find 0 gi%2) | sinhg; coshy, 0 €%

1/v=0.44. However, the case of uncorrelated disorder with

weak tunneling shows a marked crossover. £010.1 we  Here 6, is the parameter that controls the tunneling between
find 1/v=0.24. (Interestingly, numerical calculations for the two layers, and is the channel index counting the num-
single-layer systems in thd=1 Landau level show a simi- ber of channels in each layer. We shall always tékéo be

lar apparent enhancement of the localization length exposonstant. Random phases are included along the straight
nent) Fort=0.05 we see that the smaller system sizes showaths as in Ref. 6 described by tlges in Eq. (4.2). The

the 1~=0.44 behavior expected for decoupled systems besaddle points in the two layers are represented by identical
fore crossing over to a different power law. For sntafind ~ matrices but with a different parametér which we again
short-range potential correlations, we do not expect tunnelttake to be a constant and teemein the two layers:

ing to have any effect until the system size reachdst. If

we fit only to points withL>15, we find, fort=0.05, cosh, 0 sinhg, 0

1/»=0.23, in very good agreement with the result for :

t=0.1. Fort=0.15 and 0.2, we find in both cases that the T -] . 0 costd, 0 sintt, 4.3
slope of A(L) increases with_, without saturating for the x~| sinhd, 0 cosld, 0 |- :
values of L available. This is consistent with the results 0 sinhg,, 0 cosly,

shown in Fig. 4, where two separate peakgirclearly are
visible at largeL for these two values df. _

We have also tried to analyze the Thouless numbers b{i€re the index,b refers to the two layers. We shall always
integrating separately over the regions inside and outside tHéke 6a= 0y, since we are interested in modeling layers with
extended energies. This is difficult to do for smtakince the ~€dual density. _ _
extended energies cannot be located with a very high preci- 1he choice of the matrix coupling the two layers, Eq.
sion. Analyzing the integrated Thouless numbers separatef#-2); iS by no means obvious. We could have used trigono-
for the two regions, it is clear that the number of extendednetric functions instead of hyperbolics as in Ref. 57, thereby

states between the two extended energies decreases signiftPlying that in the picture where an individual layer is rep-
cantly more slowly withL than for the region outside the '€Sented by coupled lines of opposite going currésis, for
extended energies. instance, Ref. 95the two layers arstacked in registemwith

the currents going in the same direction in the two layers. In
this case it is most natural to use trigonometric functions in
IV. NETWORK MODEL Eq. (4.2) as one does for scatterin@{) matrices. We shall
) refer to this as the IR8nN register,S matrix) model. One can
We now proceed to discuss our results for a networkysg stack the layersut of registerfORM mode}, in which
model of the double-layer system. The network model wagase one would use thd matrices of Eq(4.2). The choice
introduced by Chalker and Coddingfoto take into account e have made corresponds in a certain sense to a mixture of
the corrections to percolative behavior that occur when thenese two choices. since in Eq4.2) and (4.3 the currents
correlation length diverges in the vicinity of the extended-fi\y in the same direction in the two layers, i.e., the layers
state energies in the middle of the Landau level. It is possiblea stackedn register, but we have used thél matrices of
to map the S?se%vork model for a single layer on to variousgq (4.2) (IRM mode). We believe that none of these micro-
spin_models,”™ and the calculated effecg:)ve correlation gconic details should matter for the universal properties of
lengths can be used to estimatg, and oyy.~ The model  he model at smalb, , in particular for the divergence of the
that we use is essentially identical to one that has been studyre|ation length. We have explicitly checked this for the
ied in previous work by Lee and co-worke¥sEach indi- results presented below in Fig. 10, by repeating the calcula-
vidual layer is represented by a separate network model ifjo for the IRS and ORM models described above. For the

the manner described in Ref. 6. A question now arises as tg 4| coupling of6,=0.05, used in Fig. 10, no dependence
how to include tunneling between the layers. We follow Ref. the microscopic results was observed.

