PHYSICAL REVIEW B VOLUME 54, NUMBER 15 15 OCTOBER 1996-1

Longitudinal magnetoresistance of superlattices caused by barrier inhomogeneity
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Classical longitudinal magnetoresistance of superlattices is calculated in the framework of a model which
includes fluctuations of barrier conductivity. We found that the result depends very significantly on the fluc-
tuations correlation length. We also found that fluctuations of the electron potential are not uniform along the
superlattice, and depend on the superlattice length. A good agreement between theory and experiment is
obtained[S0163-182806)01639-4

[. INTRODUCTION the conductivity fluctuations of different barriers are not cor-
related. These assumptions allow us to obtain an analytic

In this work we consider the vertical longitudinal magne- expression for the superlattice resistance.
toresistancéLMR) of a superlattice; that is, the magnetore-
sistance in the geometry when both electric and magnetic Il. PERTURBATION THEORY
fields are along the growth direction. Purely classiga., FOR POTENTIAL FLUCTUATIONS
without any quantum effectsLMR was observed many . .
times in experiments, but only recently has a qualitative ex- 1he superlattice consists &f+1 wells separated bi
planation been suggested. It is obvious that in an ideal sd?@rriers, and the electric potential in theh well is ¢,(r),
perlattice classical LMR has to be zero, because the magnetitherer=(x,y) is the in-plane coordinate. The electric cur-
field does not affect electron motion parallel to it. For this€ntjy,,+1(r) from well » to well »+1 is given by Ohm’s
reason experimentally observed LMRefs. 1-7 has not law,
been explained for a rather long time. The qualitative expla- ) N
nation suggested by Leet al.® attributes this to a result of Jor1= 0y, 1(Py— dyr1), (€]
nonuniform fluctuations of the superlattice barriers” width. wherea ., .(r) is the conductance per unit area of the bar-

In this paper we present resistance calculations for a SUYier following the vth well. The formulation of the problem
perlattice with nonuniform barriers. We consider the case of ¢ 9 v ) . P

- ) : ill be completed with the charge conservation law
a narrow-miniband superlattice when the vertical transpor}N
can be considered as sequential tunneling. Each barrier in ; . VoV %)
this case can be characterized by a conductivity fluctuating Tvve1™lv-1p v’
around some average value. The opposite case of wide-banghere 5V ¢, is an in-plane electric current in theh well,
superlattices where an electron tunnels across a few barriegsd o is a two-dimensional conductivity tensor of the well.
between two successive scattering events seems to be leag will assume that this tensor depends on the magnetic
interesting. The effect of the barrier width fluctuations isfield but does not depend on coordinates. We will also as-
averaged out as a result of tunneling across a few barrierssume that the conductivity in wells is isotropic so that

The qualitative picture of the longitudinal magnetoresis-g = Oyy= ol and Oxy= — Oyx. This assumption gives
tance of superlattices with nonuniform barriers suggested by
Lee et al® is as follows. A current across each barrier is VoV=0lv2 3
larger in places where the conductivity is larger. If high-
conductivity regions of adjacent barriers are not positionedhat is the Hall conductivity does not enter into the problem.
against each other, then nonuniform currents across barrierfluations(1)—(3) have to be solved with some boundary
induce in-p|ane currents between barriers. The magnetic fie|gonditions. We will assume that potentials in the first and last
perpendicular to the layers brings about a transverse magn@e€lls are independent afdue to the presence of the highly
toresistance, reducing these in-plane currents. As a result ttf#ped uniform plane contactg,=NU=const andéy=0.
current across barriers cannot pass through places with maxi- Equations(1) and (2) can be solved by means of pertur-
mal conductivity. In this way the magnetic field in the bation theory with respect to the fluctuationsef .. In
growth direction increases the superlattice resistance in thigie Fourier representation
direction.

The effective conductivity of a spatially inhomogeneous
medium has been considered many times in the literature;
see, e.g., the review paper by Landalér.superlattice is
just another example of such a medium with a specific geowhere o, 4 is considered a small quantity, addr, ,=0.
metrical structure of the inhomogeneities. We consider thisSThe conductivity fluctuations are assumed to be uniform,
problem for weak fluctuations of the barrier conductiitye  with a correlation length much shorter than the superlattice
exact parameter will be shown belpwVe also assume that plane size, so that

