
Semiclassical scattering in a circular semiconductor microstructure

C. D. Schwieters, J. A. Alford, and J. B. Delos
Physics Department, The College of William and Mary, Williamsburg, Virginia 23187;

Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder, Colorado 80309;
and National Institute of Standards and Technology, Boulder, Colorado 80309

~29 February 1996; revised manuscript received 29 May 1996!

The conductance of a microscopic junction shows fluctuations caused by quantum interference of waves that
follow different paths between the leads. We give a semiclassical formula for these fluctuations. The theory
utilizes trajectories which travel between the centers of the lead apertures; it also incorporates diffraction at
these apertures. We extend the theory to include ‘‘ghost paths,’’ which scatter diffractively off the lead mouths.
SemiclassicalS-matrix elements are computed for a circular junction over a range of Fermi wave numbers, and
the large-scale structure of these matrix elements shows good agreement with quantum results. Finally, we
propose a hypothesis about the effect of the quantum coherence length on theSmatrix and on the semiclassical
sum.@S0163-1829~96!03935-5#

I. INTRODUCTION

Quantum transport of electrons through semiconductor
microjunctions has been observed in recent experiments.1,2

Micron-size two-dimensional junctions have been made with
such purity that both the quantum coherence length and the
mean free path for elastic collisions of electrons with defects
are large compared to the size of the junction. In these ex-
periments conditions are such that the electrons can be de-
scribed as a two-dimensional ideal Fermi gas of noninteract-
ing particles. In these circumstances a classical electron
would bounce ballistically through the cavity; in quantum
mechanics the electron wave function scatters elastically
from the walls of the junction. This behavior is shown sche-
matically in Fig. 1.

The conductance of such junctions has been measured,1,2

and has been found to oscillate strongly as the Fermi energy
or the strength of an imposed magnetic field is varied. Sta-
tistical properties of these fluctuations have been studied, and
compared with predictions from random matrix theory.3–6

Statistical properties of the fluctuations are similar to those
arising from phase-coherent transport through disordered
systems.7 These studies have led to an understanding of sta-
tistical characteristics common to all generic mesoscopic
conductors. Also, the high-frequency part of the power spec-
trum has been studied, and its structure~power-law decay for
regular systems vs exponential decay for chaotic systems!
has been compared with predictions from general semiclas-
sical arguments.8,9

Statistical properties of fluctuations may be interesting,
but it is appropriate now to ask more detailed questions. Can
the conductance fluctuations themselves be predicted? On
the experimental side, will junctions be created such that the
quantum fluctuations of conductance are reliably reproduc-
ible, and depend only on the lithographically observed ge-
ometry of the junction? On the theoretical side, can we de-
velop simple formulas or algorithms that predict the
fluctuations of conductance vs Fermi energy or vs magnetic
field? Toward this end a number of groups have performed
exact quantum calculations on representative systems,10–15

and found the same qualitative behavior as found in experi-
ment: rapid oscillations of the resistance as one changes the
energy of the electrons or the strength of the magnetic field.
In this paper we derive simple semiclassical formulas that
predict some of the large-scale structure of conductance fluc-
tuations.

The essence of the theory is very simple~Fig. 1!. Electron
waves approach the junction in one of the leads, and, where
the lead joins the junction, the waves diffract into the enclo-
sure. Diffraction creates a circular wave outgoing from the
entrance lead. This wave bounces around the enclosure fol-
lowing classical paths; the phase of the wave is the classical
action on each path, and the amplitude of the wave is the
square root of the classical density. Each classical path from
entrance to exit contributes a term to the wave function near
the exit. These waves diffract out the exit, giving a transmit-
ted current. Interference of waves from various paths pro-

FIG. 1. Overview of the semiclassical method. A quantum wave
incoming from a mode of the entrance lead diffracts as it enters the
junction, and then travels along classical paths inside the junction.
At the exit each trajectory contributes a term to the flux that goes
out into each mode of the exit lead.
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duces oscillations in the transmitted current.
The important assumptions involved in the theory are that

the de Broglie wavelength is small compared to the size of
the junction, and that the widths of the leads are small com-
pared to the size of the junction. The shape of the junction is
not important; for this first paper we consider a circular junc-
tion with two leads attached at right angles~we show some
results for a stadium-shaped junction in Appendix IVD!. We
use hard-wall boundary conditions; soft-wall boundary con-
ditions are easy to incorporate into a semiclassical theory.
Implicitly, we presume that the lithographic shapes of junc-
tions can be taken seriously: the interference pattern results
from the visible geometry of the device, not from invisible
defects.