57, and introduce a second saddle point along the straight \ye determine the correlation lengths associated with
paths in the original network model, coupling the two layers.qqple-layer systems, described by the transfer matrices out-
A priori there are se_veral ways to represent such a S?‘dd|ﬁ1ed above, by estimating the Lyaponov exponents. The
point by a matrix. Since we want to mOdeI.tWO physwal ositive Lyaponov exponenvsi,\,l(a) and their uncertainties
Iaye_rs and not pseudospins, we make a slightly Q|fferengre calculated following the method in Ref. 81 for a range of
choice than Ref. 57. We take the interlayer saddle point to bgy e ot for fixed 6, . The correlation length is determined

identical to the int_ralayer saddle points, i.e., represented b)ﬁs the inverse of themallest positiveLyaponov exponent
the following matrix: AL ()
M 1

(M? 0 ) Em(0) =13 (0). (4.4

T= , 4.0

0 M It is only necessary to calculate the positive Lyaponov expo-
nents, which saves considerable computing time. An addi-

with M{ given by tional check on the calculation can be done by calculating



54 INTEGER QUANTUM HALL EFFECT IN DOUBLE-LAYER. .. 10 683

25 r ' . layers byM, and consider systems wit ranging from 4 to
128. ForM =4 and 8 we generate>210° transfer matrices
and for the remaining widths>210°. We obtain sets of data
by fixing 6, and approaching the critical point by varyirégy
and therebyy. As a check on our calculations we sgtto
zero, and were able to reproduce the single-layer results from
Ref. 6 to within statistical errors. The integral factor some-
times introduced in the definition of the number of layers
was chosen so that this would be the case.

B. Results

Our main results on the network model for the double-
layer system is presented in Fig. 10. For lattice sizes ranging
from M=4 to 128, we calculated the reduced correlation
length A, (6). Since we want to view the tunneling between

FIG. 10. T_he reduced correlation length as a funciion of thethe two layers, described b, as a small perturbation, we
engrgyyzln sinhg for the double-layer network model with a tun- {5ke this parameter to be very small and constént0.05.
neling parameter of;=0.05. Roughly we have the relatiGhtanhg,=t, wheret is the pa-

rameter describing the tunneling in the exact diagonalization

studies in Sec. Ill. Note that we obtairand not 2, since we
the first (and smallest in absolute valuef the negative do not have periodic boundary conditions between the two
Lyaponov exponents, which should be the negative ofayers as we had in Sec. lll. We then vary the intralayer
7\i/|( 0) .82 coupling#, and plot the results as a function f As clearly

In general the correlation lengthy will be limited by the ~ seen in Fig. 10, we do not reach a scaling regime until the
width of the strip,M. The relevant quantity to study is there- width of the stripsM, exceeds 1/~ 20, as expected from the
fore the reduced correlation lengthy,(6) =&y /M. An in-  discussion in Sec. Il. We expect the extended state ener-
sulating region will be characterized By (6)—0, a metal- ~ gy(ies) to be located ay~0, since we have taken the intra-
lic one by Ay(6)—, or constant. SinceAy(#) is layer couplingd to be the same in the two layers. For widths
dimensionless, standard finite-size scaling arguments préarger thanM =20, we observe that the reduced correlation

dicts the scaling form length becomes independent of the widtéh at y=0, as
expected. For the sizes considered we do not see any signs of
An(0)=1(&IM), (4.5  a splitting of the two extended-state energies, which should

have been of the order &f y~2t~286,, based on the simple
tight-binding picture, and therefore clearly visible in Fig. 10.
Given these observations we therefore perform a scaling
analysis under the assumption that both of the two expected
E~|E—E(| =]y " (4.6) extended-state energies are to be found at the same critical
energyy.=0. Since we do not expect scaling to be obeyed
The relation betweer and the distance to the critical en- for M <20, we include only width#1 > 20. Testing the scal-
ergy, v, can be determined approximatélj* for positive  ing analysis is now a simple matter of rescaling thexis in
0, Fig. 10 by an amounM” for the different widths. The
. result is shown in Fig. 11. Clearly, very good scaling is
y~In sinhg, >0, 4.7 found for the chosen value of the correlation length exponent
implying that the critical 8 is given by Sian=1, or 1/=1—34. Since we do not have a Iarge number of numerical

where ¢ is the correlation length in the infinite system. As
the critical energ\E,.. is approached, this correlation length
diverges with the exponent,

6.=0.884 ... . Relation (4.7 allows us to rewrite the data available to determine the exponentve can only test
finite-size scaling relation, Eq4.5), in the following form:  if a given value ofv gives good scaling. We tried= 5 and
2 in both cases we found scaling that visibly was much
An(0)=g(yM'), (4.8)  worse than what is shown in Fig. 11 with=%. We there-

which is the form we shall use in the analysis of the numeri-fore conclude tha.‘t the a_lppa_\rent doubling Qf the correlat_ion
cal results. length exponent is not in d_|sag_r_eement with the numerical
results obtained from the simplified network model for the
double-layer system.

