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We consider the localization of independent electron orbitals in double-layer two-dimensional electron
systems in the strong magnetic-field limit. Our study is based on numerical Thouless number calculations for
realistic microscopic models, and on transfer-matrix calculations for phenomenological network models. The
microscopic calculations indicate a crossover regime for weak interlayer tunneling in which the correlation-
length exponent appears to increase. Comparison of network model calculations with microscopic calculations
casts doubt on their generic applicability.@S0163-1829~96!06240-6#

I. INTRODUCTION

The integer quantum Hall~IQHE! effect is generally well
understood in single-layer two-dimensional electron systems
~2DES’s! which are sufficiently disordered that interactions
do not play an essential role, and are in a field sufficiently
strong that Landau level mixing does not play an essential
role. In this limit, single-electron orbitals are localized ex-
cept at a critical energyEc near the center of each disorder-
broadened Landau level. For Fermi energyEF5Ec ,
theory1–4 predicts that (sxx

c ,sxy
c )5(1,2n11)e2/2h, whereas

on the Hall plateaus (EFÞEc) (sxx ,sxy)5(0,n)e2/h, where
n is the number of extended-state energies below the Fermi
level. As the critical energy is approached, the localization
length for electrons at the Fermi level is expected to have a
power-law divergencej;uEF2Ecu2n, andn, the correlation
length exponent, is expected to be independent ofn. It is
believed that the transition is well described by quantum
percolation5,6 models and semiclassical calculations7 have
estimated the correlation length exponent ton5 7

3. This pic-
ture has been corroborated by a large number of thorough
numerical studies8–12 which are in agreement with theoreti-
cal predictions forsxx

c andsxy
c . Localization properties and

the divergence of the localization length have been studied
extensively,13–20with the most recent estimate of the corre-
lation length exponent beingn52.3560.0320. On the experi-
mental side, measurements of the widthDB of the peak of
rxx as well as (drxy /dB)

21, both predicted to scale with
temperature asT1/zn, yield values 1/n50.4260.04,21,22with
z assumed to be 1. Higher derivatives ofrxy yield
exponents23 of nn in agreement with scaling theories of the
transition between Hall plateaus.~Experiments in the frac-
tional quantum Hall regime find similar values24 for this ex-
ponent.! Recently the dynamical critical exponentz has been
measured25,26 to bez51.

In this paper we report on a numerical study of the local-
ization properties of single-electron orbitals in double-layer
two-dimensional electron systems. This work is motivated
by recent experiments hinting at changes in localization
properties when two different Landau levels are nearly
degenerate,22–25,27–29by growing interest in the conditions
necessary for the occurrence of the quantum Hall effect in
three-dimensional electron systems, and by the need for im-

proved understanding of the disappearance of the quantum
Hall effect at weak magnetic fields in high-mobility samples.
In each case, we believe that double-layer quantum Hall sys-
tems offer advantages for both theoretical studies and for the
experimental studies which we hope to motivate.

In single-layer two-dimensional electron systems, local-
ization properties appear experimentally to be changed when
the exchange-enhanced spin-splitting between Landau levels
with the same orbital index collapses.30 The interpretation of
these experiments is confused by uncertainties involved in
modeling the spin-orbit disorder scattering necessary for
mixing the two Landau levels, and by the apparent impor-
tance of interaction effects in controlling the degree of mix-
ing. The interaction complications are not so troublesome in
double-layer systems and, in addition, the degree of mixing
between Landau levels in separate quantum wells can be
controlled by adjusting the strength of the barrier separating
the wells, or by adding an external bias potential which
moves the double-layer system off balance.

In high-mobility two-dimensional electron systems
(EFt/\@1), the quantum Hall effect appears to become un-
observable in practice once Landau-level mixing by disorder
becomes strong, i.e., oncevct is of order 1. ~Here
vc5eB/m* c is the cyclotron frequency.! The loss of an
observable quantum Hall effect in these systems appears to
be associated with a dramatic increase in the localization
length in the middle of the Hall plateaus, rather than with the
floatation of extended-state energies,31–37 which occurs in
more strongly disordered systems. It seems likely that the
same dramatic increase in localization lengths on Hall pla-
teaus will occur in double-layer systems when the Landau
levels in the two layers are strongly mixed. The ability to
control systematically the number of Landau levels which
are mixed motivates working with double-layer and
multilayer systems.

Since much of the physical picture underlying the quan-
tum Hall effect is specific to two dimensions, it was not
initially clear that it was even possible to observe quantized
plateaus in three-dimensional systems. Early experimental
work, focused on widely separated 2D layers,38 found the
IQHE with quantized resistivityrxy5h/Nzie

2, whereNz is
the number of quantum wells consistent with parallel con-
duction in many quantum wells. Sto¨rmer et al.39 performed
experiments on coupled GaAs superlattices with 30 periods,
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where the dispersion relations explicitly showed three-
dimensional effects in zero magnetic field. Measurements of
the resistivity tensor showed thatrxy again was quantized as
h/nie2 despite the 3D nature of the system, but it was found
thatnÞNz . This was later explained in terms of band bend-
ing, which raised the energy of states in quantum wells close
to the sample surface above the Fermi level.40 Subsequent
experiments on a 200-period superlattice seem to confirm
this picture, since only a fixed number of apparently empty
quantum wells occur.41 In later work, Sto¨rmer et al.42 dem-
onstrated thatszz also has deep minima on quantum Hall
plateaus. Significantly for the physics addressed here, no
Hall plateaus with intermediate integer indices were ob-
served.

The phase diagram of disordered three-dimensional sys-
tems in a magnetic field has been investigated,43–46 and the
possibility of a metal-insulator~MI ! transition has been pur-
sued. The study of the quantum Hall effect in three-
dimensional systems may also be relevant to quasi-one-
dimensional systems such as the Bechga˚rd salts, which form
a spin-density-wave~SDW! state in a magnetic field.47 In
such a state the Hall conductance is also quantized. Recent
theoretical48,49as well as experimental work50 supports a pic-
ture in which a complex phase diagram arises from the in-
terplay between SDW formation and the quantum Hall ef-
fect.

