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Semiclassical scattering in a circular semiconductor microstructure
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The conductance of a microscopic junction shows fluctuations caused by quantum interference of waves that
follow different paths between the leads. We give a semiclassical formula for these fluctuations. The theory
utilizes trajectories which travel between the centers of the lead apertures; it also incorporates diffraction at
these apertures. We extend the theory to include “ghost paths,” which scatter diffractively off the lead mouths.
Semiclassicab-matrix elements are computed for a circular junction over a range of Fermi wave numbers, and
the large-scale structure of these matrix elements shows good agreement with quantum results. Finally, we
propose a hypothesis about the effect of the quantum coherence length®métex and on the semiclassical
sum.[S0163-1826)03935-5

I. INTRODUCTION and found the same qualitative behavior as found in experi-
ment: rapid oscillations of the resistance as one changes the
Quantum transport of electrons through semiconductoenergy of the electrons or the strength of the magnetic field.
microjunctions has been observed in recent experintents. In this paper we derive simple semiclassical formulas that
Micron-size two-dimensional junctions have been made witHredict some of the large-scale structure of conductance fluc-
such purity that both the quantum coherence length and thlations.
mean free path for elastic collisions of electrons with defects The essence of the theory is very simfffég. 1). Electron
are large compared to the size of the junction. In these ext/aves approach the junction in one of the leads, and, where
periments conditions are such that the electrons can be dée lead joins the junction, the waves diffract into the enclo-
scribed as a two-dimensional ideal Fermi gas of noninteractsure. Diffraction creates a circular wave outgoing from the
ing particles. In these circumstances a classical electrofintrance lead. This wave bounces around the enclosure fol-
would bounce ballistically through the cavity; in quantum lowing classical paths; the phase of the wave is the classical
mechanics the electron wave function scatters elasticallfction on each path, and the amplitude of the wave is the
from the walls of the junction. This behavior is shown sche-Square root of the classical density. Each classical path from
matically in Fig. 1. entrance to exit contributes a term to the wave function near
The Conductance Of Such junctions has been meaé&red,the exit. These waves diffract out the eXit, g|V|ng a transmit-
and has been found to oscillate strongly as the Fermi energigd current. Interference of waves from various paths pro-
or the strength of an imposed magnetic field is varied. Sta-
tistical properties of these fluctuations have been studied, and
compared with predictions from random matrix thedrs.
Statistical properties of the fluctuations are similar to those
arising from phase-coherent transport through disordered
systems. These studies have led to an understanding of sta-
tistical characteristics common to all generic mesoscopic
conductors. Also, the high-frequency part of the power spec-
trum has been studied, and its struct(pewer-law decay for
regular systems vs exponential decay for chaotic sygtems
has been compared with predictions from general semiclas-
sical argument&®
Statistical properties of fluctuations may be interesting,
but it is appropriate now to ask more detailed questions. Can
the conductance fluctuations themselves be predicted? On
the experimental side, will junctions be created such that the
guantum fluctuations of conductance are reliably reproduc-
ible, and depend only on the lithographically observed ge-
ometry of the junction? On the theoretical side, can we de- F|G. 1. Overview of the semiclassical method. A quantum wave
velop simple formulas or algorithms that predict theincoming from a mode of the entrance lead diffracts as it enters the
fluctuations of conductance vs Fermi energy or vs magnetifunction, and then travels along classical paths inside the junction.
field? Toward this end a number of groups have performedt the exit each trajectory contributes a term to the flux that goes
exact quantum calculations on representative syst8nls, out into each mode of the exit lead.
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duces oscillations in the transmitted current.

The important assumptions involved in the theory are that
the de Broglie wavelength is small compared to the size of
the junction, and that the widths of the leads are small com-
pared to the size of the junction. The shape of the junction is
not important; for this first paper we consider a circular junc-
tion with two leads attached at right anglgge show some
results for a stadium-shaped junction in Appendix I\ /e
use hard-wall boundary conditions; soft-wall boundary con-
ditions are easy to incorporate into a semiclassical theory.
Implicitly, we presume that the lithographic shapes of junc-
tions can be taken seriously: the interference pattern results
from the visible geometry of the device, not from invisible
defects. a) b)

Several previous studies of ballistic transport have incor-

porated semiclassical concepts in some way. Jalabert, ) )
Baranger and Stofitand Lin and Jenséfconsidered inter- FIG. 2. Different entrance geometries. A short, narrow entrance
would allow electrons to pass through from almost any angle, while

fering paths, but did not consider diffraction. Other groups : )

have applied periodic orbit concepts to the problem of theio?om'Shaped aperture would give a more collimated beef.

conductance of periodic arrays of antidbtg® '
In the current paper, we treat diffraction within the Kirch- . . . . . -

hoff approximatignl.a The geometric theory of diffraction in Fig. 2. In Fig. Za) the aperture is a pinched constriction

(GTO) (Ref 19 provides an alemate methiod to approx. EVISEn e Anclon and e eecton teservor: 1 s cese
mate the effects of diffraction using addition@ongeomet- '

ric) trajectories. In recent work the GTD has been successe-mer the junction at almost any angle. By contrast, Fig) 2

fully used to account for some effects of diffraction in simple depicts a hom geometry, in which th_e entering trajectories
open system& are more collimated in the forward direction. In general, if

Like much previous work, the present study relies on thethe width of the aperture is comparable to the de Broglie

poncerg work of Landauéfand Briker The primary "2l SITRCier shoul be nearosed wnen <o,
contribution of the present work is to incorporate the effeCtsunctio% wav?a function

of diffraction. This enables us to perform calculations in a For concreteness W'e specify a particular entrance geom-
energy regime where comparison with quantum-mechanlcaeltry with perfect linear leads in Fig. 8A different entrance

results is feasible. In addition, in the quantum framework, Wigeometry was addressed in Ref.)ere we take the walls
improve upon previous computational methods; this wa f the leads and the junction walls as infinitely hard, so that

necessary to obtain reliable comparisons between semicla; "o wave function qoes to zero at the walls. In real svstems
sical and quantum calculations. . 9 ) > al sy '
the potential energy representing the walls is continuous, but,

I. CONNECTION OF CONDUCTANCE TO SCATTERING
THEORY

Through the work of Landau#rand other$?? it has
been established that; , the conductance between ledds
andj, connected to a mesoscopic conductor, is related to the
associated quantum scattering problem through the ‘“cor-
rected Landauer formula.” For each spin degree of freedom,

e? )
gji:FE |t12, (1)

n,m

©) 0
YD)

where ti!) is the transmission amplitude from transverse
moden of the entrance lead to moabe of the exit lead, and
the sum is over all open modes. These transmission ampli-
tudes are elements of timatrix, S{\\), for which j #i.
Typically, the leads of these mesoscopic semiconductor
junctions contain just a few transverse modes; however, the
junction itself can be many wavelengths across. In these Cir- F|G. 3. The entrance geometry of the wire lead and definition of
cumstances, the leads are best described using quantum ngcal coordinates. Lead coordinates ;) have origin at the center
chanics, while the wave function inside the junction can besf the mouth of theith lead, and are rotated b§; relative to

represented using semiclassical methods. The two descrigpace-fixed coordinates. Each poimt ;) can also be described
tions must therefore be connected at the mouths of the leadsy polar coordinatesr(, ;). The flux integral around the closed
The geometry of this aperture is importdfgs is illustrated  curve ABCDAvanishes.
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in the absence of a definitive experimental wall potential, we
use the current simplifying assumption. In addition, we will i (@)= 8 122 qp) + E Sthwratta), (6
take the magnetic field to be zero in the present derivation.
whereM; is the highest open lead mode.
Ill. SEMICLASSICAL FORMULA S-matrix elements are of course related to the currents in
A States in the lead the various leads. We define the current density operator in
. States In the leads the usual Wa§ﬁ