We now wish to make a few comments on the applicabil-
ity of the network model to the real physical system. We take

We perform the calculations in a cylinder geometry im-the view that the starting point for the network models is a
posing periodic boundary conditions in the transverse direcpercolation path close to a critical energy. Quantum tunnel-
tion. The system is made invariant under a rotation by 90° byng at the saddle points is then introduced asreall correc-
alternating transfer matrices with and sint¥’=1/sinhp as  tion to the physic§> We believe that the double-layer net-
described in Ref. 6. We denote the width of each of the twovork model only describes the physics of the coupled

A. Computational method
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FIG. 11. Scaling collapse of the reduced correlation length for
the double-layer network model with a tunneling parameter of
6,=0.05.

FIG. 12. The reduced correlation length for two different values
of #;=0.5 and 2.0. The results are for the double-layer network
model.

guantum wells in detail, in the limit where the interlayer we have not been able to obsenweo extended-state ener-
tunneling parameter tends to zegp;~0. Our argument goes gies. The crossover from a single extended-state energy, at
as follows: Imagine we wanted to build a network modelweak 6, , to two extended-state energies, at strong coupling,
describing astrongly coupleddouble-layer system. As we s not observed. However, we cannot rule out the possibility
saw in Sec. lll, the symmetric and antisymmetric states aréhat some more sophisticated network models will be able to
then widely split, by an amounAgas~4t. As 't becomes capture the physics of double-layer systems both at strong
very large we should therefore model the system as twand weak coupling.

weakly coupleaingle-layer networks, describing symmetric

and antisymmetric states. These two networks should then be

modeled using different interlayer couplings and 6, cor- V. SUMMARY AND DISCUSSION

responding to the symmetric and antisymmetric states. In the

limit t—cc the two networks become completely decoupled We have shown that in the strong-magnetic-field limit
(and|6;— 6,]—=), and we should thus s&=0. Related noninteracting double-layer electron systems in which inter-
ideas were proposed for a network model in Ref. 35 in ordefayer tunneling occurs have two extended-state energies for
to describe Landau-level mixing, and also discussed in Rekach orbital Landau level. Numerical results show that, for
58. In our model, as we described it above, the two networkgarge tunneling amplitudes, Landau levels associated with
correspond to the two layers in physical space. As the intrasubbands which are symmetric and antisymmetric combina-
layer coupling is increased wib not observe symmetric and tions of isolated layer states are weakly mixed by disorder.
antisymmetric statgsand no extended-state energies arelocalization properties within the Landau levels of the sym-
found for the IRM model. This is clearly seen in Fig. 12 metric and antisymmetric subbands are similar to those for a
where we plot results for;=0.5 and 2.0. Clearly, the re- single 2D electron layer, and in particular appear to have a
duced correlation length is growing slower thish and for  correlation length exponemtidentical to what was found for
6,=2.0 it appears that it is independent Mf and also of an isolated layer to within numerical precision. For smaller
v, consistent with our expectation that the orbits all are lo-values of the tunneling amplitude, where symmetric and an-
calized between the two layers on a length scale of order kisymmetric subbands are not well developed in the density
This is supported by the observation that féf=2.0, of states, numerical results still appear to show that extended
Awn(6) decreasesvith M roughly asM ~ %, indicating a con-  states occur at only two energies which are split by an
stant correlation length. In the case of the ORM model weamount somewhat larger than the splitting of symmetric and
also find no extended-state energies at strong couplingntisymmetric Landau levels in the absence of disorder. We
whereas the IRS model hassingle extended-state energy. cannot exclude the possibility that a finite amount of tunnel-
For intermediate couplings it is possible that one could seéng is necessary to split the two extended-state energies, al-
structure resembling the symmetric and antisymmetric statehough the weight of available evidence appears to suggest
in particular so for the ORM modé&f,but we believe that the the contrary. However, numerical values of the localization
double-layer network models only describe the correct physlength are much larger than in the limits of either strictly
ics of the real double-layer systems in the limit where thezero tunneling or large tunneling. This is especially true in
interlayer tunneling paramete is but a small perturbation. the energy interval between the two extended-state energies.
Hence, we believe that the IRS, ORM, and IRM double-layerOver the range of system sizes accessible for numerical stud-
network models do not describe the microscopic physics ines, the exponent for the diverging localization length ap-
detall for intermediate and strong tunneling parameters, sincpears to be approximately twice as large as for the case of
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isolated layers. We have compared these microscopic calcast extended-state enerdgilowever, we know of no general
lations with network models of double-layer systems. Theargument which forbids either the collapse of the extended
network model and microscopic numerical results differstates toward a single energy or, in the other extreme, the
qualitatively. In the network model case there is no evidencélevelopment of a band of energies over which states are
of two discrete critical energies at which extended states ocextended. In the limit of an infinite number of layers, the
cur. We conclude from our study that, in contrast to the€nergy separation between extended states will approach
single-layer case, network models do not generically giveZ€ro but the system will still, strictly speaking, not be metal-

reliable results for the strong-magnetic-field localization!iC Since almost all states in any range will stil be
properties of double-layer systems. localized? Our numerical results suggest the possibility that