Several previous studies of ballistic transport have incor-
porated semiclassical concepts in some way. Jalabert,
Baranger and Stone11 and Lin and Jensen16 considered inter-
fering paths, but did not consider diffraction. Other groups
have applied periodic orbit concepts to the problem of the
conductance of periodic arrays of antidots.17,18

In the current paper, we treat diffraction within the Kirch-
hoff approximation. The geometric theory of diffraction
~GTD! ~Ref. 19! provides an alternate method to approxi-
mate the effects of diffraction using additional~nongeomet-
ric! trajectories. In recent work the GTD has been success-
fully used to account for some effects of diffraction in simple
open systems.20

Like much previous work, the present study relies on the
pioneering work of Landauer21 and Büttiker.22 The primary
contribution of the present work is to incorporate the effects
of diffraction. This enables us to perform calculations in an
energy regime where comparison with quantum-mechanical
results is feasible. In addition, in the quantum framework, we
improve upon previous computational methods; this was
necessary to obtain reliable comparisons between semiclas-
sical and quantum calculations.

II. CONNECTION OF CONDUCTANCE TO SCATTERING
THEORY

Through the work of Landauer21 and others,22,23 it has
been established thatgji , the conductance between leadsi
and j , connected to a mesoscopic conductor, is related to the
associated quantum scattering problem through the ‘‘cor-
rected Landauer formula.’’ For each spin degree of freedom,

gji5
e2

h(
n,m

utmn
~ j i !u2, ~1!

where tmn
( j i ) is the transmission amplitude from transverse

moden of the entrance lead to modem of the exit lead, and
the sum is over all open modes. These transmission ampli-
tudes are elements of theSmatrix,Smn

( j i ) , for which jÞ i .
Typically, the leads of these mesoscopic semiconductor

junctions contain just a few transverse modes; however, the
junction itself can be many wavelengths across. In these cir-
cumstances, the leads are best described using quantum me-
chanics, while the wave function inside the junction can be
represented using semiclassical methods. The two descrip-
tions must therefore be connected at the mouths of the leads.
The geometry of this aperture is important,10 as is illustrated

in Fig. 2. In Fig. 2~a! the aperture is a pinched constriction
between the junction and the electron reservoir; in this case
transverse lead modes are not well defined, and electrons can
enter the junction at almost any angle. By contrast, Fig. 2~b!
depicts a horn geometry, in which the entering trajectories
are more collimated in the forward direction. In general, if
the width of the aperture is comparable to the de Broglie
wavelength, diffraction should be incorporated when con-
necting the quantum lead wave function to a semiclassical
junction wave function.

For concreteness we specify a particular entrance geom-
etry with perfect linear leads in Fig. 3.~A different entrance
geometry was addressed in Ref. 24.! Here we take the walls
of the leads and the junction walls as infinitely hard, so that
the wave function goes to zero at the walls. In real systems,
the potential energy representing the walls is continuous, but,

FIG. 2. Different entrance geometries. A short, narrow entrance
would allow electrons to pass through from almost any angle, while
a horn-shaped aperture would give a more collimated beam~Ref.
10!.

FIG. 3. The entrance geometry of the wire lead and definition of
local coordinates. Lead coordinates (xi ,yi) have origin at the center
of the mouth of thei th lead, and are rotated byV i relative to
space-fixed coordinates. Each point (xi ,yi) can also be described
by polar coordinates (r i ,u i). The flux integral around the closed
curveABCDAvanishes.
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in the absence of a definitive experimental wall potential, we
use the current simplifying assumption. In addition, we will
take the magnetic field to be zero in the present derivation.

III. SEMICLASSICAL FORMULA

A. States in the leads

A ‘‘space-fixed frame’’ is defined for the whole system
such that (x,y) represents the position of the electron; for a
circular junction the origin of these coordinates is at the cen-
ter of the circle. Local coordinates at thei th lead are defined
in Fig. 3. The points (x5xi

(0) , y5yi
(0)) are the center of the

end of thei th lead; lead coordinates (xi ,yi) are translated to
this origin and rotated, soyi is across the lead andxi is along
the lead pointing into the junction. The relationship between
the lead coordinates@qi5(xi ,yi)# and junction-centered co-
ordinates@q5(x,y)# is given by

S xyD 5S xi~0!

yi
~0!D 1S cosV i 2sinV i

sinV i cosV i
D S xiyi D . ~2!