A “space-fixed frame” is defined for the whole system 1
such that k,y) represents the position of the electron; for a ~ A
circular jur(:ci/iZJn tEle origin of thpese coordinates is at the cen- Q)= (5) [Vopd(a—Q)+ 5(q—= Q)Vop] @)
ter of the circle. Local coordinates at thih lead are defined
in Fig. 3. The pointsXx=x{?), y=y(9) are the center of the
end of theith lead; lead coordinatesq(,y;) are translated to Let us draw a boundary across tjta lead in the asymp-

this origin a_nd. rotgted, syg.is across the Iead_anql i.S along totic region, and let the collection of point®} be the points
the lead pointing into the junction. The relationship betweenOn this boundaryFig. 3

the lead coordinatesy; = (x; ,y;)] and junction-centered co-

wherev,, is the velocity operatofequal to—i(2/M)V in
the absence of magnetic fields

ordinateq g=(x,y)] is given by w w
{Qj}:(szxb!_agngg : )
x| (x© cod); —sinQ
y) g0 e cog) v | (20 Then we define the current operafyrfor the jth lead as
w/2 R
The flux-normalized incoming wave function in thith 3j=f dy;3(xj=Xp,Yj) Ny, 9
lead is w2
where n = —x is the outward-pointing normal. The
g 3 - S-matrix elememSST‘]'g is equal to a matrix element of this
r\(Ch) » enn '¢i,n(yi)1 (3) operator
i,n
(ji lead,ou
and zero outside of the lead. Hekg,= VK= (nmiw;)? is )_W 35l ) (109
the longitudinal component of the wave vector for mode i%

leadi, with the corresponding velocity; ,=k; ,2/M. M is
the effective mass of the electron, taken as 1 in our calcula-
tions, andw; is the lead width. The transverse component of

w/2
:mj dy][(¢|ead Oufxb yJ))* lﬂl n( b y])

the wave function,¢; ,(y;), is the solution to the one- _‘//iJrn(Xbvyj)_(wleadoutxbvyj))* . (10b)
dimensional particle-in-a-box for our hard-wall boundary '
conditions: [Proof: substitute Eqg6) and (9) into (10a.]
1o The same formula holds if the boundary of chosen differ-
b (y-):(i) sinnal 2+ 1 4) ently. In general, ifi1(q) and ¥,(q) are any two exact so-
L W w; 2 lutions to the stationary Schdonger equation,C is any

closed contour, and the outward-pointing normal on this
The corresponding outgoing sta;ﬁead U for the mth  curve, then by Green’s theorem a flux-type integral around
mode of thejth lead is given by the complex conjugate of the curve must vanish,
Eq. (3), with the appropriate change of labels,

(i,n)—(j,m): ffcds[zﬁ{(q)vwz(q)—wz<q>vw1*<q>]-ﬁ=o. (1D
1 ) .
lead,ou —iKi X For example, the integral around the closed mushroom-
= e .mXi . ’ 5 ple, g
Yim ta )= VUjm Pi.m(¥)) © shaped curve in Fig. 3 vanishes, and since the wave func-

tions vanish at the walls, it follows that the integral across
the lead AB) is equal to the integral around the semicircle
(DC) at radiusry, or

Suppose that electrons approach the junction only in the
nth mode of the th lead. Where the lead meets the junction, Giy_ 1R out .
the wave diffracts, bounces around inside the junction, and >mn =) | rbd0 Wim(r,6))" 5 z,b, (T 6))
then electrons leave the junction from every lead in all ener-

B. Boundary conditions and definition of the S matrix

w2

getically allowed modes. The wave function representing

this physical situation is calleg;’(q). The S matrix speci- ~#in(rp. 0 )_(‘p m(To . 67))* } (12)
fies the amplitude for finding the electron in the outgoing

modes of any lead. In the asymptotic regidar enough so This is the formula we will use for evaluation of

that closed channels do not contributd lead j, this wave  S-matrix elements. However, since the required lead state
function is [Eqg. (5)] is only defined within lead, we cannot use it to
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evaluateyi(ry,,6;) on the circular boundary: we must use In Eq. (16) we see a circular wave propagating radially out-

an appropriate continuation of E€5) into the junction. ward from the entrance lead into the junction with an angular
dependence given b9;" (6;). As seen in Fig. 4, this angular
C. Diffraction at the entrance aperture component is peaked near 8ir =nn/(wkg), the angles for

) ] ] ] o a classical electron with transverse and longitudinal mo-
Wh_en the incoming wave enters the_junctlon, it d'ﬁraCtS-mentanrrﬁ/wi andk; /i, respectively. The angular depen-
We will approximate this process as Klrchhoff'd|ffracti’-8n dence becomes strongly peaked around the classical angles
from the lead into an infinite half-plane. The Kirchhoff for- ¢,, large wave vector, as one would expect. Near threshold
mula for this situation is derived from the Kirchhoff- (ke=nm/w;) this formula breaks down. It no longer ap-
Helmholtz equation proximately obeys the boundary conditiofis=0 along the
walls, and it diverges due to the Jﬂi’n factor.
y(q)= fﬁ ds'[¢4(q')V'G(q,q9')—G(q,9 )V’ ¢(q’)]-A'. Wg may also _defir_ne a dif_fract.ed out-state: i.e., the wave
(13 function in the junction which is connected through the

Kirchhoff formula with the outgoing lead wave function
Hereq is an arbitrary point inside the junction, and the inte- zﬂ}‘fﬁf’"’“ﬁ This diffracted out-statapf"ﬁn"d'ﬁ(q) is a circular
gration contour is any closed boundary surroundingv’ wave approaching the center of thia lead with an appro-
denotes the derivative with respect to the prinfiedundary  priate angular modulation. It is the complex conjugate of
coordinates, and’ is a unit vector pointing inward from the zp}f}ﬁ'“,

boundary. Equationil3) is exact. In the Kirchhoff approxi-

mation we take the boundary to be the line segment out.diff e kFy e ke .

(x;'=0, —w/2<y;’<w/2) defining the boundary between j.m :T®j,m(01):T(®j,m(ei)) . (19
the jth lead and the junction, and on the right-hand side of ! !

Eq. (13) we take(q') to be the incoming lead wave func-

tion w:'fr?d'i” defined in Eq.(3). D. Semiclassical propagation inside the junction
G(q,q") is taken to be the two-dimensional free-particle Inside the junction, the wave function propagates in a
Green function, which & manner that is consistent with the semiclassical approxima-
. tion (the wavelength is short compared to the size of the
i . ) . . ;
N @ o junction). The semiclassical method for propagating a wave
Gla.a") 4HO (kela—a']), (14) function goes as followgFigs. 1 and % An initial curve

D)oy ) i . corresponding to an initial wave front is defined. In our case
whereHg’(x) is the Hankel function of the first kind. The the cyrve is the circle of radius, at the center of lead.

Green function and its derivative required in H43) are  Trajectories are launched perpendicular to this wave front at

approximated for largég—q’|, ' small, by all angles— (/2)< 6,< /2. At any pointq inside the junc-
tion, the wave function #(q) is a sum of terms

elker —iker cod 6-0") +imia (159 {#1(9), I.=1,2, ...}, one for each trajectonythe_lt arrives qt
the point g from a  corresponding point
gi(a)=(ri=ryp, 6;=26;,) on the initial arc,

1
G(q,q' )~ ———
(a,9") Bkt

i " i)llz iker —iker’ cog 60— 0')—iml4
Ol )N(W cosfeT T | D=3 (). (20
(15b) '

The left-hand side of Eq(13), lp(q)El//:%diff(q), is then The wave function associated with trajectoris
(@)= a; ) A()exdiS(a)/h—immi2]. (21)

the appropriate wave function diffracted into the junction
from the nth incoming mode of théth lead. Inserting Egs.
(3) and(15) into Eq.(13) and integrating only over the lead Here zp(o)(q”(q)) is the wave function at the poirj; |(q)

mouth, we obtain which comprises the initial conditions of th#h trajectory. In
_ our case this wave function is the Kirchhoff-diffracted in-
PG~ ke o () 16 state corresponding to the lead wave functigff®",
i,n i/ i,n\YiJy o
0 lﬁ(o)(qM):‘ﬁ:?ﬁdlﬁ(rbﬁm)- (22
where