We believe that our results have important implicationscriti(fal exponents for localization lengths diverging beree”
for the integer quantum Hall effect in three-dimensional elecdn intermediate-energy extended state could be different

tron systems. We comment here only on the case where tt{éom _the_ C”t'ca! exponents_ for single-layer systems. .
bandwidth along the field direction is smaller than the It is interesting to consider whether or not the metallic

: hase of three-dimensional systems in a strong magnetic
Landau-level separation and the quantum Hall effect has th .
best chance of occurring. It is important to realize that the €/d: Suggested by the work in Refs. 51, 52, and 55, can be

physics of this extreme strong-field regime is qualitativelyrecor‘c"ed with the expectation from integer quantum Hall

different from the more usual three-dimensional case wherd'€0"y and from the present calculations of a discrete set of

many different Landau tubes cr8&she Fermi energyThe extended-state energies for any finite number of layers. In
physical systems we have in mind are multiple quantum wel rder for these two pictures to be compatible, the localization

(MQW) systems, like those studied experimentally by engths at energies between the lowest and highest extended-

Starmeret al, with weak barriers between the wellin par- state energies would have to increase with the number of

ticular, just as in the single-layer integer quantum Hall CaseI’ayers and diverge in the limit of infinite layer numbers or,

we can argue that disorder can never result in the localizatiofduivalently, the limit of small separations between
of all states. This point is perhaps made most elegantly usin xtqued-state energies. Incidentally, if we assume that each
the topological picture of the integer quantum Hall eff&ct. dd|t|o_nal quantum well leads to another extgnded-state en-
In the absence of disorder an elementary calculation shows'9Y without cr_\anglng th.e associated co_rr_elatlon length ex-
that the Hall conductance &f/h units, and hence the sum of ponents as this energy 1S approached, it is not clear how to
the Chern numbers of all states, is equal to the number o xplain th? large dlfference between the exponefuund at
layers in the MQW. As the states evolve adiabatically withNe mo_b|l|ty edge in Refs. 51.’ 52, and 55 and the two-
disorder, the sum of all the Chern numbers of all states in thg|men3|onal exponent, We pehevg that the tendency toward
(energy range of interéstannot chang® Since only ex- an apparent metallic phase in multiple-quantum-well systems

tended states can have nonzero Chern numbers, it is impoibr'_— the_ limit of large layer numbers or s_mall inte_rlayer hop-
sible to localize all states. The situation is closely analogou8!Nd IS extremely closely connected with the disappearance

to the quantum Hall effect in a single two-dimensional elec—of the_ quantum Hall effecf[ n-a h|gh-mobll|ty two-
tron gas in a magnetic field when Landau-level separation |menS|QnaI e!ectron §ystem in the limit Qf weak mggneﬂc
become small, since each Landau level contributes 1 to th elds, since dlsorder_ in both cases permits only mixing of
Chern number sum, and localization is possible only by mix—Lan(:_au bands_ carrtymg t?he s_atme unit tottal Cneﬂn r;fumtb_er.
ing states with different Chern number which are at energie§X!> Ing experiments on the integer quantum Hall efect in
well away from the bottom of the band of the host semicon- QW. systems have observed_a quantized Hall effect only at
Fermi energies above the highest energy extended state,

ductor. X
In the absence of disorder the states in the energy range Where electrons are well localized. We hope that the present

interest in the MQW consist of a set of macroscopically deP2Pe" will motivate additional attempts to study the physics

generate Landau levels, labeled by wave vectors and split b the quantum Hall ?ffeCt in double-quantum-well and
an amount proportional to the interlayer hopping amplitude. QW systems at Fermi energies between exiended-state en-
For small I'/t, states with a given wave vector will be ergies.

weakly coupled, and a single extended-state energy will exist ACKNOWLEDGMENTS

for each Landau level. As the disorder strength increases, our
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