Theoretical model calculations have examined the Ander-
son transition in a strong magnetic field for three-
dimensional systems. Transfer-matrix calculations51,52 and
recursive Green’s-functions studies53 have shown that the lo-
calization length at the mobility edge diverges with an expo-
nentn51.3560.15,52 similar to what is found in the absence
of a magnetic field.54 Calculations performed on network
models55 indicate an exponent ofn51.4560.25 in, perhaps,
surprisingly good agreement. Note that the exponentn is
significantly smaller than the approximately73 found at the
2D quantum Hall transitions.

In our studies of double-layer systems, we assume that the
disorder potentials in the two layers~see Fig. 1! are uncor-
related. As sketched in Fig. 1, it is crucial to make the dis-
tinction between this form of disorder, which we shall refer

to as uncorrelated disorder, and the form where the disorder
is identical in the layers~correlated disorder!, since the latter
has a much smaller effect on the localization length. Related
work on the double-layer system was previously done by
Ohtsuki, Ono, and Kramer.56 Our study has clear analogies
to previous work on the spin-degenerate~where the two spin
levels are not resolved! and spin-resolved transitions. Experi-
mentally, the spin-degenerate transition has been investi-
gated in several different studies. Weiet al.23 observed that
DB as well as (drxy /dB)

21 both behave as a power law in
T with a much smaller exponent than observed for the spin-
resolved transitions. Later experiments27 found DB;T0.21.
Experiments on the frequency (f )-dependent conductivity
have shown thatsxx peaks broadens as (DB); f g with
g50.4160.04 for the spin-split transition, and
g50.2060.05 for the spin-degenerate case.25 This tantaliz-
ing effect was explained in terms of an unstable critical
point, so that the enhancement of the exponent is understood
as an artifact of crossover phenomena27 ~see Fig. 2!. How-
ever, other work30 has proposed the possibility of an effec-
tively stablefixed point due to a disorder induced destruction
of the exchange enhancement of the electrong factor. In the
double-layer system this would correspond to a finite critical
coupling tc needed to see the symmetric and antisymmetric
states appear. Network model calculations57,58 find that the
universality class is unchanged in the presence of strong
Landau-level mixing between the polarized Landau sub-
bands. However, it is presently not clear to what extent these
models actually describe Landau-level mixing.55,35 The ef-
fect of spin-orbit scattering has also been considered,59,60

again leading to crossover phenomena without a change of
the universality class. In the language of the double-layer
systems these studies consider completely random tunneling
between the two layers, and in most cases the disorder is
strongly correlated between the two layers. Since the experi-
mental situation for double-layer systems is much closer to a
weakanduniform tunneling between the two layers, which
to our knowledge was not considered previously, we inves-
tigate this limit in detail. In the case of the spin-degenerate
spin-resolved transition, the controlling parameter is the
electrong factor which is not readily tuned experimentally.
However, for double-layer systems, it should be experimen-
tally possible to tune the coupling between the two layers by

FIG. 1. The two different forms of disorder.

FIG. 2. The flow diagram in the presence of tunneling, from
Ref. 27.
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tilting the magnetic field. This is a very convenient circum-
stance, since it is~conceivably! possible to investigate if a
finite couplingtc is needed in order to split the Landau-level
subbands corresponding to the symmetric and antisymmetric
states. Assuming that the interesting interaction effects asso-
ciated with tilting the magnetic field61–63 can be ignored in
the more disordered samples to which the considerations of
the present paper would apply, the only effect of tilting the
magnetic field in a sample with uncorrelated disorder is to
reduce64 the effective tunneling parameter

t*5t exp@2„d tan~u!/2l …2#, ~1.1!

whered is the layer separation; 2pl 2B'5F0, with B' the
component of the magnetic field perpendicular to the sample;
andu is the angle by which the magnetic field is tilted away
from the normal to the layers.

Our paper is organized as follows. In Sec. II we discuss
several different arguments, all at the semiclassical level,
which indicate that even very weak coupling between the
layers can give rise to dramatic increases in localization
lengths and possibly change the apparent localization length
exponent. In Sec. III we present the results of a numerical
study of a realistic microscopic model of a double-layer sys-
tem. Localization properties are discussed in terms of the
Thouless numbergs . Section IV is concerned with a net-
work model suitably defined to describe the weakly coupled
double-layer system. Using transfer-matrix techniques, we
calculate the reduced correlation length. Finally in Sec. V we
present our conclusions.

II. SEMICLASSICAL ARGUMENTS

When the disorder potentials in both layers are smooth on
microscopic length scales, electronic orbitals are localized
along equipotentials. The quantum percolation theory of the
integer quantum Hall effect is based on a theory of percolat-
ing equipotentials supplemented by the possibility of quan-
tum tunneling between equipotentials near saddle points of
the disorder potential. Semiclassically, the ‘‘E crossB’’ drift
velocity of an electron along an equipotential is proportional
to the local electric field. For a Landau level of widthG the
typical electric field isG/eL, whereL is the correlation
length of the disorder potential. Accordingly, the typical drift
velocity is

vdr5
cG

eBL
. ~2.1!

We are interested in the influence of tunneling between the
layers on localization properties. Tunneling introduces a
typical length scale into the physics of the system, the drift
length

l dr5
l 2G

Lt
. ~2.2!

l dr is the typical distance an electron drifts along an equipo-
tential between tunneling events. Typical equipotentials are
closed paths with a perimeter which we can for present pur-
poses associate with the localization lengthj which diverges
at a critical energy within each Landau level.65,5 For weak
tunneling,l dr is long. Whenl dr is larger than the sample size,

tunneling will have no effect on even the most extended
orbitals in the system, and we should expect negligible
changes due to tunneling in our finite-size system calcula-
tions. Whenl dr is smaller thanj, electrons will typically
tunnel before completing a closed orbit around an equipoten-
tial. Note that this condition is satisfied at smaller and
smaller t values as the center of the Landau level is ap-
proached. When an electron tunnels to the other layer, it will
move along an equipotential of a statistically independent
smooth disorder potential. When it later returns to the origi-
nal layer, it will not in general return to the same equipoten-
tial contour from which it departed,even neglecting tunnel-
ing events near saddle points within a layer. Related ideas
have been discussed in Ref. 60. In our view the possibility
that localization physics is qualitatively altered by tunneling
between the layers deserves serious attention. The situation
becomes simple again only whenl dr is smaller thanL, so
that an electron tunnels many times before its local potential
profile changes. In this limit, electronic eigenstates will be
symmetric and antisymmetric combinations of the individual
layer eigenstates, and the effective disorder potential will be
the mean of the independent disorder potentials in the two
layers. Note that the limit of infinite system size and the limit
of vanishing tunneling amplitudes are not interchangeable. In
the thermodynamic limit, tunneling will always be important
for those states near the critical energy which have a local-
ization length larger thanl dr .