Si(a) is the classical action on the path framn, to g, and
ke | 172 since we have free-particle motion with the magnitude of the
@:?n(gi): —n~/7-rwi(—F) e ™4(cog 0;)+Ki n/Kg) momentum constant, this action is equal to the Fermi mo-
Uin mentum times the length of the palth(q)
wike

5 sin&i), (17) S(a)= qq p-dg=peL(q). (23
il

X Xn

icoga), n odd ) The amplitudeA(q) is related to the classical density of

_ 2_ 21-1
xn(@)=[(nm)"=(22)7] {—sin(a), n even. 18 particles at the poing. It can be computed from certain
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0.003}—

0.015 — FIG. 5. Three trajectories with simila; . There is a focus be-
tween each bounce after the first one. The foci are circled in this
] figure. At each focus, the Maslov index increases by 1. For each
bounce off a hard wall, the Maslov index increases byif Zhe

walls were soft, it would increase by.1

0.010—

0.005

: | - | focus between each bounce after the fiFEg. 5 shows this
~04  -02 0.0 0.2 0.4 geometrically, and it can be verified by analytic evaluation of
the Jacobian
As the electron continues to bounce around the enclosure,
a large number of paths can contribute to the wave function
|y —gw, O for three values oft: n=1 at ke=3.5m/w; , at each point. In the semiclassical method, we cut' off this
N=2 at ke=4.57/w,, and n=3 at ke=4.57/w,. The dotted sum over paths in some way, for exgmple by including o_nly_
paths of length less than some maximum. The hypothesis is

curves are from the Kirchhoff approximation used here, @6). h d f . domi d by i f
The solid curves are from an exact calculation described in Appent- at conductance tluctuations are dominated by interierence

dix C. The thick vertical bars represent the exit angles of a classicdiMoNg waves that follow relatively short paths from entrance

0.000

0 (units of m)

FIG. 4. Angular distribution of the diffracted wave function.

electron. to exit. This hypothesis is partially supported by our calcu-
lations.

Jacobians. Let us think about the whole family of trajectories

that emanate from the initial arc, and let us consider the E. Wave function near the exit lead

instantaneous position on one of these trajectagiegx,y)

. . R To calculate theS-matrix elements from semiclassical
to be a function of time and of the anglg on the initial

wave functions, we identify paths that go from the center of

circle, the entrance lead (x;=0, y;=0) to the center of any lead
a=q(t, )= (x(t,6),y(t, 6)). 24y 1 (x=0, y;=0), including the entrance lead itseff=i.
] There is a discrete set of such paths, and each is labeled by
Define the indexl. The wave function associated with each path at
J the final point is given by combining Eq&®1)—(26) with Eq.
- = ) ) (16),
Derivatives such asx(t,6;)/dt are components of instanta- $h(x;=0, y;=0)
neous velocity on the path. Derivatives such as (kgL — yf2)
ax(t,6,)/06;, can be computed as finite differences =——A(x;=0, :0)@:nn(9i .
AX(t, 6;)/A 6; by integrating two adjacent trajectories to time \/r_b o
t.28
2
Then the amplitude factad,(q) is given by a ratio of @7
Jacobians, Here kgL, is the phase associated with the entire length of
_ 12 the Ith path from the center of the entrance to the center of
Ai(9)=13(ai,1(9))/3(q)| the exit. It arises by combining exggr;) in Eq. (16) with the
=|3(t=0,6,)/3(t, 6,)| V2 (26) action integral tern§23) which goes from the initial circle to

the final point.

Finally, u, is the Maslov index for each path, and gives We make the approximation that near this final point, but,
the phase shift associated with caustics or focal points erinside the junction, the wave functiom(x;,y;) is a plane
countered on each path. In the present case, the Maslov indeave approaching the lead from andlg,
is incremented by two for each bounce off the hard walls,
and one for each focus. For the circular junction, there is one h(X>0y))=(x;=0, y;=0)exdip;,-q;/A], (28
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wherep; | is the momentum at leadon the patH. The rays On the arc around the mouth of leadr;=r,, the state
associated with this plane wave are all parallel to this finak®" is approximately equal to the Klrchhoff wave function
momentum. With this approximation, let us evaluate the .JawOUt i defined in Eq.(19). When we apply the stationary-

cobians in Eq(26). On the initial arc, phase approximation we examine thgdependence of the
phase of the plane-wave contribution of each trajectory,

I(X,y)
J=060= 1550y~ |"aey | ~"vr @9 ®/(6,)=p; - alh = —kerocoS 6,—6,)). (35
At the final point, This phase is stationary wheff}, the angle defining points
on the arc, is equal td@; ,, the direction from which the
ax,y) | |a(x,Y)) Ith trajectory approaches the lead. The second derivative of
J(ts,6)= 2060 | | a6 the phase at this point is
2
ax; dy;  dy; Ix d°o,
=2 7 =Kkgrp>0, (36)
ot a6, at a6, dg?  TFP

X and it follows that

(9 .
=Ug|COY;, |((;g> —sing; |<50
7t

v

20 1/2‘
Jdeexp(lpj, q/t)~e IkFrb(kFrb> e (37

57 % 30
~UrCOFj, 26, |’ B0 At the stationary phase poingy/dr;=—ikgy, both for
) =4y and fory=y2". Everything else in the integral in
The last of these formulas follows from Eg. (12) is taken to be constant.
Now using Eqs(33) and (19) in Eq. (12), and applying
il Y +% X % ay;lat|y, IXj Eq. (37), the result is that the contribution to @matrix
a0, t_ a6, ox 0.39it_ agi r?XJ/at|9 (99 element from thdth trajectory is
ho _
) . wl
Z_);J *+tang;, '&0 (31 ZWkFMe' 4®=r,1n(9i,|)7®mm(9j 1) (38
i

or, in full and in abbreviated notation,
Equation(30) has the following meaning. Let us define a o
coordinates that goes around the circumference of the junc- ke
. . ' L ) (ji) — /2 3/2 |3w/4_2
tion, passing straight across the leads. From the initial circle, Sihn=mn wjme
p g g mn VKi nKjm 1
k.y

ki,n
cog ai"H_kF
we find thelth path that lands at the center of thé lead.
Wik wikg .
Q—Fm Xn( '2 sing; |) ( 12 sing;. ,)

Then we incremen®; and ask where on the boundary the
adjacent path lands. The derivatil@y; /96|, is equivalent
to |9s/a6;| for that path. Then the amplitude factor for the

X|cog 6;,)+

wave function is 1 Js, —1/2 i j
X—|— ex dg—i—= 39
1 dS| —-1/2 \/CO§J"| &ai ;{h p-aq Ml) ( )
\/TbA(X]-:O, yJZO): C059j1|d—0i (32)
=" aexplikel)). (40)
|

Combining Egs.(27), (28), and (30), the wave function
near thejth lead is a sum of plane waves The same result for th& matrix can be obtained by an-

) out,diff
y() = exp(ip;, - a/h) TO(6,,), (33) other method. Instead of evaluating’, and Yia"" on an

arc, we could continue the plane-wave representatlon of
where ¢, up to the lead mouth, and combine it wigf2*°"in Eq.
(12), integrating straight across the lead mouth instead of
along the arc. These two approaches are consistent with the
Kirchhoff approximatiort®
The power spectrum @) (k¢) is defined as

—1/2

T= explikel—iwm/2). (34

Coyj'ld_ai‘

F. Semiclassical formula for theS matrix 2

) —ikpLa(ji)
We use this semiclassical approximat|&y. (33)] for the JI a(L) U ! S“ n(Ke)dKe| - (41

wave function to represent;’, in Eq. (12) near the exit lead.
Now we use Eq(12) to calculate theS-matrix element. As It follows from Eq. (40) that S(“)(L) is a set of peaks dt,
stated in Sec. Il B, thisS-matrix element is calculated by (the length of theth trajectory from the center of the en-
integration around a half-circle centered on ttielead. The trance to the center of the ekitThe height of each peak
integral is evaluated using the stationary-phase approximsshould be proportional to the absolute square of the preex-
tion. ponential factor in Eg. (40).
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G. Comparison with previous semiclassical theory

