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Classical longitudinal magnetoresistance of superlattices is calculated in the framework of a model which
includes fluctuations of barrier conductivity. We found that the result depends very significantly on the fluc-
tuations correlation length. We also found that fluctuations of the electron potential are not uniform along the
superlattice, and depend on the superlattice length. A good agreement between theory and experiment is
obtained.@S0163-1829~96!01639-6#

I. INTRODUCTION

In this work we consider the vertical longitudinal magne-
toresistance~LMR! of a superlattice; that is, the magnetore-
sistance in the geometry when both electric and magnetic
fields are along the growth direction. Purely classical~i.e.,
without any quantum effects! LMR was observed many
times in experiments, but only recently has a qualitative ex-
planation been suggested. It is obvious that in an ideal su-
perlattice classical LMR has to be zero, because the magnetic
field does not affect electron motion parallel to it. For this
reason experimentally observed LMR~Refs. 1–7! has not
been explained for a rather long time. The qualitative expla-
nation suggested by Leeet al..8 attributes this to a result of
nonuniform fluctuations of the superlattice barriers’ width.

In this paper we present resistance calculations for a su-
perlattice with nonuniform barriers. We consider the case of
a narrow-miniband superlattice when the vertical transport
can be considered as sequential tunneling. Each barrier in
this case can be characterized by a conductivity fluctuating
around some average value. The opposite case of wide-band
superlattices where an electron tunnels across a few barriers
between two successive scattering events seems to be less
interesting. The effect of the barrier width fluctuations is
averaged out as a result of tunneling across a few barriers.

The qualitative picture of the longitudinal magnetoresis-
tance of superlattices with nonuniform barriers suggested by
Lee et al.8 is as follows. A current across each barrier is
larger in places where the conductivity is larger. If high-
conductivity regions of adjacent barriers are not positioned
against each other, then nonuniform currents across barriers
induce in-plane currents between barriers. The magnetic field
perpendicular to the layers brings about a transverse magne-
toresistance, reducing these in-plane currents. As a result the
current across barriers cannot pass through places with maxi-
mal conductivity. In this way the magnetic field in the
growth direction increases the superlattice resistance in this
direction.

The effective conductivity of a spatially inhomogeneous
medium has been considered many times in the literature;
see, e.g., the review paper by Landauer.9 A superlattice is
just another example of such a medium with a specific geo-
metrical structure of the inhomogeneities. We consider this
problem for weak fluctuations of the barrier conductivity~the
exact parameter will be shown below!. We also assume that

the conductivity fluctuations of different barriers are not cor-
related. These assumptions allow us to obtain an analytic
expression for the superlattice resistance.

II. PERTURBATION THEORY
FOR POTENTIAL FLUCTUATIONS

The superlattice consists ofN11 wells separated byN
barriers, and the electric potential in thenth well is fn(r …,
wherer5(x,y) is the in-plane coordinate. The electric cur-
rent j n,n11(r … from well n to well n11 is given by Ohm’s
law,

j n,n115sn,n11
' ~fn2fn11!, ~1!

wheresn,n11
' (r ) is the conductance per unit area of the bar-

rier following thenth well. The formulation of the problem
will be completed with the charge conservation law

j n,n112 j n21,n5“ŝ“fn , ~2!

whereŝ“fn is an in-plane electric current in thenth well,
and ŝ is a two-dimensional conductivity tensor of the well.
We will assume that this tensor depends on the magnetic
field but does not depend on coordinates. We will also as-
sume that the conductivity in wells is isotropic so that
sxx5syy5s i, andsxy52syx . This assumption gives

“ŝ“5s i
“

2, ~3!

that is the Hall conductivity does not enter into the problem.
Equations~1!–~3! have to be solved with some boundary
conditions. We will assume that potentials in the first and last
wells are independent ofr due to the presence of the highly
doped uniform plane contacts,f05NU5const andfN50.

Equations~1! and ~2! can be solved by means of pertur-
bation theory with respect to the fluctuations ofsn,n11

' . In
the Fourier representation

sn,n11
' ~r !5s'1(

q
dsn,qe

2 iq–r , ~4!

wheredsn,q is considered a small quantity, anddsn,0[0.
The conductivity fluctuations are assumed to be uniform,
with a correlation length much shorter than the superlattice
plane size, so that
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^dsn,qdsn8,q8
* &

~s'!2
5jqdn,n8dq,q8 , ~5!

where^& mean an ensemble average over all possible fluc-
tuation configurations. The functionjq is inverse propor-
tional to the barrier area. This conductivity fluctuations in-
duce fluctuations of the potential

fn~r !5~N2n!U1(
q

dfn,qe
2 iq–r. ~6!