Ut,v+l(r):0'l+2 5O-v,qe7iq.r1 (4)
q
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<50'V,q50-:/ q,> whereG,,.,V(q) is giveq by Eq.(Q). _
TZl:gqé”‘Vﬁq’q" (5) Equation(12) describes the increase of the potential fluc-
( tuations from the contacts toward the middle of the superlat-
where() mean an ensemble average over all possible fluctice. For a limited region of}, three situations are conceiv-
tuation configurations. The functiod, is inverse propor- able. The first is the case of strong in-plane conductivity,
tional to the barrier area. This conductivity fluctuations in-When the potential fluctuations are limited by in-plane cur-

duce fluctuations of the potential rents, and<|5¢vvq|2),v¢ 0, N nearly does not depend on
v. The second is the opposite case, when in-plane currents

_ are not important, and the fluctuations of the potential are
=(N— iq-r e ) : ‘ g

$,(r)=(N V)U+§ 5¢.q8 ) (6) similar to the fluctuations in a series of random resistors. In

the third intermediate case the fluctuations increase with the

The Fourier transform of Eqg1)—(3) can be linearized distance from the contacts, but in the internal part of the

with respect to fluctuations j#0 superlattice they are limited by in-plane currents.
The first case is realized under the condition sagp¥1;
[(oVa")q2 4218, q— 8¢, 14— Sbyi1q then Eqgs(9) and(12) give
=(Ulo")(80,- 14— d0,4). (7 ) (uoi)z
The second-order terms have to be kept in the same equa- <|5¢”’q| )=2¢ ag? v#ON (133
tions for q=0, This result is independent of and inverse proportional to
[28¢, 0= b, 10— 0,1 10l0™ the in-plane conductivity. In the second caag<1/N, and
’ ’ ’ we have
=2 [(8y41-q= 8b,,-q) 00, q o v(N=D)
a (166, =U2—— (130

—(0¢,,—q= 0¢,—1,-q) 00 ,—14]- (7b) o _
In the third intermediate case,N£a,<1, and we have to
The solution to Eq.(7a) with the boundary conditions consider separately the internal region of superlattice and the
dpoq= 9N =0 can be expressed in terms of the Greenregions near the contacts,

function,
- v, aqv<1
B 12 sin(arj vIN)sin(jv'/N) (|64, B =U2¢,x{ N—v, as(N-1)<1 (130
GV,V’(q)_ N — - (8) v,q q
=1 coshag)—cogmj/N) 1/a, otherwise.
. 1 In order to calculate the correction to the average poten-
_sinr(aq)sin}"(an) tial, we have to substitute Eq11) into Eq. (7b). This leads
. ] , , to a difference equation fa¥¢, o, which should be averaged
sin(agv)sinffag(N—-v")], v<v', © with the help of Eq.(5). The solution to the obtained equa-
sin(agv')sinfay(N—-»)], v=2', tion is
where & [sint{aq(N—Zv)] 2v—N
o <5¢V’°>__U§ olg¥/ot+4] sinhagN) N
costia,) = 1+F)' (10) (14)
The v dependence of the averaged potentidl—(v)U
One has +(8¢,,0 becomes more smooth near the contacts; that is,
N—1 near the contacts the electric field is weaker.
5b, =US G, )5%,,1”— 90,1 g (11) One can prove that the perturbation theory developed here
na T vt ot ’ is justified if the fluctuations of the potential are small,

with g#0. The derivation of the above expression for the
Green function is given in Appendix A. 2 (164,47 <U2 (15
Physical properties of the result E41) can be seen from a
the average value of the potential fluctuations squared,  The substitution of the results obtained above, Ef3) and
(14), to this condition leads to

N—1
<|5d’v,q|2>:U2§q 2 GV,V’(q)[ZGV,V’(q)_GV,V’—l(q) — 2 < 1 0'H 2 Uqg 16
v'=1 == < — R -
— 5 fq ma N 0o O'L ) O’L . ( )
_GV,V'+l(q)] . L .
Here qq is the characteristic wave number of the function
a . . . _
:U2§q G, .(q)+ q 26, ()], (12) ¢4, and the quantity I, can be considered as a conductiv

2 dq ity fluctuation characteristic correlation length.
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Ill. AVERAGED CURRENT AND LONGITUDINAL
MAGNETORESISTANCE T ' f | I

The total current across a barrier, J_I_‘ " ‘_I_L

j=ctU—-4j, (17)
is the same for all barriers and can be calculated for the first
barrier. Substitution of Eqs4), (7), and(11) in Eq. (1) with
v=0, averaging over all possible fluctuations of the barrier
conductivity and summation over &, give

a"qz/al =1/20
I !

dj=0" U% §qG1,1(Q)+<5¢1,0>] (18

| a||q2/a'l =1
| I i

Change of the field (arb. units)

) 2¢g  [N-1 sinia(N-1)]
—oLUEq: o_qu/ULJrq N sinh(agN) }

L]
— -

(19

This equation is the main result of our paper. It describes the
change of the current due to barrier conductivity fluctuations. | I allg?/at =20 | A
The sign of §j is equal to the sign of the current without 0 4 8 12 16 20
fluctuation; that is, fluctuations lead to an increase of the v

superlattice resistance.