1.0 P —
Baranger, Jalabert, and Stoftealong with Lin and | | | | | |
Jensent® developed a similafBJSLJ semiclassical theory in 0.5 l =
which the initial quantum state was taken as the undiffracted ’ | | ‘
lead state. In our theory, the initial wave front is circular as a - 0.0 A
result of diffraction, and trajectories are launched from the Y 5 |
center of the lead mouth in all directions. In the BJSLJ S )
theory, the initial wave front is a straight line, and the clas- ) R PSP IS O e L O PR B B
, : : . . . X IARAARRARNRARRS RAREN LARNS AN RRRRE RARRNN
sical trajectories are launched in only the two classical direc- s 10 a)
tions dictated by the parallel and transverse momenta of the A 05 B
particular mode in the lead. S ﬁ ‘
For leads with large lead widths compared to the charac- a‘% 0.0 w ‘
teristic dimensions of the junctio{strongly open junctions J‘
and for wavelengths short in comparison with these lengths, —05 u N
we expect that the BJSLJ formulas are appropriate. When- ol b b e b |
ever diffraction is importan{whenever the wavelength is 1.0 15 20 25 3.0 35 40 45 50

comparable to the size of the leadshe present theory
should be better. On the other hand, some of our formulas
assume that the lead is narrow compared to the size of the o _
junction; this assumption is not made in BJSLJ. FIG. 6. Real part of the transmission amplituda. Quantum.

A nice feature of our theory is that the contribution to the (b) Semiclassical. The transmission amplitude fluctuates wildly as a
S matrix from each path is given by the same formula, Eq_function of kg, and little correspondence between quantum and

(39). The BJSLJ theory requires two different expressiongemiclassical calculations is visible.
depending on whether the path has encountered a curvegon and reflection coefficients that are too small.

ka/ﬂ

wall between the entrance and exit. Accordingly, the purpose of the semiclassical calculation
is not to reproducestl) but rather to reproduce its large-
IV. COMPARISON WITH QUANTUM RESULTS scale structure. From Edq39) we see that fluctuations of

Ishio and Burgdder'® carried out a fully quantum- Sf#”)(.kF) having long wavelength on th: axis arise from
mechanical calculation of the conductance of a circularjunc-relat'vely sh_ort trajectories. To see this structure, it is best to
tion. They showed that the Fourier transform of the transmis'—[ake a Fourier transform.
sion amplitude displays distinct peaks at frequencies
corresponding to trajectories connecting the entrance and
exit leads. Figure 6 shows the real part of the semiclassical and

We originally intended to compare our semiclassical for-quantum transmission amplitude,= 8(1211) as a function of
mulas with their quantum results. However, we found thatkz . This quantity is the amplitude for transmission from the
their method(even with the improvements incorporated in lowest mode of lead 1 to the lowest mode of lead 2. The
Ref. 6 did not give results sufficiently precise and reliable tosemiclassical version employs 120 trajectorig® to 15
allow a definitive comparison of peak heights. Therefore, webounces Both the quantum and semiclassical results are
developed an improvement upon their method, using an exiighly oscillatory, and it is hard to see any correspondence
pansion in appropriately normalized Bessel functions rathebetween them.
than plane waves. This method is described in Appendix A. Examination of the two curves shows three discrepancies.
Below we show results of our calculations and comparison$l) The amplitude of the semiclassical curve is generally too
with semiclassical formulas. small. This is due to the finite number of trajectories used in

Following Ref. 13 the system consists of a circular junc-this calculation.(2) The semiclassical formula diverges as
tion of radiusR=\1+4/m, joined at a right angle to two small kg (near the threshold where-w/7=1) due to a
wire leads of widthw=0.0935/7+4. For purposes of cal- breakdown of the Kirchhoff approximation for diffraction at
culating the classical trajectories, the lead mouths were taketie lead mouth$Eq. (16) contains a factor of\/?n in the
as curved surfaces, continuations of the circle. This circlelenominator; this factor goes to zero at thresholthis
geometry is particularly convenient because all of the propbreakdown could be eliminated if a better expression for the
erties of trajectories can be calculated in closed form. Waliffracted wave function were obtained, but the failure oc-
compared our semiclassical theory with exact quantum reeurs in only a very small range &, and it is not visible in
sults over the energy range corresponding toFig. 6. (3) The magnitude of the semiclassicgh is not
wke/m=[1 ...5] with zero magnetic field; in this range the necessarily less than 1: semiclassical formulas are not neces-
radius to wavelength ratio R/A=[3 ... 15. sarily unitary.

If we start a large number of trajectories on the initial arc  Despite all of this, the large-scale structure of the fluctua-
around the entrance lead mouth, and allow them to bouncgons of t,, is correctly described by the semiclassical for-
around the junction 15 times, we find that about 70% of thenula. This is best shown by examination of the Fourier
trajectories have hit the mouth of one of the leads and therdransform.
fore have left the junction. Our semiclassical calculation in- The power spectrum of thg(kg) in Fig. 6 is denoted
cludes only such trajectories, so it necessarily gives transmig,;, and is shown in Fig. 7. The agreement between quantum

A. Transmission coefficientt;
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FIG. 7. Power spectrum of the transmission amplitude. Each
major peak corresponds to one of the trajectories between entrance 3 (cy_|
and exit. Quantum
4 L ‘ JI R k L J e, ‘ Lo
0 5 10 15 20 25
and semiclassical results up to~21 is remarkable, and, Length

abovelL ~21, there is still substantial agreement. Each major ] ]
peak corresponds to an identifiable path from the center of /G 8: Power spectra of the semiclassical and quantum reflec-
the entrance to the center of the exit. The location of the pea jon amplitudes.(A) Semiclassical without diffractive scattering

is the | h of th h d the heiaht of th Kis ai fom lead mouths(B) Semiclassical including diffractive scatter-
Is the length of the path, and the height of the peak Is glVerﬂwg. (C) Quantum. Again, the major peaks arise from identifiable
accurately by our formula Eq39).

paths. Peaka andc are missing in the simple semiclassical calcu-
As we go to longer lengths some discrepancies arise. Wgytion in panel(A). They are “ghost paths,” caused by diffractive
believe that this is primarily due to the fact that we use areflection from the mouth of a lead. Waves go from the entrance
finite number of trajectories in the semiclassical calculationlead across the junction, and are reflected back to the entrance lead,;
[There is also some possibility that numerical errors contribthere they are partially absorbed and partially reflected with diffrac-
ute to the high-frequencylong-length fluctuations in the tion. Peaka represents four traverses, and peakix traverses of
quantum calculation. the diameter of the circle.
As reported in Ref. 13, we see that the “asterisk” trajec-
tories dominate the power spectrum. Some of these are
shown as insets in Fig. 7 at the corresponding peak positions.  B. Reflection coefficientr,,: diffractive scattering
“Asterisks” are those trajectories which, for a given number and “ghost paths”
of bounces between entrance and exit, have the smallest The power spectrum of the reflection coefficient
angles(those _angles closest to the lead r_10rr)1a|lsthe en- (r,,=s{!Y) is shown in Fig. 8. Again, the locations and
trance and exit leads. The reason for the importance of theggsjghts of several of the major peaks are accurately predicted
trajectories lies in the entrance geometry and the mode nunhy the semiclassical formulgFig. 8A)]. For example, the
ber. The entering electrons are rather well collimated in th@owest-frequency peak arises from the “straight-ahead”
forward direction, and the amplitude of the diffracted wavepath, which bounces once from the far wall before going
function falls off rapidly with increasing angle. Furthermore, directly back out the entrance, and has a lengthRf 4
for moden=1, the diffracted wave function has no nodes in  On the other hand, certain interesting discrepancies ap-
this direction. pear between Figs(8) and 8C). Peaks marked andc are
“Whispering gallery” trajectories, which run along the not present in the semiclassical calculation, while pedlas
edges of the walls, do not play an important role here. Fothe wrong magnitude.
example, the shortest path from entrance to exit has an initial Peak a occurs at a length exactly twice that of the
angle at 45° from the normal; this produces the small peak istraight-ahead path . We may guess, then, that this peak
Fig. 7 atL~2. There is an infinite family of similar paths arises from waves which propagate across the circle and
which travel one-fourth of the way around the circle; eachback, but then they are not totally absorbed by the entrance
successive member has a larger initial angletween 45° aperture. These waves are partially absorbed, but also par-
and 90°) and one more bounce against the wall. The limitindially reflected diffractively from the aperture and they re-
length of these trajectories g2 7R(~2.4), but there is no trace the straight-ahead path.
peak there in Fig. 7. Again, this happens because electrons In the simple semiclassical calculatioffigs. 7 and
leaving the lead are collimated in the forward direction by8(A)], when a trajectory reaches a lead mouth it is assumed
the entrance geometry. that all of the flux associated with that trajectory is absorbed:
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FIG. 9. Three trajectories which contribute to pémakf Fig. 8. 0.2 [V Y A T A
The heavy line is a star-shaped trajectory that bounces specularly 0.0 b L b b b b
around the enclosure, and produces peak Fig. 8 A). The dashed 1.0 15 20 25 3.0 35 40 45 50
lines forming the distorted star together constitute a pair of “ghost kFW/ﬂ
paths.” One path has one bounce from entrance to exit, diffractive
reflection from the exit, and the_n two bounces bacl_< to the entram_:e. FIG. 10. Gaussian smoothed quant(solid) and semiclassical
The other member of the pair is the reverse of this path. The dls'dotted transmission probability(a) o= /5, (b) o=/10, (¢)
torted star destructively interferes with the star, reducing the heigh& = ' '