The Fourier transform of Eqs.~1!–~3! can be linearized
with respect to fluctuations ifqÞ0

@~s i/s'!q212#dfn,q2dfn21,q2dfn11,q

5~U/s'!~dsn21,q2dsn,q!. ~7a!

The second-order terms have to be kept in the same equa-
tions forq50,

@2dfn,02dfn21,02dfn11,0#s
'

5(
q

@~dfn11,2q2dfn,2q!dsn,q

2~dfn,2q2dfn21,2q!dsn21,q#. ~7b!

The solution to Eq.~7a! with the boundary conditions
df0,q5dfN,q50 can be expressed in terms of the Green
function,

Gn,n8~q!5
1

N(
j51

N21
sin~p jn/N!sin~p jn8/N!

cosh~aq!2cos~p j /N!
~8!

5
1

sinh~aq!sinh~aqN!

3H sinh~aqn!sinh@aq~N2n8!#, n<n8,

sinh~aqn8!sinh@aq~N2n!#, n>n8,
~9!

where

cosh~aq!5S 11
s iq2

2s' D . ~10!

One has

dfn,q5U (
n851

N21

Gn,n8~q!
dsn821,q2dsn8,q

s' , ~11!

with qÞ0. The derivation of the above expression for the
Green function is given in Appendix A.

Physical properties of the result Eq.~11! can be seen from
the average value of the potential fluctuations squared,

^udfn,qu2&5U2jq (
n851

N21

Gn,n8~q!@2Gn,n8~q!2Gn,n821~q!

2Gn,n811~q!#

5U2jqFGn,n~q!1
q

2

]

]q
Gn,n~q!G , ~12!

whereGn,n(q) is given by Eq.~9!.
Equation~12! describes the increase of the potential fluc-

tuations from the contacts toward the middle of the superlat-
tice. For a limited region ofq, three situations are conceiv-
able. The first is the case of strong in-plane conductivity,
when the potential fluctuations are limited by in-plane cur-
rents, and^udfn,qu2&,nÞ0, N nearly does not depend on
n. The second is the opposite case, when in-plane currents
are not important, and the fluctuations of the potential are
similar to the fluctuations in a series of random resistors. In
the third intermediate case the fluctuations increase with the
distance from the contacts, but in the internal part of the
superlattice they are limited by in-plane currents.

The first case is realized under the condition sinh(aq)@1;
then Eqs.~9! and ~12! give

^udfn,qu2&52jqSUs'

s iq2D
2

, nÞ0,N ~13a!

This result is independent ofn and inverse proportional to
the in-plane conductivity. In the second case,aq!1/N, and
we have

^udfn,qu2&5U2jq
n~N2n!

N
. ~13b!

In the third intermediate case, 1/N&aq!1, and we have to
consider separately the internal region of superlattice and the
regions near the contacts,

^udfn,qu2&5U2jq3H n, aqn!1

N2n, aq~N2n!!1

1/aq otherwise.

~13c!

In order to calculate the correction to the average poten-
tial, we have to substitute Eq.~11! into Eq. ~7b!. This leads
to a difference equation fordfn,0, which should be averaged
with the help of Eq.~5!. The solution to the obtained equa-
tion is

^dfn,0&52U(
q

jq
s iq2/s'14Fsinh@aq~N22n!#

sinh~aqN!
1
2n2N

N G .
~14!

The n dependence of the averaged potential, (N2n)U
1^dfn,0& becomes more smooth near the contacts; that is,
near the contacts the electric field is weaker.

One can prove that the perturbation theory developed here
is justified if the fluctuations of the potential are small,

(
q

^udfn,qu2&!U2. ~15!

The substitution of the results obtained above, Eqs.~13! and
~14!, to this condition leads to

J[(
q

jq!maxH 1N ,q0S s i

s'D 1/2, sq02s' J . ~16!

Here q0 is the characteristic wave number of the function
jq , and the quantity 1/q0 can be considered as a conductiv-
ity fluctuation characteristic correlation length.
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III. AVERAGED CURRENT AND LONGITUDINAL
MAGNETORESISTANCE

The total current across a barrier,

j5s'U2d j , ~17!

is the same for all barriers and can be calculated for the first
barrier. Substitution of Eqs.~4!, ~7!, and~11! in Eq. ~1! with
n50, averaging over all possible fluctuations of the barrier
conductivity and summation over allq, give

d j5s'HU(
q

jqG1,1~q!1^df1,0&J ~18!