In Fig. 2 we show the flow diagram proposed in Ref. 27.
The controlling parameter that describes the flow from the
unstable fixed pointP to the more conventional picture
~solid lines! is the electrong factor or the tunneling param-
eter t for the double-layer systems. Note that the unstable
fixed point is at 01, since two uncoupled layers (t50) can-
not lead to new critical behavior. In Fig. 2 we have left out
the flow around the unstable critical pointP, leaving open
the possibility of another unstable critical point at a finite
tc . Such an unstable critical point would imply that the tran-
sition from then50 phase would be directly into then52
phase without an interveningn51 state. This scenario has
recently been discussed by Tikofsky and Kivelson,66 and re-
cent experiments in the strong disorder weak-field limit
could be interpreted as lending support to this
possibility.28,67–69

If, as suggested in Ref. 27, the enhanced exponent seen in
the experiments on the spin-degenerate transition is indeed
due to the presence of an unstable fixed point, one might ask
why the crossover exponent should be143 . Polyakov and
Shklovskii70 proposed a crossover form for the correlation
length, based on the assumption that the effective correlation
length is the square of the correlation length in the absence
of any coupling. We now give a brief argument, somewhat
speculative and heuristic, in the spirit of the semiclassical
calculation of Ref. 7, for why this could be the case. In the
absence of any tunneling to the other layer we will, at a
given energyE, relative to the middle of the Landau level,
have states localized on an equipotential contourj0(E). We
then introduce a very weak couplingt to the other layer.
Following the discussion in the beginning of this section, we
expect that forj0(E)! l dr there will not be sufficient time to
scatter into the next layer before the electron self-interacts.
Thus a nonzerot will not affect sufficiently smallj0(E).

54 10 677INTEGER QUANTUM HALL EFFECT IN DOUBLE-LAYER . . .



However, whenj0(E); l dr , but still in the limit t!G the
electron will scatter a number of timesNs along thefinal
pathj(E). Naturally,

Ns;j0~E!/ l dr . ~2.3!

Furthermore, in the limitt!G we expect the electron to be
scattered amongdifferent orbits in different layersat ap-
proximately thesameenergy and spatial extent,j0(E) ~see
the top panel in Fig. 1!. We then find that

j~E!;Ns~E!j0~E!;„j0~E!…2;uEu22n. ~2.4!

In a given orbit of extentj0(E), which makes up a part of
the final path of lengthj, this argument assumes only a few
scattering events intodifferentorbits. That is, we implicitly
exclude events where the electron immediately is scattered
back into the same orbit. Clearly, whent becomes large,
many scattering events will occur and we effectively form
symmetric and antisymmetric states. This will occur when
t@G or, equivalently,

l dr!L. ~2.5!

Thus we expect an enhanced correlation length and an effec-
tive doubling of the correlation length exponent whenever

L! l dr!j. ~2.6!

III. EXACT DIAGONALIZATION RESULTS

We now turn to a discussion of our exact diagonalization
results for double-layer systems. We shall work exclusively
in the lowest Landau-level approximation. Since we are con-
sidering a finite system of dimensionsLx ,Ly , we want to
impose periodic boundary conditions. In this case one uses
the following set of basis functions for the lowest Landau
level:14,71

f j
n~x,y!5 (

s52`

` S 1

Lyl Ap
D 1/2ei ~Xj ,sy/l 2!e2[ ~x2Xj ,s!

2]/2l 2.

~3.1!

HereXj ,s5 j2pl 2/Ly1sLx , l 5A\c/2eB is the magnetic
length, andj runs from 1 toNf5LxLy/2pl 2, whereNf is
the number of flux quanta or the degeneracy factor of the
lowest Landau level. Since we describe each quantum well
by this set of lowest Landau-level wave functions, we in-
clude the dummy indexn to denote the different layers. It is
easy to see that the individual terms in the infinite sum all are
invariant undery→y1Ly . The sum overs makes the wave
function invariant up to phase factors also under the trans-
formation x→x1Lx . We model the randomness as
d-function scatterers at random position with random sign:

V~r !52pll 2(
p51

np

d~r2r p!. ~3.2!

Although this is not a realistic model of real randomness, it
is generally believed that the form of the randomness is ir-
relevant; see, however, Ref. 12. The Hamiltonian can then be
written

^f i
nuHuf j

n8&52pll 2dn,n8(
p51

np

f i*
n~r p!f j

n8~r p!

2td i , j~dn8,n211dn8,n11!, ~3.3!

wherel contains the random sign of thed-function scatter-
ers and their strength.np is the number of scatterers. The first
term in Eq.~3.3! is the potential energy in each of the wells,
while the second describes the tunneling between the two
wells in the tight-binding approximation, witht the tunneling
parameter. We shall always use periodic boundary condi-
tions in thez direction, so that layerNz11 is identical to the
layer 1. We choseulu so as to fix the width of the Landau
levels to be of the order of 1 in the self-consistent Born
approximation71 GSCBA, in our units we have

GSCBA52uluAnp /Nf, ~3.4!

and we therefore choseulu5(1/2)ANf /np. With this choice
we have effectively chosen our energy scale, and all of our
results have energyE in units ofGSCBA. For different sizes
we always keepulu, and therefore the rationp /Nf , constant.
From exactly solvable models72 it is known that the density
of states exhibit peculiarities whennp /Nf<2; we have
therefore chosen always to work withnp /Nf53. We have
explicitly checked that in the case of a single layer we find,
with the above-mentioned definitions, that the calculated
density of states is well described by the approximate for-
mula

2pr~E!5S 2p D 1/2\

G
e22~E/G!2, ~3.5!

with G51. In the case where we do not include the random
sign of the scatterers we have also checked that the density
of states corresponds to the exact result of Ref. 72. Note that
we use the standard definition ofr(E), which integrates over
E to 1/(2p l 2).