We are particularly interested in the application of this  FIG. 1. Contribution of the terms with different wave vector to
result to a calculation of the magnetoresistance of the supethe change of the averaged field. One can see that the field becomes
lattices. Here we consider only a weak magnetic field whemigher at the middle of superlattice and lower near the contacts. The
Oy7<1, whereQy is the cyclotron frequency and is a  scales on all the graphs are the same, and the dashed lines show
relaxation time. In this case the magnetic-field-inducedzeros of the field change.

change of the in-plane conductivity is
0'”(0)—U”(H)%QaTZO'“(O), and the superlattice magne- Yo- The reasons for this, however, are different. The former
toresistance becomes is a case of effectively “metallic” superlattice wells. They
are almost equipotential planes, in-plane currents are small,
R(H)—-R(0) 0420l 9 and the magnetoresistance is also small. In addition, in this
R(0) T UL mﬂ- (200 case barrier conductivity fluctuations are averaged out and

6] itself goes to zero. The latter case is a case of effectively
In transport theory, surface roughness is often approxi-dielectric” planes. The high-conductivity regions of adja-

mated by a Gaussian function. Such an approximation immecent barriers are located far from each other. In this case the
diately gives the Gaussian form for the barrier conductivityconductances of the in-plane path are small, and the in-plane

fluctuations’ correlation function, i.e., currents are also small.
4nE 2,2 IV. DISCUSSION AND SUMMARY
§q=?§e‘q 1%, (21)
0

Beside the correction to the current, the surface roughness
whereS is the area of the barrier, ar# is standard devia- Of superlattice barriers leads to a quite unexpected result:
tion of the normalized barrier conductivity, which is defined distribution of an electric field along the superlattice appears
generally in Eq.(16). Substitution of Eq(21) into Eq. (20) to be nonuniform. Indeed, for the correction to the average
allows us to evaluate the superlattice magnetoresistance potential drop across one barrier, E@j4) gives

&q

R(H)—R(0) _ _
W=Qﬁ72% & 8,10 5¢V,0—U§q: ey
a”qu/(Gai), yN2<1 o E_sinr(aq)cosrﬁaq(Zv—l—N)]
x{ 2[clg?ot]t2 , N sinh(agN)
[olgZotra2 N>1 23

N N2<1 In the middle of the superlattice the sign of this quantity is
YNy the same as that of the potential drop without surface rough-
~E027X vy, y<1 (220  ness,U, and near the contacts it is the opposite, see Fig 1.
That is, because of surface roughness the field becomes
stronger at the middle and weaker near the contacts. The size
wherey= O'HqélcrL. One can see from Eq22) that the mag-  of the contact regions is aboutal/periods. The redistribu-
netoresistance disappears for both very small and very larg#on of the field along the superlattice is not a large effect,

Inyly, v>1,
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but it can be stronger for more pronounced surface rough- TABLE I. Summary of experimental data, which was used for
ness. The physical reason for the field redistribution is thacomparison with theory.

the current is trying to go across the least resistive regions of
the barriers. Because of the lack of correlation of the surfacédw/dg) E AR/(RH?) o =N/(R9
roughness in different barriers, this produces an in-plane cuf&/A) T2 Slen?
rent which makes the overall resistance larger. Near the COQBO/SQ

. . oI . 0.36 0.027 1200
tacts where the in-plane potential redistribution is not fully
. . (20/80 0.09 0.032 5500
developed, this effect is suppressed. 80/20 0.25 0.042 4200
The correction to the current due to surface roughnes ' '
9 %20/40 0.19 0.047 14000

strongly depends on”qé/al. This parameter may signifi-
cantly vary in experiments. Its value can be estimated

intermslof microscopic Earzirpeters of the superlattice. W%djustable parameters. The widths of wells, and barriers
can estimater' ~(me&A?ri~*)[1—expEe/T)] (Ref. 10, (dg) and measured magnetoresistance and barrier conduc-

wheree and m are the electron charge and mass, respecgnces in four measured samples are summarized in Table |.
tively, A is the transition amplitude between adjacent wells\ye assume that fluctuations of the transition amplitude be-
7 is the relaxation timeE is the Fermi energyT is the  yeen adjacent wells\ A, result from the fluctuations of the
temperature, and,, #:/ are assumed to be much less thanyigth of the barrier by=1 ML. The known geometry of the
the maximum ofeg, T. In this case we have structures allowed us to calculate and the fluctuations of