5s'U(
q

2jq
s iq2/s'14FN21

N
1
sinh@aq~N21!#

sinh~aqN! G .
~19!

This equation is the main result of our paper. It describes the
change of the current due to barrier conductivity fluctuations.
The sign ofd j is equal to the sign of the current without
fluctuation; that is, fluctuations lead to an increase of the
superlattice resistance.

We are particularly interested in the application of this
result to a calculation of the magnetoresistance of the super-
lattices. Here we consider only a weak magnetic field when
VHt!1, whereVH is the cyclotron frequency andt is a
relaxation time. In this case the magnetic-field-induced
change of the in-plane conductivity is
s i(0)2s i(H)'VH

2 t2s i(0), and the superlattice magne-
toresistance becomes

R~H !2R~0!

R~0!
52

VH
2 t2s i

Us'

]

]s i d j . ~20!

In transport theory, surface roughness is often approxi-
mated by a Gaussian function. Such an approximation imme-
diately gives the Gaussian form for the barrier conductivity
fluctuations’ correlation function, i.e.,

jq5
4pJ

q0
2S

e2q2/q0
2
, ~21!

whereS is the area of the barrier, andJ is standard devia-
tion of the normalized barrier conductivity, which is defined
generally in Eq.~16!. Substitution of Eq.~21! into Eq. ~20!
allows us to evaluate the superlattice magnetoresistance

R~H !2R~0!

R~0!
5VH

2 t2(
q

jq

3H s iq2N/~6s'!, gN2!1

2@s iq2/s'#1/2

@s iq2/s'14#3/2
, gN2@1

'JVH
2 t23H gN, gN2!1

Ag, g!1

lng/g, g@1 ,

~22!

whereg5s iq0
2/s'. One can see from Eq.~22! that the mag-

netoresistance disappears for both very small and very large

q0. The reasons for this, however, are different. The former
is a case of effectively ‘‘metallic’’ superlattice wells. They
are almost equipotential planes, in-plane currents are small,
and the magnetoresistance is also small. In addition, in this
case barrier conductivity fluctuations are averaged out and
d j itself goes to zero. The latter case is a case of effectively
‘‘dielectric’’ planes. The high-conductivity regions of adja-
cent barriers are located far from each other. In this case the
conductances of the in-plane path are small, and the in-plane
currents are also small.

IV. DISCUSSION AND SUMMARY

Beside the correction to the current, the surface roughness
of superlattice barriers leads to a quite unexpected result:
distribution of an electric field along the superlattice appears
to be nonuniform. Indeed, for the correction to the average
potential drop across one barrier, Eq.~14! gives

dfn21,02dfn,05U(
q

jq
s iq2/s'14

3F 2N2
sinh~aq!cosh@aq~2n212N!#

sinh~aqN! G .
~23!

In the middle of the superlattice the sign of this quantity is
the same as that of the potential drop without surface rough-
ness,U, and near the contacts it is the opposite, see Fig 1.
That is, because of surface roughness the field becomes
stronger at the middle and weaker near the contacts. The size
of the contact regions is about 1/aq periods. The redistribu-
tion of the field along the superlattice is not a large effect,

FIG. 1. Contribution of the terms with different wave vector to
the change of the averaged field. One can see that the field becomes
higher at the middle of superlattice and lower near the contacts. The
scales on all the graphs are the same, and the dashed lines show
zeros of the field change.
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but it can be stronger for more pronounced surface rough-
ness. The physical reason for the field redistribution is that
the current is trying to go across the least resistive regions of
the barriers. Because of the lack of correlation of the surface
roughness in different barriers, this produces an in-plane cur-
rent which makes the overall resistance larger. Near the con-
tacts where the in-plane potential redistribution is not fully
developed, this effect is suppressed.

The correction to the current due to surface roughness
strongly depends ons iq0

2/s'. This parameter may signifi-
cantly vary in experiments. Its value can be estimated
interms of microscopic parameters of the superlattice. We
can estimates';(me2L2t\24)@12exp(EF /T)# ~Ref. 10!,
where e andm are the electron charge and mass, respec-
tively, L is the transition amplitude between adjacent wells,
t is the relaxation time,EF is the Fermi energy,T is the
temperature, andL, \/t are assumed to be much less than
the maximum ofEF , T. In this case we have

s iq0
2/s''

\2q2

mL2max~EF ,T!'
~ lq !2\2

~Lt!2
, ~24!

wherel is the in-plane mean free path. For the conductivity
in this expression we used the classical results i;ne2t/m,
wheren is the two-dimensional electron concentration. This
expression as well as the phenomenological Eq.~2! is correct
under the conditionql!1. The other basic equation, Eq.~1!,
is justified only under the condition of sequential tunneling,
i.e., \/(Lt)@1. That is, the right-hand side of Eq.~24! is
the product of a large factor and a small factor, so that all
cases in Eq.~22! are possible. In these three cases the tem-
perature dependences of the magnetoresistance areT, T1/2,
and ln(T)/T, respectively.