L o=m/20.

of peakb in Fig. 8B).

the lead casts a sharp shadow in the reflected wave. In rea]\TaCted shadow” of the lead mouth reduces the amplitude

ity, diffractive scattering blurs these shadows. A diffracted®’ "€ Wave function reflected out the entrance lead.

wave goes out in all directions; it only partially cancels the ) iz

specularly reflected wave, and it produces nonzero amplitude C. Squares of matrix elements|Syy’|

on paths that are not permitted by geometrical optics. A far more severe test of the semiclassical formula comes
Therefore, diffractive scattering produces peaks assocfrom examination of the absolute squares of Swnatrix

ated with “ghost paths” that bounce elastically around theelementsSU!), the transmission and reflection probabilities.

mn

enclosure and diffract one or more times off a lead mouthThese are directly related to the measurable conductance by
Diffractive reflection from an opening can be treated bygq. (1).

Babinet's principle: the total reflected wave is the specularly ¢ large-scale structure (Sﬁ,"]i,?(kp) arises from short
reflected waveminusthe wave produced by a small barrier paths, but the same formula, Ed0), predicts that the large-

coinciding with the opening. (i) 2 . .
In Appendix B we give an approximate formula for this zﬁzlﬁ f;;téi:‘ua?ﬁ(fg‘r;‘égg) |* comes from pairs of paths with

diffractive scattering. With this formula we have recalculated
t11(kg) andr4(kg). These calculations include trajectories i _
of up to 15 bounces which travel from entrance to exit, en- |SUD(ke) 2= > af‘la|2e'kF(L'z’Lll>. (42
trance to entrance, and exit to exit. The trajectories are con- 1l

nected by up to two scattering events as specified in Apperpairs of very long paths can have short length differences, so
dix B. In addition, we discard those trajectories Whoseany scheme in which |ong paths are omitted m|ght fail com-
cumulative length is longer than 50: this is the Nyquist fre-pjetely. In fact, we will see that short path semiclassical cal-
quency from the grid ok used in our quantum calculations. culations are partially successful.

The results of a calculation including diffractive scatter-  Quantum and semiclassical Gaussian-smoothed plots of
ing are shown in Fig. @). Now there is excellent agreement the transmission probabilit§, ;= |t;,|? are shown in Fig. 10
between the quantum and semiclassical calculations. Peam Gaussian widthsr Corresponding to cutoff frequencies
a andc, respectively, represent four and six traverses of thglengthg of 5, 10, and 20,
circle.

Peakb arises from an interesting effect. The largest con- , '\ e (ke k)2
tribution to this peak arises from the star-shaped five-bounce Smoothedr;;= J dkeTay(kp)e™ F 5o (43)
trajectory from entrance to entrance, with lengthl4.3
(heavy line in Fig. 9. However, a significant contribution One again notes that the semiclassical result tends to have a
also comes from two trajectories which go from entrance tcslightly smaller amplitude than the quantum version. Never-
exit, where they are connected by diffractive scatteringtheless, the quantum and semiclassical results match rather
These trajectories are shown by the dashed and dotted curv#€ll in phase and amplitude: the large-scale structure of
in Fig. 9, and have a total length approximately equal to thafl 11(K¢) is rather well predicted by our short-path semiclas-
of the star trajectory. They interfere destructively with thesical calculation €15 bounces, total lengtk:50, two dif-
star-shaped trajectory and reduce the magnitude of pelmk  fractive scattering events
effect, a portion of the wave front associated with the star- Figure 11A) showsT,,, the power spectrum of both the
shaped trajectory is absorbed by the exit lead, and the difguantum and the semiclassical transmission probaBfity.
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T cation of the sum over classical paths causes the discrepancy.
— Semiclassical -] We have studied these issues at some length, and have not
yet reached a conclusion. In the Sec. V, we offer a hypoth-
esis which, if correct, will make this problem less relevant to
experimental comparisons.

V. A HYPOTHESIS ABOUT LONG PATHS

Quantum ] Even in a semiconductor microstructure with no defects
I S S S A or impurities, thermal fluctuations disturb the electrons as
they bounce around, distorting the paths and causing a loss
of coherence. We expect that long paths through the junction
may be more disturbed by thermal fluctuations than short
paths. It is credible, then, to suggest that in experimental
measurements, interference fluctuations associated with short
length differences between long paths may be quenched by
thermal fluctuations. If this hypothesis is correct, then for
comparison with measurements, E42) should be replaced

|1|\|||\\|1\s|{v\vv‘vv\|

Y] W N WP, OR DWW

Semiclassical

10-3 ﬁn

Quantum

25 ] by
® gl
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| S (k) [2=[Sn (ke) [fet+ 2 afay gt hf f,

FIG. 11. Power spectra ¢f) the transmission probability, and 1.1z

(B) the reflection probability. (44)

_ _ ()12 i an “ , -
corroborates the good agreement gleaned from inspection §f1er€|Sinn (k) inc is an incoherent “background” contribu-