We note, with our definition of the potential, the variance
of V:

^V~r !V~r 8!&56pl 2l2d~r2r 8![v2l 2d~r2r 8!.
~3.6!

With our choice ofl we then havev5Ap/2. We could
equally well have chosen our energy scale by making the
choicev51, and thereby fixingl.

A. Computational method

The Thouless number73 gs(E) is defined as the absolute
value of the shift of a given energy level, under a change in
boundary conditions from periodic to antiperiodic,uDEu,
multiplied by the total density of statesN(E),

gs~E!5N~E!DE. ~3.7!

HereN(E) integrated over all energies is the total number of
states,NzNf , for an Nz-layer system, or, in other words,
N(E)5L2Nzr(E). Clearly extended states are much more
sensitive to a change in the boundary conditions than local-
ized, andgs(E) therefore measures the stiffness at a given
energyE. In our calculations we change the boundary con-
ditions in they direction in the individual layers simply by
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performing the transformationXj ,s→Xj11/2,s in Eq. ~3.3!. It
is known that in the absence of a magnetic field the Thouless
number is related to the longitudinal conductivitysxx(E).

74

For a recent account of Thouless number calculations, see
Ref. 59 and references therein. We follow Ref. 59 in deriving
a scaling function for the integrated Thouless number. If we
assume that the correlation length diverges asj;uEu2n, we
can write a finite-size scaling form forgs(E),

gs5g̃s~EL
1/n!, ~3.8!

whereg̃s is a universal function. From this it follows that

A~L !5E
2`

`

gs~E!dE5L21/nE
2`

`

g̃s~x!dx5CL21/n,

~3.9!

whereC is a constant independent of the system size. In
order to perform the disorder averaging we consider 40 000
samples for Nf512, 10 000 for Nf520, 2 000 for
Nf580, 1000 forNf5300, and 200 forNf51000. In each
case the system consists ofNz52 layers each withNf states.
We have also preliminary results forNz.2. Since we exclu-
sively consider systems withLx5Ly , we shall in the follow-
ing useL5l A2pNf.

Building on the work of Thouless and co-workers,73,74

that relatesgs(0) to sxx , Ando
14 proposed that a similar

relation should hold in a magnetic field,

sxx~E!5 lim
L→`

p

2

e2

h
gs~E,L !. ~3.10!

This is, however, not true in any strict sense and one would
only expect the left-hand side of the above expression to be
proportional tosxx . However, in the absence of a magnetic
field the root-mean-square level curvature can be related to
the dissipative conductance.75 If the scaling theory2 of the
quantum Hall effect is correct, we would expect thatsxx5
1
2e

2/h at the critical point, and thusgs(0)51/p. This seems
to be consistent with what is found numerically for short-
range scatterers,14,59 although the range of the potential can
change the value significantly.16,59,12 A more rigorous ap-
proach would be to calculate the Chern numbers,76,77,18,11,36

which confirms the results of the scaling theory. In our cal-
culations we findgs(0);0.2 ~see Fig. 3!, where calculations
are shown with~thick solid line! or without ~thick dashed
line! the sum overs in Eq. ~3.1!. Clearly the results are
markedly different. Also, since the density of states differ
significantly without the infinite sum in Eq.~3.1!, we find a
density of states that is no longer well described by Eq.~3.5!.
In Fig. 3 we also show results where the geometric mean
exp(̂ lnuDEu&av) has been used instead ofuDEu. With the sum
over s in Eq. ~3.1!, the Thouless number is indicated as the
thin solid line in Fig. 3, and without the sum as the thin
dashed line.

B. Results

Before we turn to a discussion of the numerical results let
us begin by looking at a few simple limits:

Correlated disorder: In this case we can treat the
Nz-layer case straightforwardly. By Fourier transforming

along thez direction, we remove the off-diagonal tunneling
elements, and obtain a matrix that is block diagonal with
Nf3Nf blocks,Mn . If we denote the wave vector along the
z direction by kn

z52pn/Lz , n51, . . .Nz , where
Nz5Lz /a is the number of layers, we find that each of these
blocks can be written

Mn5B22t coskn
zI , ~3.11!

whereB is the matrix describing the disorder in one layer.
The presence of the 2t coskn

zI term will not affect the Thou-
less numbers since it is independent of the boundary condi-
tions in thexy plane. Thus, except for some accidental de-
generacies, we should find that the Thouless numbers are a
simple superposition of the the one-layer result displaced by
2t coskn

z ,

gs~E!5(
n

gs
1-layer~E22t coskn

z!. ~3.12!

Strong tunneling, uncorrelated disorder:Now we con-
sider the case of uncorrelated disorder. In the limit wheret
tends to` the tunneling completely dominates over the dis-
order, and it is again advantageous to perform a Fourier
transform in thez direction. In the limitt→` we can neglect
the block-off-diagonal matrices, and we again obtain a
block-diagonal matrix withNf3Nf blocksMn . However,
this time we find

Mn5
1

Nz
(
m

Bm22t coskn
zI , ~3.13!

whereBm is the matrix describing the disorder in themth
layer. Let us consider the two-layer caseNz52. Forr(E) we
obtain two widely separated peaks, each corresponding to a
single layer with double the number of impurities at half the
strength. Each of these peaks then have a widthG̃5G/A2.

FIG. 3. The Thouless numbergs as a function of energy for a
single-layer system withNf572 andnp55Nf . Calculations are
shown using the ellipticu functions ~thick solid line! as well as
without them~thick dashed line!. We also show results forgs cal-
culated using a geometric mean and theu functions~thin solid line!
and without them~thin dashed line!.
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Hence the integrated Thouless numberA(L) shouldincrease
by a factor ofA2 compared to the single-layer result.