2 2 2,2 the barrier conductance were evaluated according to
h*q _ )7 E~(2AA/A)2. The conductivities in wells were calculated

smax Eg,T) 2 (29 . . .

mA (AT) according too! =ne?7/m, where the two-dimensional elec-
tron concentratiom=d,,x 10} cm~3. The dependence of
the magnetoresistance on parameters of the samples can be
written in the form

olgdlo, ~

wherel is the in-plane mean free path. For the conductivity
in this expression we used the classical restiit ne?/m,
wheren is the two-dimensional electron concentration. This
expression as well as the phenomenological(Byjis correct R(H)—R(0) m? Uqu
under the conditiom|<1. The other basic equation, Ed), — == ( )
is justified only under the condition of sequential tunneling, R(O)H eT A o

i.e., i/(A7)>1. That is, the right-hand side of E(R4) is  For the function on the right-hand side, Bg2) gives
the product of a large factor and a small factor, so that all

(26)

cases in Eq(22) are possible. In these three cases the tem- = [ 4w 12
perature dependences of the magnetoresistanc&,afé’?, f(y)= JO dxe x4 (27)

and In(T)/T, respectively.

The conditiongl<1 means that the characteristic scale ofin Fig. 2 we show the theoretical curve for this function and
the surface roughness is much larger than the mean free path.
The theory can be easily generalized for the case when this

condition is not satisfied. The in-plane conductivity in Eq. 0.2 i T T T T 1
(2) is a response to a uniform electric field. If the electric O
field is nonuniform at the scale of the mean free path, then
the current conservation law, E@), holds, but the in-plane
conductivity cannot be taken from the phenomenological &7
theory and should be calculated with the help of the Boltz- o
mann equation. The calculation is carried out in Appendix B, g
and the resulting conductivity depends @nThe only modi- =
fication in the previous theory is that the expresszixﬂq2 is ;
determined now by EqB5). The estimate of the magnetore- =)
sistance, Eq(22), which was done before for the phenom- Qf
enological case, is replaced in the limigl =1 by -
RIH)-RO)__ , , A% [ 12 &
RO) - W\ Az @9

In the calculation of the conductivity we neglect quantum 0 L
corrections. That is justified when the magnetic quantization 0 20 40 6 80 100
is smeared by scattering)y7<<1, or at high enough tem- olgg/ot

perature, whelk Q<T.

The comparison of the our result with available experi-  FiG. 2. Comparison of the experimental data of Refopen
mental data is difficult because not all parameters necessagyuarey with the theoretical prediction of Eq26), solid line.
for theoretical calculations are known. Here we compare ouCombinationg R(H) —R(0) /[ ER(0)Q27?] andolg3/ o are cal-
results with the measurements of Ref. 8, taking the relaxatiobulated from the experimental data summarized in Table I, with two
time and the characteristic length of interface roughness dfiting parameters=5.3x 10" % s andg,=3.3 um 2.
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the experimental results for four samples. The best fit is oband this is the first line in E¢(8), with A=a,.

tained forr=5.3x 10 % s andqg,=3.3 um . We have to The same function can be calculated in another way with
note an obvious qualitative and good quantitative agreemerthe help of the general solution ER9). Apparently, Eq.
between the theory and experiment. The discrepamey (A4) with the boundary conditions is satisfied by the function
more than 10%can be attributed to slightly different relax-

ation timesr and surface roughness characteristics in differ- G, ,=Asinh(Av), v<v’,

ent samples. (AB)
The results of the fitting givebolwo.z that justifies the

phenomenological expression fef used in the calculations. G, =Bsinix(N-v)], »>v'.

The estimate of the surface roughness relaxation time for a | blem is with th lues=1'. Th | ¢
quantum well withd, =50 A andgy=3.3 um~! gives a The only problem is with the valueg=7v'. The values o

value of 2<10"1°s. That is, the dominant scattering mecha-~ B, adG, , can be obtained by substitution of the so-
nism is probably impurity scattering, that explains approxi-'utions Eq.(A6) into Eq.(A4) for v=1»",»"* 1, that leads to
mately equal relaxation times in samples with different val-tN€ System of equations
ues ofd,,. The surface roughness correlation length of 3000
A seems large, but even by the order of magnitude larger
values have been report&d.