The conditionql!1 means that the characteristic scale of
the surface roughness is much larger than the mean free path.
The theory can be easily generalized for the case when this
condition is not satisfied. The in-plane conductivity in Eq.
~2! is a response to a uniform electric field. If the electric
field is nonuniform at the scale of the mean free path, then
the current conservation law, Eq.~2!, holds, but the in-plane
conductivity cannot be taken from the phenomenological
theory and should be calculated with the help of the Boltz-
mann equation. The calculation is carried out in Appendix B,
and the resulting conductivity depends onq. The only modi-
fication in the previous theory is that the expressions iq2 is
determined now by Eq.~B5!. The estimate of the magnetore-
sistance, Eq.~22!, which was done before for the phenom-
enological case, is replaced in the limitq0l*1 by

R~H !2R~0!

R~0!
5JVH

2 t2
L2t2

\2q0
2l 2

lnS \2

L2t2D . ~25!

In the calculation of the conductivity we neglect quantum
corrections. That is justified when the magnetic quantization
is smeared by scattering,VHt!1, or at high enough tem-
perature, when\VH&T.

The comparison of the our result with available experi-
mental data is difficult because not all parameters necessary
for theoretical calculations are known. Here we compare our
results with the measurements of Ref. 8, taking the relaxation
time and the characteristic length of interface roughness as

adjustable parameters. The widths of wells (dw) and barriers
(dB) and measured magnetoresistance and barrier conduc-
tances in four measured samples are summarized in Table I.
We assume that fluctuations of the transition amplitude be-
tween adjacent wells,DL, result from the fluctuations of the
width of the barrier by61 ML. The known geometry of the
structures allowed us to calculateL, and the fluctuations of
the barrier conductance were evaluated according to
J'(2DL/L)2. The conductivities in wells were calculated
according tos i5ne2t/m, where the two-dimensional elec-
tron concentrationn5dw31017 cm23. The dependence of
the magnetoresistance on parameters of the samples can be
written in the form

R~H !2R~0!

R~0!H2

m2

e2t2J
5 f S s iq0

2

s' D . ~26!

For the function on the right-hand side, Eq.~22! gives

f ~g!5E
0

`

dxe2xS 4gx

~gx14!3D
1/2

. ~27!

In Fig. 2 we show the theoretical curve for this function and

TABLE I. Summary of experimental data, which was used for
comparison with theory.

(dw /dB) J DR/(RH2) s'5N/(RS)
~Å/Å ! T22 S/cm2

~50/50! 0.36 0.027 1200
~20/80! 0.09 0.032 5500
~80/20! 0.25 0.042 4200
~20/40! 0.19 0.047 14000

FIG. 2. Comparison of the experimental data of Ref. 8~open
squares!, with the theoretical prediction of Eq.~26!, solid line.
Combinations@R(H)2R(0)#/@JR(0)VH

2 t2# ands iq0
2/s' are cal-

culated from the experimental data summarized in Table I, with two
fitting parameterst55.3310213 s andq053.3mm21.
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the experimental results for four samples. The best fit is ob-
tained fort55.3310213 s andq053.3 mm21. We have to
note an obvious qualitative and good quantitative agreement
between the theory and experiment. The discrepancy~no
more than 10%! can be attributed to slightly different relax-
ation timest and surface roughness characteristics in differ-
ent samples.

The results of the fitting giveq0l'0.2 that justifies the
phenomenological expression fors i used in the calculations.
The estimate of the surface roughness relaxation time for a
quantum well withdw550 Å andq053.3 mm21 gives a
value of 2310210 s. That is, the dominant scattering mecha-
nism is probably impurity scattering, that explains approxi-
mately equal relaxation times in samples with different val-
ues ofdw . The surface roughness correlation length of 3000
Å seems large, but even by the order of magnitude larger
values have been reported.11

In summary, we calculated the correction to the superlat-
tice resistance due to nonuniform fluctuations of the conduc-
tivity of each of the barriers. Our results explain the classical
longitudinal magnetoresistance of superlattices. We found
that the magnetoresistance has a nontrivial dependence on
characteristic length scale of fluctuations; it goes to zero for
both very large-scale and very small-scale fluctuations. The
fluctuations of the barrier conductivity lead also to a nonuni-
form distribution of electric field along superlattice. The re-
sults of the theory give a good quantitative agreement with
experimental data.
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APPENDIX A: DERIVATION OF THE GREEN FUNCTION

Trigonometric sums can be calculating with the help of
the equation

2cosh~l!u~n!2u~n11!2u~n21!50, 0,n,N.
~A1!