the smoothed plots in Fig. 10. One surprising aspect of thes#on, andf, is a function which cuts off long paths, such as
results is the lack of structure presenflipy relative to thatin ~ €XA.—(L/A)7]. The hypothesis is that because of thermal
ty;. fluctuations, a reduced §em|cIaSS|caI sum like @¢) could
There are very many pairs of paths with short length dif_t_)e a better representation t_)f measured mter_fere_nce_fluctua-
ferences, and they contribute a very large number of peakdons than the full semiclassical sum H42), which in prin-
Many of these peaks interfere destructively, however, s&iple includes small path differences between arbitrarily long
there remain only two sizabl@on-dg peaks in Fig. 1¢a).  Paths. . o
The largest peak in Fig. 14), at L~3, corresponds to How do we express this same hypothesis in terms of the
the length difference of successive asterisk trajectories haWuantums matrix? If there are no thermal fluctuations, we
ing a large number of bounces. That length difference conWould simply compute the power spectrumf (kg) as in
verges to the diameter of the circle. The peak-df7.5 is due Fig. 11(A). Naively, we might think that thermal fluctuations
in part to interference between entrance-to-exit asterisk trawould act to smoothS{)(kg)|?, and thereby simply reduce
jectories(recall that these are the longest trajectories for &r remove its high-frequencifarge AL) components.
given number of bouncesith n bounces and the second- However, the hypothesis is that thermal fluctuations re-
longest trajectories witm+6 bounces. duce coherence in long paths more than in short paths. This
Overall, the agreement between semiclassical and quahypothesis implies that we shoufidst smoothS{}) eliminat-
tum results in Fig. 10A) is good enough that the semiclas- ing its high-frequency components, arben square the
sical formula is credible for this case. However, when wesmooth result to obtain a partially coheréﬁﬂ'g(k,:)ﬁ. We
examine the square of the reflection -coefficientpropose that “smoothing then squaring” may give a better
Ri1=|r11(kg)|?, the results are not very godéig. 11(B)]. representation of experimentally measured interference fluc-
Both quantum and semiclassical spectra show more structutaations than “squaring then smoothing.” Such calculations
than is present iTy4, but the peaks differ significantly in are shown in Figs. 12) and 12ZB) (related procedures were
position and magnitude. This lack of agreement should bsuggested in Refs. 24 and)13
contrasted with the nice agreement for the power spectrum of In this case, this procedure improves the agreement be-
ri1 in Fig. 8B). tween semiclassical and quantum calculations. The semiclas-
Why does the semiclassical formula give a good approxisical formula for the power spectrum of the transmission
mation to the power spectra of transmission and reflectioprobability agrees reasonably well with the quantum result,
amplitudeg(Figs. 7 and 8and a decent approximation to the and the semiclassical formula for the reflection probability
power spectrum of the transmission probabilfjgs. 10 and [Fig. 12B)] is much improved over that seen in Fig.(BL
11(A)], but a poor representation of the reflection probabil-However, this improved agreement by itself does not justify
ity? Two possible explanations are availall®. Diffractive  the hypothesis. Experimental tests of this hypothesis could
scattering is more important for reflection than for transmis-occur when conductance fluctuations dependent only upon
sion, and our approximate formulas for this process are najeometry are obtained. In any case, the proposed semiclas-
yet sufficiently accuratg2) For some reason, long paths are sical formula accurately predicts the large-scale structure of
more important for reflection than for transmission, and trun-S-matrix elements.
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APPENDIX A: SOLVING FOR THE FULLY QUANTUM

e e HSNSANLLA B p e

B Semiclassical B S MATRIX

We used two different methods for the quantum calcula-
tions reported in this paper. To calculate thenatrix for the
circular junction, we used a basis set expansion described in
this appendix. To check the validity of the Kirchhoff ap-
n proximation, and that of our formula for diffractive scatter-
| Quantum (a)_| ing (Appendix B, we used the boundary element method
- T described in Appendix C.

For the basis set expansion method we followed the
— method of Nakamura and Istifo A similar approach was
Semiclassical also employed in Ref. 32. We found that we needed a modi-
fication of these previous approaches in order to obtain nu-
merically converged results.

We wish to match a representation of the wave function
inside the junction with a different representation which is
appropriate outside of the junction. Outside the junction, the
Quantum wave function is zero except in the leads. The wave function
in leadj can be expanded in lead wave functions,

104 Smoothed T11
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FIG. 12. Quantum-mechanical and semiclassical power spectra. | L .
of (A) the transmission probability ar(8) the reflection probability This equation is similar to Eq6), but here the sum includes
resulting from first smoothin@ﬂ”(kp) using a cutoff width of closed channelgevanescent modeso Eq.(Al) holds ev-

a=l40. erywhere in lead.
The wave function inside the junction is expanded in ba-

. L sis functions®,(q), which are selected solutions to the
(It is important to draw a distinction between thermal Schralinger equation,

fluctuations in the electron reservoirs or the leads outside the
junction, and the thermal fluctuations within the junction it-

Length Difference

self. Thermal fluctuations from sources outside the junction ¢Junc(Q):§b: cpPp(q), (A2)
typically will not reduce coherence on long paths relative to

short paths; only thermal fluctuations within the junction it- (V2+ ké)q)b(Q):O- (A3)
self could have the effect of retaining short-path coherence )

but reducing long-path coherenge. The coefficientssfrj"g and c,, are chosen so that the “in-

side” and “outside” representations match along the perim-
eter of the junction. The normal derivatives of each represen-
VI. SUMMARY tation must also match along this boundary. Thus
(1) We have improved upon previous methods for calcu- Yjunc=0 (Ad3)
lating the quantun$ matrix for a two-dimensional junction. along the walls, and
(2) We have derived a semiclassical formula for the

o — ()
matrix of such a junction. Yiunc= Piead: (A4b)
(3) The semiclassical formula gives a good representation J J
of the large-scale structure of the transmissaonplitude %‘pjunc:%‘;&g; g (Adc)
J J

(4) For the reflection amplitude, the semiclassical formula
must be modified to include diffractive scattering and “ghostat the mouth of leaq.

pathS.” With that modification, it giVeS a gOOd representa- Equation(A4c) allows us to express trﬁ#l’? in terms of
tion of the Iargg—scal_e structure of_ the reflection amplltudg. the ¢, . Multiplying both sides bys; , and integrating over
(5 The semiclassical formula gives a good representatioghe mouth of lead (x;=0), results in the expression
of the large-scale structure of the transmisgiwabability.
(6) At present, this formula gives a poor representation of (i) _
the quantum reflection probability. n=%j%m % Coll'jmb . (AS)
(7) We have offered a hypothesis that thermal fluctuations
within the junction may reduce coherence on long paths. ¥vhere
this is correct, then we expect that formulas including only
short paths will give a good representation of measured con-

. ]ijb:
ductance fluctuations.

i w/UmJWj/Z
I(m *Wj/2

J
dy; ¢j,m(Yj)(9_qu)b(q)- (AB)
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Now let us define a coordinats,0<s<A, that goes

around the perimeter of the junction, and straight across the )
lead mouths. We expand the inside and outside representa- B
tions in a Fourier series irs with coefficients jnc; £
and Yieaq » respectively(Ref. 31. We find s n
~ 1A —i2@lsIA Ay 85l T N
wjunc,IEKf dSlr/fjunc(S)e tems (A7) | | | | o
0
ool ! j \ !
0.8+ o)
. 0.7f —
= 2 CpGpy, (A8) N 0.6 —
b o 051 —
= 04 ]
where 0.3 —
0.2 B N ]
_ 1 —i2mls/A 8:(1J L ‘ ‘ ' -~ - |
Gbl_Kfo ds®y[a(s)]e : (A9) 50 100 150 200 250 300

Similarly, the Fourier coefficients corresponding to the out- Basis Size

side representation are _ .
FIG. 13. Comparison of convergence properties for plane-wave

- . (dotted curvesand Bessel-functiorfsolid curve$ basis sets as a
Yiead) = Hin + 2 SﬁT’]'n)Hjm , (A10) function of basis set siz€¢a) Norm (T+R). (b) An individual ma-
hm trix element.
where
For this reason the Fourier summations are slowly converg-
BYE i i2mls/A ing (high Fourier components make important contributjons
Himl—Xfo dséy Lyj(s)]e : (A1) For the circular junction, the perimeter variable can be ap-
i proximately written as~ #A/2, so that
Using Eq.(A5) to eliminateS{)) and equating Fourier coef-
ficients ¢unc) = Yiead) » W Obtain a set of linear equations for G~ ifzwd ge il fgikercos - a) (A15)
thecy: 27)o

> = ()3 (ker)e e, (A16)

b

CbZZHim . (A12)

Cor+ 2 FympHjmi
hm whereJ,(x) is the Bessel function of the first kind. For large

One generally chooseN,, the number of Fourier coeffi- I,

cients, to be equal thl,, the number of junction basis func-

tions, and then solves for thg . S{i\) can then be obtained e\'/x)'
using Eq.(A5). These are the desirestmatrix elements for I(x)— \/ﬁ E) (T) (A17)
the propagating modes.