Zero tunneling, uncorrelated disorder:If we sett50, the
Hamiltonian matrix again becomes block diagonal and we
should obtain results similar to the single-layer case for large
enough system sizes. The density of statesr(E) should re-
main unchanged, andgs(E);Nzgs

1-layer(E), since the total
energy of statesN(E) is proportional toNz .

We shall mainly be concerned with disorder that is not
correlated between the layers~the top panel in Fig. 1!, but we
shall briefly also discuss the case of correlated disorder~the
bottom panel in Fig. 1!. The bulk of our results are shown in
Fig. 4, where we display the density of statesr(E) along
with the Thouless numbergs for a range of couplings,
t50.0, 0.05, 0.15, 0.20, and 0.25, between the two layers.
In all cases the disorder was taken to be independent in the
two layers. For the uncorrelated disorder model we consider
here, the effective correlation length of the disorder potential
is the microscopic lengthl . We therefore expect that tunnel-
ing will be important when the localization length of decou-
pled layers exceedsl dr;l G/t, or, equivalently,j exceeds
l dr . Accordingly the influence of tunneling on the density of
states and especially on the Thouless numbers appears first
near the center of the levels where the localization lengths

are large. Well-separated localized states appear for suffi-
ciently large t/G. In the top row our results for two un-
coupled layers,t50.0, are shown. We see that the Thouless
number is exactly twice the value of a single layer~see Fig.
3!. For very weak tunneling, the peak ings becomes signifi-
cantly broadened, and for the sizes we have considered we
do not observe two separate peaks untilt;0.1. As the tun-
neling between the two layers,t, is increased, two peaks
corresponding to the antisymmetric and symmetric state be-
come apparent. Fort50.25 we find thatgs and the density of
states essentially behave as the superposition of two indepen-
dent peaks for the symmetric and antisymmetric states, in
agreement with our considerations above. We also observe
that the width of the density of states in the individual peaks
approximately obeys the relationG;G1-layer/A2. Our results
are in good agreement with prior calculations by Ohtsuki,
Ono, and Kramer.56 In Fig. 4 the position of the degenerate
Landau levels in the absence of disorder is indicated as
dashed lines in the panels forgs . For larget, level repulsion
is clearly visible, and the two extended-state energies are
further apart when disorder is included.

Before discussing the scaling properties of the transition,
we compare results for disorder that is independent in the
two layers ~uncorrelated disorder! or the same~correlated
disorder!. In Figs. 5, and 6 we show the density of states and
gs for the case of uncorrelated disorder in two layers coupled
with a tunneling parameter oft50.1. The density of states
shown in Fig. 5 is markedly broader than what we found for
two uncoupled layers~top row, Fig. 4!. In Fig. 6 we show the
Thouless numbers fort50.1; only for the largest sizes does
it become clear that in the thermodynamic limit extended-
state energies exist at two discrete energies rather than across
a band of finite width between low- and high-energy mobil-
ity edges. Note also that the peak value of the Thouless num-
ber is in this casegs

max(t50.1);0.22, whereas we found

FIG. 4. The density of statesr(E) and the Thouless number
gs for a range of couplingst between the two layers.np53Nf

random pinning centers, modeled as random signd functions, were
used in the calculation. The position of the pinning centers was
taken to be random and independent in the two layers, correspond-
ing to uncorrelated disorder. In all figures the curves corresponds to
Nf512, 20, 80, 300, and 1000. The energyE is in the units of
GSCBA. The dashed lines indicate the position of the extended state
energies in the absence of disorder.

FIG. 5. The density of states for a couplingt50.1 between the
two layers.np53Nf random pinning centers, modeled as random
sign d functions, were used in the calculation. The position of the
pinning centers was taken to be random and independent in the two
layers. The two dashed lines indicates the position of the two de-
generate Landau levels in the absence of any disorder.
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gs
max;0.20 for the single-layer case, andgs

max

;0.35(t50.0) for two layers in the absence of any tunnel-
ing.

The case of correlated disorder is very different. In Figs. 7
and 8 we show our results for the density of states andgs ,
respectively. The disorder in this case is the same in the two
layers, and the tunneling parameter was, as above, taken to
be t50.1. If we comparer(E) for uncorrelated and corre-
lated disorder to the single-layer results, we see thatr(E) is
decreased atE50 in both cases, but more so for the case of
uncorrelated disorder. This corresponds to a depletion of

states at the center of the Landau band. The Thouless number
gs is also significantly different for the case of correlated
disorder.gs

max is approximately 0.28 for the smaller sizes
before approaching a value ofgs

max;0.20 for the largest sys-
tems. As expected, the Thouless numbers are well described
by a simple superposition of single-layer results Eq.~3.12!.
This is clearly not the case for the results in Fig. 6.

The difference between correlated and uncorrelated disor-
der is also reflected in the scaling of the integrated Thouless
numberA(L), Eq. ~3.9!. In Fig. 9 we show results for the
integrated Thouless number for three different tunneling
strengths. We see from Eq.~3.9! thatA(L), according to the
finite-size scaling form, should behave as a power law inL
with exponent21/n. For the case of uncorrelated disorder,

FIG. 6. The Thouless numbergs for a couplingt50.1 between
the two layers.np53Nf random pinning centers, modeled as ran-
dom signd functions, were used in the calculation. The position of
the pinning centers was taken to be random and independent in the
two layers. The two dashed lines indicate the position of the two
states in the absence of any disorder. The results correspond to the
density of states in Fig. 5

FIG. 7. The density of states for a couplingt50.1 between the
two layers.np53Nf random pinning centers, modeled as random
sign d-functions, were used in the calculation. The position of the
pinning centers was taken to be random but thesamein the two
layers, corresponding to a form of correlated disorder. The two
dashed lines indicate the position of the two degenerate Landau
levels in the absence of any disorder.

FIG. 8. The Thouless numbergs for a couplingt50.1 between
the two layers.np53Nf random pinning centers, modeled as ran-
dom signd functions, were used in the calculation. The position of
the pinning centers was taken to be random but thesamein the two
layers, corresponding to a form of correlated disorder. The two
dashed lines indicates the position of the two degenerate Landau
levels in the absence of any disorder. The results correspond to the
density of states in Fig. 7.