In summary, we calculated the correction to the superlat-

ASinI’()\V’)_GerV/ZO,

Asinf{\(v'—1)]—2coskiN)G,

tice resistance due to nonuniform fluctuations of the conduc- +BsinfAN(N—»'—1)]=—1, (A7)
tivity of each of the barriers. Our results explain the classical
longitudinal magnetoresistance of superlattices. We found G, , —BsinHA(N=v")]=0

that the magnetoresistance has a nontrivial dependence on
characteristic length scale of fluctuations; it goes to zero fowhich has a solution
both very large-scale and very small-scale fluctuations. The

fluctuations of the barrier conductivity lead also to a nonuni- sinfA(N—v")]
form distribution of electric field along superlattice. The re- = sinh(\)sinh(AN) '
sults of the theory give a good quantitative agreement with
experimental data. - sinh(\»’)sin{ A (N—1")] ”8)
ACKNOWLEDGMENTS ' sinh(A)SinACAN)
We appreciate an important remark of M. Raikh and a sinh(Av')
discussion with S. Luryi. B= sinh(\)sinh(AN)
APPENDIX A: DERIVATION OF THE GREEN FUNCTION and the final expression for the Green function is
Trigonometric sums can be calculating with the help of sinh(A v)sinfA(N—2")]
. $ !
the equation . SNV )SINFONN) , VsV o
2costiN)u(v)—u(v+1)—u(v—1)=0, O<wv<N. o sinh(Av)'sinfA(N—v)] _ (A9)
(A1) sinnvsinhaN) 0 =7
The general solution to E§A1) has the form _ ) o ) )
This result is also an explicit expression for the sum in Eq.
u(n)=C,e*"+C,e ", (A2) (A5), and this is the second expression in E%).
and the eigenvalues and the eigenfunctions of (E§). with
the boundary conditions,=uy=0 are APPENDIX B: WAVE-VECTOR-DEPENDENT IN-PLANE
MAGNETOCONDUCTIVITY

costirj)=cogmj/N), 1<j<N-1, The Fourier transformation of the Boltzmann kinetic

(A3) equation for the two-dimensional electron gas in the con-
12 ducting layer is
uj(v)=(ﬁ) sin(7rj vIN).
iq-vf +e[ ><H]ﬁfq ieq-ve of fq (B1)
iq-vf,+=[v ——ieq-vgp—==——,
Let us consider the functio®, ,, satisfying the equation 4-Vlq c ap q 90E T
2 cosliN)G(v,v')—=G,y1,,—G,_ 1, =8, , (Ad) wheref(E) is the equilibrium distribution functiorf,, is the
. N ' ' " Fourier transform of the distribution function perturbation,
with the boundary condition&,, =Gy,,»=0. This can be 4 s the fluctuation of the electron potential, aHdis the

expressed in terms of the eigenfunctions E&g), magnetic field, which is considered to be perpendicular to
N-1 . . . L, the layers, i.e, gLH. By introducing g=(q,0,0),
_ 1§ sin(arjv/N)sin(mrjv'/N) v=(vcos(@),vsin(9),0), andH=(0,0,(mc/e)Q ), we reduce
GV v! (AS) . . .
' Nj=1  cosh\)—coshX;) the kinetic equation to
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afq [1 . of The last equality is the definition ofl. An integration with
Hog |7 Tidqucos 0) |fq=—iquegpycog G)a—E- respect to angles in E@40) can be performed, but the inte-
(B2) gration from Eq.(39) still remains
It is easy to solve this first-order differential equation, and 2 m (e of
the answer is a function af and 6. dgP=——— E—
T 7wh?)o JE
{ —eo af{l Fde' p(—a’ 0
=€Pq—=) 1 ex © . v 76’
LYY= o Qu7 T\ Qur xf do'e ?'|1-J, 2 it . (B5)
0 Qy 2

. qQu .
+i Q—[sm( 0)—sin(0'+ 6)]
H

] (B3)

For the casgl<max((}y7,1), this equation gives the usual
classical result,
For Eqg.(2) only the current divergence is necessary,

2d
ig-jq= ﬁieq-quza”q%q. (B4) 0“(H)—m- (B6)
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