The general solution to Eq.~A1! has the form

u~n!5C1e
ln1C2e

2ln, ~A2!

and the eigenvalues and the eigenfunctions of Eq.~28! with
the boundary conditionsu05uN50 are

cosh~l j !5cos~p j /N!, 1< j<N21,
~A3!

uj~n!5S 2ND 1/2sin~p jn/N!.

Let us consider the functionGn,n8 satisfying the equation

2 cosh~l!G~n,n8!2Gn11,n82Gn21,n85dn,n8 ~A4!

with the boundary conditionsG0,n85GN,n850. This can be
expressed in terms of the eigenfunctions Eq.~A3!,

Gn,n85
1

N(
j51

N21
sin~p jn/N!sin~p jn8/N!

cosh~l!2cosh~l j !
~A5!

and this is the first line in Eq.~8!, with l[aq .
The same function can be calculated in another way with

the help of the general solution Eq.~29!. Apparently, Eq.
~A4! with the boundary conditions is satisfied by the function

Gn,n85Asinh~ln!, n,n8,

~A6!

Gn,n85Bsinh@l~N2n!#, n.n8.

The only problem is with the valuesn5n8. The values of
A, B, andGn8,n8 can be obtained by substitution of the so-
lutions Eq.~A6! into Eq.~A4! for n5n8,n861, that leads to
the system of equations

Asinh~ln8!2Gn8,n850,

Asinh@l~n821!#22cosh~l!Gn8,n8

1Bsinh@l~N2n821!#521, ~A7!

Gn8,n82Bsinh@l~N2n8!#50,

which has a solution

A5
sinh@l~N2n8!#

sinh~l!sinh~lN!
,

Gn8,n85
sinh~ln8!sinh@l~N2n8!#

sinh~l!sinh~lN!
, ~A8!

B5
sinh~ln8!

sinh~l!sinh~lN!
,

and the final expression for the Green function is

Gn,n85H sinh~ln!sinh@l~N2n8!#

sinh~l!sinh~lN!
, n<n8

sinh~ln!8sinh@l~N2n!#

sinh~l!sinh~lN!
, n>n8.

~A9!

This result is also an explicit expression for the sum in Eq.
~A5!, and this is the second expression in Eq.~9!.

APPENDIX B: WAVE-VECTOR-DEPENDENT IN-PLANE
MAGNETOCONDUCTIVITY

The Fourier transformation of the Boltzmann kinetic
equation for the two-dimensional electron gas in the con-
ducting layer is

iq–vf q1
e

c
@v3H#

] f q
]p

2 ieq–vfq

] f

]E
52

f q
t
, ~B1!

wheref (E) is the equilibrium distribution function,f q is the
Fourier transform of the distribution function perturbation,
fq is the fluctuation of the electron potential, andH is the
magnetic field, which is considered to be perpendicular to
the layers, i.e, q'H. By introducing q5(q,0,0),
v5(vcos(u),vsin(u),0), andH5„0,0,(mc/e)VH…, we reduce
the kinetic equation to
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VH

] f q
]u

2F1t 1 iqvcos~u!G f q52 iqvefqcos~u!
] f

]E
.

~B2!

It is easy to solve this first-order differential equation, and
the answer is a function ofv andu:

f q5efq

] f

]EH 12E
0

` du8

VHt
expS 2u8

VHt

1 i
qv
VH

@sin~u!2sin~u81u!# D J ~B3!

For Eq.~2! only the current divergence is necessary,

iq• j q5E 2dp

~2p\!2
ieq–vf q5s iq2fq . ~B4!

The last equality is the definition ofs i. An integration with
respect to angles in Eq.~40! can be performed, but the inte-
gration from Eq.~39! still remains

s iq252
e2

t

m

p\2E
0

`

dE
] f

]E

3E
0

`

du8e2u8F12J0S 2qvVH
sin

VHtu8

2 D G . ~B5!

For the caseql!max(VHt,1), this equation gives the usual
classical result,

s i~H !5
s i~0!

11VH
2 t2

. ~B6!
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