FIG. 9. The integrated Thouless number as a function ofL, for
tunneling strengths oft50.05, 0.1, and 0.25. The pluses denote
results fort50.1 with correlated disorder.
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the results in Fig. 9 yield 1/n.0.43 fort50.25, in agreement
with previous results on single-layer systems. Correlated dis-
order~pluses in Fig. 9! behaves in a similar way, and we find
1/n.0.44. However, the case of uncorrelated disorder with
weak tunneling shows a marked crossover. Fort50.1 we
find 1/n.0.24. ~Interestingly, numerical calculations for
single-layer systems in theN51 Landau level show a simi-
lar apparent enhancement of the localization length expo-
nent.! For t50.05 we see that the smaller system sizes show
the 1/n.0.44 behavior expected for decoupled systems be-
fore crossing over to a different power law. For smallt and
short-range potential correlations, we do not expect tunnel-
ing to have any effect until the system size reaches;1/t. If
we fit only to points with L.15, we find, for t50.05,
1/n.0.23, in very good agreement with the result for
t50.1. For t50.15 and 0.2, we find in both cases that the
slope ofA(L) increases withL, without saturating for the
values of L available. This is consistent with the results
shown in Fig. 4, where two separate peaks ings clearly are
visible at largeL for these two values oft.

We have also tried to analyze the Thouless numbers by
integrating separately over the regions inside and outside the
extended energies. This is difficult to do for smallt, since the
extended energies cannot be located with a very high preci-
sion. Analyzing the integrated Thouless numbers separately
for the two regions, it is clear that the number of extended
states between the two extended energies decreases signifi-
cantly more slowly withL than for the region outside the
extended energies.

IV. NETWORK MODEL

We now proceed to discuss our results for a network
model of the double-layer system. The network model was
introduced by Chalker and Coddington6 to take into account
the corrections to percolative behavior that occur when the
correlation length diverges in the vicinity of the extended-
state energies in the middle of the Landau level. It is possible
to map the network model for a single layer on to various
spin models,78,79 and the calculated effective correlation
lengths can be used to estimatesxx andsxy .

80 The model
that we use is essentially identical to one that has been stud-
ied in previous work by Lee and co-workers.57 Each indi-
vidual layer is represented by a separate network model in
the manner described in Ref. 6. A question now arises as to
how to include tunneling between the layers. We follow Ref.
57, and introduce a second saddle point along the straight
paths in the original network model, coupling the two layers.
A priori there are several ways to represent such a saddle
point by a matrix. Since we want to model two physical
layers and not pseudospins, we make a slightly different
choice than Ref. 57. We take the interlayer saddle point to be
identical to the intralayer saddle points, i.e., represented by
the following matrix:

Tt5SM t
0 0

0 M t
1D , ~4.1!

with M t
n given by

S eif1
n

0

0 eif2
nD S coshu t sinhu t

sinhu t coshu t
D S eif3

n
0

0 eif4
nD . ~4.2!

Hereu t is the parameter that controls the tunneling between
the two layers, andn is the channel index counting the num-
ber of channels in each layer. We shall always takeu t to be
constant. Random phases are included along the straight
paths as in Ref. 6 described by thef ’s in Eq. ~4.2!. The
saddle points in the two layers are represented by identical
matrices but with a different parameteru, which we again
take to be a constant and thesamein the two layers:

Tx5S coshua 0 sinhua 0

0 coshub 0 sinhub

sinhua 0 coshua 0

0 sinhub 0 coshub
D . ~4.3!

Here the indexa,b refers to the two layers. We shall always
takeua5ub , since we are interested in modeling layers with
equal density.

The choice of the matrix coupling the two layers, Eq.
~4.2!, is by no means obvious. We could have used trigono-
metric functions instead of hyperbolics as in Ref. 57, thereby
implying that in the picture where an individual layer is rep-
resented by coupled lines of opposite going currents~see, for
instance, Ref. 55! the two layers arestacked in register, with
the currents going in the same direction in the two layers. In
this case it is most natural to use trigonometric functions in
Eq. ~4.2! as one does for scattering (S-! matrices. We shall
refer to this as the IRS~in register,Smatrix! model. One can
also stack the layersout of register~ORM model!, in which
case one would use theM matrices of Eq.~4.2!. The choice
we have made corresponds in a certain sense to a mixture of
these two choices, since in Eqs.~4.2! and ~4.3! the currents
flow in the same direction in the two layers, i.e., the layers
are stackedin register, but we have used theM matrices of
Eq. ~4.2! ~IRM model!. We believe that none of these micro-
scopic details should matter for the universal properties of
the model at smallu t , in particular for the divergence of the
correlation length. We have explicitly checked this for the
results presented below in Fig. 10, by repeating the calcula-
tion for the IRS and ORM models described above. For the
small coupling ofu t50.05, used in Fig. 10, no dependence
on the microscopic results was observed.

We determine the correlation lengths associated with
double-layer systems, described by the transfer matrices out-
lined above, by estimating the Lyaponov exponents. The
positive Lyaponov exponentslM

i (u) and their uncertainties
are calculated following the method in Ref. 81 for a range of
values ofu for fixedu t . The correlation length is determined
as the inverse of thesmallest positiveLyaponov exponent
lM
1 (u),

jM~u!51/lM
1 ~u!. ~4.4!

It is only necessary to calculate the positive Lyaponov expo-
nents, which saves considerable computing time. An addi-
tional check on the calculation can be done by calculating
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the first ~and smallest in absolute value! of the negative
Lyaponov exponents, which should be the negative of
lM
1 (u).82

In general the correlation lengthjM will be limited by the
width of the strip,M . The relevant quantity to study is there-
fore the reduced correlation lengthLM(u)5jM /M . An in-
sulating region will be characterized byLM(u)→0, a metal-
lic one by LM(u)→`, or constant. SinceLM(u) is
dimensionless, standard finite-size scaling arguments pre-
dicts the scaling form

LM~u!5 f ~j/M !, ~4.5!

wherej is the correlation length in the infinite system. As
the critical energyEc is approached, this correlation length
diverges with the exponentn,

j;uE2Ecu2n[ugu2n. ~4.6!