Initially, we followed Ref. 31 in using plane waves trav- soJ;(x) becomes quite small for<I, | large. For example,
eling in different directions as a basis: Jo0d(36)~3x 107 1%,

. Because,,,.; must be of comparable magnitude for
— kg 0 junc, -
Po(q)=¢ (A1) small and larggl|, c, must be quite large by EGA8). But
(here we have replaced the indexvith the anglex), where  in order for ¢, to be of reasonable size for smélithe
sum of the large terms must cancel. The result is a numeri-
Ko q=ker cog6—a), (Al4)  cally singular matrix defined on the left-hand side of Eq.

r=x>+y?, tan(9)=y/x anda=[0 ... 27]. However, we (A12). . .

found that this basis set has poor convergence properties for We therefore chose to use a basis set of Bessel functions

the system under consideration. The dotted curves in Fig. 1§|rectly,

represent results obtained for the junction treated in Sec. IV

with kew=3.167 38(one propagating modelt is seen that

the unitarity condition,|S{2Y|2+|S(V|2=1 is significantly  These are the solutions to the free-particle Sdhmger equa-

violated for basis sizes larger thaw,~120. However, to tion when expressed in circular coordinates. As previously

have enough angular resolutiénith « chosen uniformly in  noted,J, becomes quite small for larde, but in this basis

its range to describe even the first evanescent moale=@Q  set it is straightforward to directly rescale the Bessel func-

here, N, must be larger than about 160. tions with weightsl'y such that each’,J,(ker) has a com-
The cause of the instability in the plane-wave expansiorparable magnitude around the perimeteiq approximately

for a junction of approximate circular geometry can be un-constant This basis set gives much better convergence be-

derstood as follows. The derivative of the wave functionhavior than the plane waves, as is seen in Fig. 13. Note,

along the perimeter is discontinuous at the edge of the leadbowever, the drift ofT;; over the range of basis sizes

Dy(q) =T pIp(ker)eP? (A18)
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N,=100—300. This is due to the slow convergence of the — ‘ . .
Fourier sum mentioned previously, so that large basis sets o
are necessary. In our calculations we used a basis size of 400 ,
for one open lead mode up to 900 for four open modes. Flux 0.02 6, = 3n/8
was conserved to 0.03% or better for all calculations. ’
In Refs. 6 and 32 bases of unrescaled Bessel functions 0.011" \ -
were used. In those works the numerical instability was cir- i . 7
cumvented using singular value decomposition. We also ooObztd L T | =
tried this method, but found that it did not work well for our 0.08
case; rescaling the Bessel functions gave much better results.
This Bessel function expansion works for circular geom-
etry. For arbitrary junction geometries, the boundary element 0.04
method given in Appendix C is better.

oosl- | -

0.06

002}

APPENDIX B: DIFFRACTIVE SCATTERING FROM 0.00
LEAD APERTURES 0-15
In Sec. Ill we approximated the wave function near the 0.10

mouth of the exit lead as a sum of plane waves. Let us
reexamine one of these plane waves incident on a lead 0.05
mouth. While some of the amplitude associated with the

plane wave can exit the junction on this encounter, a portion 0.00k \
of the amplitude will be diffractively reflected from the nar- -04 -02 0.0 0.2 0.4
row mouth of the lead, and will continue to bounce around

the junction. This reflection produces some of the peaks seen

in Fig. 8B).

Diffractive reflection from an opening can be treated by FIG. 14. |¢4fre(r=8w,0)[* for three values of 6, at
Babinet’s principl€® The total reflected wave is the plane Kr=2.57/w is shown as the dotted curves, from H&2). The
wave produced by reflection from a complete walhusthe solid curves are exac_t solu_tlons of a |_olane wave d_n‘fractln_g from a
wave produced by a small barrier coinciding with the open-'ead mouth as_des_crlbed in Appepdlx C. The thick vertical bars
ing. To apply this method, we use the following approach. represent the direction of the classical shadow.

First let us note that a wave reflected from a circular wall
differs in an essential way from a wave reflected from aPlane wave eXp-ikgrjcos@—6)] moving in the direction
straight-line wall. Parallel trajectories incident on a circular i Of the Ith trajectory approaching lead the Kirchhoff
boundary will cross each other at a focus after reflectionformula gives
while there is no focusing of like trajectories reflected from a

8 (units of )

line. If a refocusing occurs, it produces an increment in the exp(ikgr;)
. . . (eﬂg _ ) ®$cat 0 . 0 ) (BZ)
Maslov index, so that the phase associated with the reflected line —\/r— j i 01
wave differs byw/2 between the two wall types. Naturally, !
all of our calculated reflections take this into account. where

To apply Babinet's principle, we smoothly extend the
boundary across the lead mouth, i.e., we continue it as an arc
of a circle(not as a straight line across the lead moutket jscat 0;,60)=— iwj(

us call the wave function reflected from that small circular
refl

Ke

1/2 )
877') e'™4(cosy; + cost))

arc 5, and the wave functig}rf} reflected from the entire cir- x sind kew;(sing; +sing))], (B3)
cular wall including the araf. Then according to Babi-
net’s principle the actual reflected wave is the difference be- . o
tween these two, sind x) = sin(x)/x. (B4)
refl_ , refl refl We have an outgoing circular wave with angular dependence
Y= '//circle_ arc* (B1)

given by@fcat 6;; 6,) representing the diffractive “shadow”
The wave reflected from the circle is obtained from the semiof the lead aperture. Plots of the modulus squared of this
classical approximation. This wave reflects as if the leadormula are shown in Fig. 14 for three angles at
were not present. The wave reflected from the arc can bk:=2.57/w, and compared with the exact quantum solution
calculated by again applying the Kirchhoff approximation: (of an infinite lead connected to a half-plan&éhe quantum
each point on the small circular arc is a point sourcesolution was computed using the method of Appendix C.
weighted by the incident semiclassical wave at that point. Equation(B2) may seem to contradict our physical de-
Equation(13) is used, but now the boundary is a small cir- scription in the third paragraph of this appendix: EB2)
cular arc instead of of a straight line. describes an outgoing circular wave with diverging rays,
Finally, we make one more approximation. The arc iswhile a wave reflected from a circular arc should have con-
sufficiently small that we can replace it by a straight lineverging rays. However, we have tested this approximation by
segment. Then if the wave incident on this line segment is &alculating the exact quantum wave reflected from a circular
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arc, and found that the approximation is adequate provided
that the arc is not too many wavelengths long.

Finally let us note that our use of Babinet's principle ap-
plies if the lead apertures open into “empty space” outside
of the junction. We have not taken into account the fact that
the leads are straight wires of fixed width. This approxima-
tion seems to be an appropriate first step, but the wire nature
of the leads may be important in quantitative comparisons
with quantum results.

The shadow corresponding ﬁp{iﬁl is represented by a
new family of trajectories launched at all angles a distance
rj from the center of the lead mouth. These trajectories are
connected toyS" in a manner directly analogous to the
method used at the initial entrance lead. For instance, to
include the lead-scattered trajectories for one and two en-
counters with the lead mouths one modifies EB9) in the
following manner: & include those trajectories which exit
once or twice before encountering lepdn the sum in Eq.
(39); and (b) add the components corresponding to diffrac-
tive scattering from the resulting value of tematrix ele-
ment, i.e., add

g

X

FIG. 15. Boundary contour definition for diffraction at the in-
terface between a lead and a half-plane. Inset: definitiofy of

0' — ! ! ! (? ! !
E‘M)‘ jgcds #a'(s )]WG[q,q (s")]

1%

—G[q,q'(S')]an,

Ylq'(s")]

S5

J1:2

e\ 27ke D) El

1.2 1103

{i%(oi,'l):f{ Chatl

Jl'|1'0j2'|3)
e
+4i g—c 396 ds'G[q,q'(s")]¥ld'(s")]

+|E ®J'Sfat 011"1’0j1x'2)77®iscat ejzx'z’ajzv's)}
2

2

XA[q'(s")]-n’, (C1)

X710 0j2,|3)}, (B5  whereG(q,q’) is the free-particle Green function, and is
the inward-pointing normal on the contowk. is the vector
potential, which is taken to be zero in the current stugjyis
called the internal angle. Fog inside the regionA,

herej,; andj, label intermediate leads and, |,, and| . 4 .
WheTe |y and); I ! d 12 3 9.=24. Forq outside this regiong;=0. On the boundary

label trajectories between leadsandj,, j; andj,, andj,

andj, respectively.
To correctly achieve unitarity in the relatively large wave-
length to lead-width regime studied here, the diffractive scat

tering process must conserve flux. In particular, we requirén

that the flux integral Eq(11) is obeyed for the contour
shown in Fig. 3, wherel, = i, = /1054 fOr interval AB, and

1= o= Uinct Yrei— YshadowlOr arcCD. The approximation
which we used forgghagow EQ. (B2), does not obey this

current conservation condition, so strict unitarity should not
be expected here, even if a very large number of trajectorie"'s1

were included.