The relation betweenu and the distance to the critical en-
ergy, gc , can be determined approximately83,84 for positive
u,

g' ln sinhu, u.0, ~4.7!

implying that the critical u is given by sinhuc51, or
uc50.8814 . . . . Relation ~4.7! allows us to rewrite the
finite-size scaling relation, Eq.~4.5!, in the following form:

LM~u!5g~gM1/n!, ~4.8!

which is the form we shall use in the analysis of the numeri-
cal results.

A. Computational method

We perform the calculations in a cylinder geometry im-
posing periodic boundary conditions in the transverse direc-
tion. The system is made invariant under a rotation by 90° by
alternating transfer matrices withu and sinhu851/sinhu as
described in Ref. 6. We denote the width of each of the two

layers byM , and consider systems withM ranging from 4 to
128. ForM54 and 8 we generate 23106 transfer matrices
and for the remaining widths 23105. We obtain sets of data
by fixing u t and approaching the critical point by varyingu
and therebyg. As a check on our calculations we setu t to
zero, and were able to reproduce the single-layer results from
Ref. 6 to within statistical errors. The integral factor some-
times introduced in the definition of the number of layers
was chosen so that this would be the case.

B. Results

Our main results on the network model for the double-
layer system is presented in Fig. 10. For lattice sizes ranging
from M54 to 128, we calculated the reduced correlation
lengthLM(u). Since we want to view the tunneling between
the two layers, described byu t , as a small perturbation, we
take this parameter to be very small and constant,u t50.05.
Roughly we have the relation55 tanhut5t, wheret is the pa-
rameter describing the tunneling in the exact diagonalization
studies in Sec. III. Note that we obtaint and not 2t, since we
do not have periodic boundary conditions between the two
layers as we had in Sec. III. We then vary the intralayer
couplingu, and plot the results as a function ofg. As clearly
seen in Fig. 10, we do not reach a scaling regime until the
width of the strips,M , exceeds 1/t;20, as expected from the
discussion in Sec. II. We expect the extended state ener-
gy~ies! to be located atg;0, since we have taken the intra-
layer couplingu to be the same in the two layers. For widths
larger thanM520, we observe that the reduced correlation
length becomes independent of the widthM at g50, as
expected. For the sizes considered we do not see any signs of
a splitting of the two extended-state energies, which should
have been of the order ofDg;2t;2u t , based on the simple
tight-binding picture, and therefore clearly visible in Fig. 10.

Given these observations we therefore perform a scaling
analysis under the assumption that both of the two expected
extended-state energies are to be found at the same critical
energygc50. Since we do not expect scaling to be obeyed
for M!20, we include only widthsM@20. Testing the scal-
ing analysis is now a simple matter of rescaling thex axis in
Fig. 10 by an amountM1/n for the different widths. The
result is shown in Fig. 11. Clearly, very good scaling is
found for the chosen value of the correlation length exponent
n5 14

3 . Since we do not have a large number of numerical
data available to determine the exponentn, we can only test
if a given value ofn gives good scaling. We triedn5 7

3 and
11
3 in both cases we found scaling that visibly was much
worse than what is shown in Fig. 11 withn5 14

3 . We there-
fore conclude that the apparent doubling of the correlation
length exponent is not in disagreement with the numerical
results obtained from the simplified network model for the
double-layer system.

We now wish to make a few comments on the applicabil-
ity of the network model to the real physical system. We take
the view that the starting point for the network models is a
percolation path close to a critical energy. Quantum tunnel-
ing at the saddle points is then introduced as asmallcorrec-
tion to the physics.85 We believe that the double-layer net-
work model only describes the physics of the coupled

FIG. 10. The reduced correlation length as a function of the
energyg5 ln sinhu for the double-layer network model with a tun-
neling parameter ofu t50.05.
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quantum wells in detail, in the limit where the interlayer
tunneling parameter tends to zero,u t→0. Our argument goes
as follows: Imagine we wanted to build a network model
describing astrongly coupleddouble-layer system. As we
saw in Sec. III, the symmetric and antisymmetric states are
then widely split, by an amountDSAS;4t. As t becomes
very large we should therefore model the system as two
weakly coupledsingle-layer networks, describing symmetric
and antisymmetric states. These two networks should then be
modeled using different interlayer couplingsu1 andu2 cor-
responding to the symmetric and antisymmetric states. In the
limit t→` the two networks become completely decoupled
~and uu12u2u→`), and we should thus setu t50. Related
ideas were proposed for a network model in Ref. 35 in order
to describe Landau-level mixing, and also discussed in Ref.
58. In our model, as we described it above, the two networks
correspond to the two layers in physical space. As the intra-
layer coupling is increased wedo not observe symmetric and
antisymmetric states, and no extended-state energies are
found for the IRM model. This is clearly seen in Fig. 12
where we plot results foru t50.5 and 2.0. Clearly, the re-
duced correlation length is growing slower thanM , and for
u t52.0 it appears that it is independent ofM and also of
g, consistent with our expectation that the orbits all are lo-
calized between the two layers on a length scale of order 1.
This is supported by the observation that foru t52.0,
LM(u) decreaseswith M roughly asM21, indicating a con-
stant correlation length. In the case of the ORM model we
also find no extended-state energies at strong coupling,
whereas the IRS model has asingle extended-state energy.
For intermediate couplings it is possible that one could see
structure resembling the symmetric and antisymmetric state,
in particular so for the ORM model,86 but we believe that the
double-layer network models only describe the correct phys-
ics of the real double-layer systems in the limit where the
interlayer tunneling parameteru t is but a small perturbation.
Hence, we believe that the IRS, ORM, and IRM double-layer
network models do not describe the microscopic physics in
detail for intermediate and strong tunneling parameters, since

we have not been able to observetwo extended-state ener-
gies. The crossover from a single extended-state energy, at
weaku t , to two extended-state energies, at strong coupling,
is not observed. However, we cannot rule out the possibility
that some more sophisticated network models will be able to
capture the physics of double-layer systems both at strong
and weak coupling.

V. SUMMARY AND DISCUSSION

We have shown that in the strong-magnetic-field limit
noninteracting double-layer electron systems in which inter-
layer tunneling occurs have two extended-state energies for
each orbital Landau level. Numerical results show that, for
large tunneling amplitudes, Landau levels associated with
subbands which are symmetric and antisymmetric combina-
tions of isolated layer states are weakly mixed by disorder.
Localization properties within the Landau levels of the sym-
metric and antisymmetric subbands are similar to those for a
single 2D electron layer, and in particular appear to have a
correlation length exponentn identical to what was found for
an isolated layer to within numerical precision. For smaller
values of the tunneling amplitude, where symmetric and an-
tisymmetric subbands are not well developed in the density
of states, numerical results still appear to show that extended
states occur at only two energies which are split by an
amount somewhat larger than the splitting of symmetric and
antisymmetric Landau levels in the absence of disorder. We
cannot exclude the possibility that a finite amount of tunnel-
ing is necessary to split the two extended-state energies, al-
though the weight of available evidence appears to suggest
the contrary. However, numerical values of the localization
length are much larger than in the limits of either strictly
zero tunneling or large tunneling. This is especially true in
the energy interval between the two extended-state energies.
Over the range of system sizes accessible for numerical stud-
ies, the exponent for the diverging localization length ap-
pears to be approximately twice as large as for the case of

FIG. 11. Scaling collapse of the reduced correlation length for
the double-layer network model with a tunneling parameter of
u t50.05.

FIG. 12. The reduced correlation length for two different values
of u t50.5 and 2.0. The results are for the double-layer network
model.

10 684 54ERIK S. SO”RENSEN AND A. H. MacDONALD



isolated layers. We have compared these microscopic calcu-
lations with network models of double-layer systems. The
network model and microscopic numerical results differ
qualitatively. In the network model case there is no evidence
of two discrete critical energies at which extended states oc-
cur. We conclude from our study that, in contrast to the
single-layer case, network models do not generically give
reliable results for the strong-magnetic-field localization
properties of double-layer systems.

We believe that our results have important implications
for the integer quantum Hall effect in three-dimensional elec-
tron systems. We comment here only on the case where the
bandwidth along the field direction is smaller than the
Landau-level separation and the quantum Hall effect has the
best chance of occurring. It is important to realize that the
physics of this extreme strong-field regime is qualitatively
different from the more usual three-dimensional case where
many different Landau tubes cross87 the Fermi energy.@The
physical systems we have in mind are multiple quantum well
~MQW! systems, like those studied experimentally by
Störmeret al., with weak barriers between the wells.# In par-
ticular, just as in the single-layer integer quantum Hall case,
we can argue that disorder can never result in the localization
of all states. This point is perhaps made most elegantly using
the topological picture of the integer quantum Hall effect.88

In the absence of disorder an elementary calculation shows
that the Hall conductance ine2/h units, and hence the sum of
the Chern numbers of all states, is equal to the number of
layers in the MQW. As the states evolve adiabatically with
disorder, the sum of all the Chern numbers of all states in the
~energy range of interest! cannot change.88 Since only ex-
tended states can have nonzero Chern numbers, it is impos-
sible to localize all states. The situation is closely analogous
to the quantum Hall effect in a single two-dimensional elec-
tron gas in a magnetic field when Landau-level separations
become small, since each Landau level contributes 1 to the
Chern number sum, and localization is possible only by mix-
ing states with different Chern number which are at energies
well away from the bottom of the band of the host semicon-
ductor.

In the absence of disorder the states in the energy range of
interest in the MQW consist of a set of macroscopically de-
generate Landau levels, labeled by wave vectors and split by
an amount proportional to the interlayer hopping amplitude.
For small G/t, states with a given wave vector will be
weakly coupled, and a single extended-state energy will exist
for each Landau level. As the disorder strength increases, our
numerical results for the two-layer case suggest that the
extended-state energies will remain separate but that local-
ization lengths will increase substantially, except at energies
above the highest extended-state energy and below the low-

est extended-state energy.~However, we know of no general
argument which forbids either the collapse of the extended
states toward a single energy or, in the other extreme, the
development of a band of energies over which states are
extended.! In the limit of an infinite number of layers, the
energy separation between extended states will approach
zero but the system will still, strictly speaking, not be metal-
lic since almost all states in any range will still be
localized.89 Our numerical results suggest the possibility that
critical exponents for localization lengths diverging between
an intermediate-energy extended state could be different
from the critical exponents for single-layer systems.

It is interesting to consider whether or not the metallic
phase of three-dimensional systems in a strong magnetic
field, suggested by the work in Refs. 51, 52, and 55, can be
reconciled with the expectation from integer quantum Hall
theory and from the present calculations of a discrete set of
extended-state energies for any finite number of layers. In
order for these two pictures to be compatible, the localization
lengths at energies between the lowest and highest extended-
state energies would have to increase with the number of
layers and diverge in the limit of infinite layer numbers or,
equivalently, the limit of small separations between
extended-state energies. Incidentally, if we assume that each
additional quantum well leads to another extended-state en-
ergy without changing the associated correlation length ex-
ponents as this energy is approached, it is not clear how to
explain the large difference between the exponentn found at
the mobility edge in Refs. 51, 52, and 55 and the two-
dimensional exponent. We believe that the tendency toward
an apparent metallic phase in multiple-quantum-well systems
in the limit of large layer numbers or small interlayer hop-
ping is extremely closely connected with the disappearance
of the quantum Hall effect in a high-mobility two-
dimensional electron system in the limit of weak magnetic
fields, since disorder in both cases permits only mixing of
Landau bands carrying the same unit total Chern number.
Existing experiments on the integer quantum Hall effect in
MQW systems have observed a quantized Hall effect only at
Fermi energies above the highest energy extended state,
where electrons are well localized. We hope that the present
paper will motivate additional attempts to study the physics
of the quantum Hall effect in double-quantum-well and
MQW systems at Fermi energies between extended-state en-
ergies.
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