APPENDIX C: SOLUTION OF BILLIARD SCATTERING
PROBLEMS USING THE BOUNDARY ELEMENT
METHOD

The boundary element meth¢gBEM) or boundary inte-
gral method has been widely used in engineeringnd
physics**3°We use it to solve quantum scattering problems
for billiardlike potentials.

The starting point for the BEM is the Kirchhoff-

0, is defined in the inset of Fig. 15. At any point at which the
boundary is a smooth curv#,= =, while if the boundary
has a sharp bend), for the vertex is the angle subtended
side regionA.

In the BEM the bounding contouris discretized, and the

wave function and its normal derivative on this curve are

solved for. Once values are known on the surface, the wave

function anywhere ind can be calculated using E(C1).

Let us introduce some simplifying notation. For points
ndq’ on the boundary,

g(s")=¢lq'(s")], (C2
d
f(S’)EWw[q’] : (C3
q'=q’(s")
G(s,s")=G[q(s),q'(s")], (CH
- J
G(S.S’)EWG[q(S).q'] (CH

a'=q’(s")

Helmholtz equation, which expresses the wave function at
point g in terms of the wave function and its normal deriva- Then, for smooth boundaries ad=0, we can rewrite Eq.

tive on a contoulC enclosing regionA.

(C1 as
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1 : ”
79(8)= 396 ds'[G(s,s")g(s") = G(s,s")f(s")]. (Co) ¢°ut=n§l dpsin n( 6+ 7/2) JH P (ker ) HP (ker ),

C12
We wish for ¢ to obey boundary conditions, correspond- (12
ing to physical constraints. These boundary conditions implyvith coefficientsd, . The H{\(kerg) has been included in
that the value of a wave function and the value of its normathe denominator to ensure that tg are of the same order
derivative on the boundary are not independent. For hardof magnitude, as was done in Appendix A.
wall boundary conditions it is convenient to write these con-  Figure 15 defines a bounding contour on which we solve
straints in a general form: for f(s). There are three distinct intervals on the contour, in
which the wave function must satisfy different boundary
conditions. In interval I, the boundary lies along a wall so
g(s)=N(s)+ é ds'M(s,s")f(s’). (C7)  that the wave function is zero. Interval Il spans the mouth of
¢ the lead, while interval Ill traces out an arc of constant

N(s) andM(s,s’) will be specified later, as particular cases I =I¢ in the half-plane.

are considered. For the moment, we are just asserting that the In interval I, the boundary lies alongx=0,
boundary conditions imply a second linear integral relation—W/2<y<w/2. Here we require continuity of the wave
betweenf(s’) andg(s). function and its normal derivative. We substitute E(®.

For G(q,q’) it is convenient to use the point source and(5) into Eq.(C11) and take thex derivative to obtain
Green function, which for zero magnetic field is given by Eq.

(14) (the point-source Green function for nonzero magnetic ~ k, - K
field is also knowr). f(S):'\/Tff’n[Y(S)]—'mE:l Cm\/qum[y(S)]-
Substituting Eq(C7) into Eq.(C6) and rearranging gives " m (C13

an inhomogeneous linear integral equation fits):
Because of the orthogonality of th&,,, it is convenient to
multiply this equation byy,,(y) and integrate over the lead
%CdS'K(S’S')f(S'):KS)' (C8  mouth to get an expression for tiog, in terms of f(s), in
analogy to Eq(A5). Now, for points in the lead mouth we
where combine this expression with Eq&C11), (3), and(5) to ob-
tain

K ’ :_lM ’ ' "\M(S".s’
(8:8)==zMs.s) Eﬁcdsle(s’s) (5459 9(5) = BulY(S) 1V \on+ S Cndbnl Y9 om

m

—G(s,s') (C9) | _
|
and =26aly(9)]uq+ f ds'(d—sy,)§ K $aly(9)]
X ol y(s")]E(s"), (C14

[(s)=%N(s)— % ds'G(s,s’)N(s"). (C10
¢ where the integral is over the lead mouth. This has the form
. of Eq. (C7); N(s) andM(s,s’) can be read in EqC14).
We now apply the above procedure. to _tWO scattering - o the arc(interval Ill), the inward normal is in the-r
problems involving the geometry shown in Fig. 15. direction, so

- d
—_ ; @ (1)
Consider a single incoming lead state propagating in thd (9 ,121 AnSINLNCO(S) +/2) I He™ (ke )/H (KeF o)

positivex direction. It diffracts atx=0, part of the wave (C15
function is scattered back into the lead, and some becomes i

an outgoing circular wavéwith some angular modulatipin ~ Again, the 6-dependent functions are orthogonal, so the
the half-planex>0. can be expressed in terms f{s). The wave function on the

The full wave function in the lead can be written arc is then

1. Incoming lead state diffracting into an infinite half-plane

©

S qn) = ll/lnead,ir(q)_f_mzl Co28 ), (C1D 9(3):; dnsinn(6(s) +m/2)]

. 2 \HM(kero) [ d
where /%24 and y*2U are defined as in Sec. Il A. The =j ds' >, (— _k)#(d_ﬂ
coefficientsc,, are unknown. " e/ Hy ' (ker) 1 ds
In the half-plane, for >w/2, the wave function can be . .
expanded in a basis of outgoing Hankel functions with an- Xsin n( 0(s)+ 5 sir{n( o(s")+ 5 flo(s)].

gular components which satisfy the hard-wall boundary con-
ditions (C19
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gg | Semiclassical
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FIG. 16. Geometry of the stadium. The straight wall segments 2.0} Semiclassical ]
are of length 2 and the radius of the circular ends is 1. The leadn }g Q@ 1
mouths both have width 0.09357+4. Also shown are some im- = gzl |
portant trajectories. & 00
@ 05) W
We have again arrived at a form like E@C7), with - i:gj 1
N(s)=0 and M(s,s’), the kernel of the integral in Eq. 2.0} Quantum |
(C16. This method was used to obtain the quantum results gg: l | ]
in Fig. 4. 0 10 20 30

2. Incoming plane wave diffracting off a lead mouth Length

Here we consider the same geometry as in the previous FIG. 17. Power spectrum of the transmission and reflection am-
case, but we change the incoming asymptotic conditions teplitudes for the stadium. Peaks associated with some short paths are
be a plane wave in the half-plane incident on the lead mouthumbered.
at an anglex. In the half-plane we write the wave function as

a sum of incident, reflected, and diffracted parts, A procedure analogous to that used in the previous ex-
ample can then be used to obtain a linear equatiof($pr
Yhp= Yinct Yret— Ya, (C17  The quantum results in Fig. 14 were obtained using this
where method.
Pinc= € KFlxcosrysinal, (C18 APPENDIX D: A STADIUM
o= — €'KFIX COTysina] (C19 We mentioned that the semiclassical formula is easily ap-
i ) plied to any geometry. The BEM can also be used for a
4 is to be determined. In the lead variety of geometries. We carried out quantum and semiclas-
o sical calculations of the transmission and reflection ampli-
Vioad= 2 melrﬁad,out‘ (C20) tudes for a _stadium geometry. Figure 16_shovv_s the geometry
m=1 of the stadium and a few important trajectories. Figure 17

. _ shows the power spectra of the transmission and reflection
In the lead mouth we require that the total wave functionamplitudes. In the semiclassical calculation we included only
and its normal derivative be continuous, paths with no more than eight bounces, and we neglected
_ o diffractive scattering. Again, the semiclassical formula gives
lﬂleac[X—an(S)]— whp_ (ﬂd_g(s) (021) a gOOd apprOXimation.

and We made no attempt to optimize the efficiency of the
computer codes for either calculation. For a crude compari-

d d . _i i let k that the quantum calculation took almost

7 _9 ikey(s)sina son, let us remark tha q
ox Vead™ 55 hp= — 2ikpCog a)e T1(s). three orders of magnitude more computer time than its semi-
(C22 classical counterpart.
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