The flux-normalized incoming wave function in thei th
lead is

c i ,n
lead,in~qi !5

1

Av i ,n
eiki ,nxif i ,n~yi !, ~3!

and zero outside of the lead. Hereki ,n5AkF22(np/wi)
2 is

the longitudinal component of the wave vector for moden in
lead i , with the corresponding velocityv i ,n5ki ,n\/M . M is
the effective mass of the electron, taken as 1 in our calcula-
tions, andwi is the lead width. The transverse component of
the wave function,f i ,n(yi), is the solution to the one-
dimensional particle-in-a-box for our hard-wall boundary
conditions:

f i ,n~yi !5S 2wi
D 1/2sinFnpS yiwi

1
1

2D G . ~4!

The corresponding outgoing statec j ,m
lead,out for the mth

mode of thej th lead is given by the complex conjugate of
Eq. ~3!, with the appropriate change of labels,
( i ,n)→( j ,m):

c j ,m
lead,out~qj !5

1

Av j ,m
e2 ik j ,mxjf j ,m~yj !. ~5!

B. Boundary conditions and definition of theS matrix

Suppose that electrons approach the junction only in the
nth mode of thei th lead. Where the lead meets the junction,
the wave diffracts, bounces around inside the junction, and
then electrons leave the junction from every lead in all ener-
getically allowed modes. The wave function representing
this physical situation is calledc i ,n

1 (q). TheSmatrix speci-
fies the amplitude for finding the electron in the outgoing
modes of any lead. In the asymptotic region~far enough so
that closed channels do not contribute! of lead j , this wave
function is

c i ,n
1 ~q!5d j ic i ,n

lead,in~qi !1 (
m51

M j

Smn
~ j i !c j ,m

lead,out~qj !, ~6!

whereM j is the highest open lead mode.
S-matrix elements are of course related to the currents in

the various leads. We define the current density operator in
the usual way25

J~Q!5S 12D @vopd~q2Q!1d~q2Q!vop# ~7!

wherevop is the velocity operator@equal to2 i (\/M )“ in
the absence of magnetic fields#.

Let us draw a boundary across thej th lead in the asymp-
totic region, and let the collection of points$Q% be the points
on this boundary~Fig. 3!,

$Qj%5H xj5xb ,2
w

2
<yj<

w

2 J . ~8!

Then we define the current operatorJj for the j th lead as

Jj5E
2w/2

w/2

dyjJ~xj5xb ,yj !•n̂j , ~9!

where n̂j52 x̂j is the outward-pointing normal. The
S-matrix elementSmn

( j i ) is equal to a matrix element of this
operator

Smn
~ j i !5^c j ,m

lead,outuJj uc i ,n
1 & ~10a!

5
i\

2ME
2w/2

w/2

dyjF „c j ,m
lead,out~xb ,yj !…*

]

]xj
c i ,n

1 ~xb ,yj !

2c i ,n
1 ~xb ,yj !

]

]xj
„c j ,m

lead,out~xb ,yj !…* G . ~10b!

@Proof: substitute Eqs.~6! and ~9! into ~10a!.#
The same formula holds if the boundary of chosen differ-

ently. In general, ifc1(q) andc2(q) are any two exact so-
lutions to the stationary Schro¨dinger equation,C is any
closed contour, andn̂ the outward-pointing normal on this
curve, then by Green’s theorem a flux-type integral around
the curve must vanish,

R
C
ds@c1* ~q!“c2~q!2c2~q!“c1* ~q!#•n̂50. ~11!

For example, the integral around the closed mushroom-
shaped curve in Fig. 3 vanishes, and since the wave func-
tions vanish at the walls, it follows that the integral across
the lead (AB) is equal to the integral around the semicircle
(DC) at radiusr b , or

Smn
~ j i !5

i\

2ME
2p/2

p/2

r bdu jF „c j ,m
out ~r b ,u j !…*

]

]r j
c i ,n

1 ~r b ,u j !

2c i ,n
1 ~r b ,u j !

]

]r j
„c j ,m

out ~r b ,u j !…* G . ~12!

This is the formula we will use for evaluation of
S-matrix elements. However, since the required lead state
@Eq. ~5!# is only defined within leadj , we cannot use it to
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evaluatec j ,m
out (r b ,u j ) on the circular boundary: we must use

an appropriate continuation of Eq.~5! into the junction.

C. Diffraction at the entrance aperture

When the incoming wave enters the junction, it diffracts.
We will approximate this process as Kirchhoff diffraction26

from the lead into an infinite half-plane. The Kirchhoff for-
mula for this situation is derived from the Kirchhoff-
Helmholtz equation

c~q!5 R ds8@c~q8!“8G~q,q8!2G~q,q8!“8c~q8!#•n̂8.

~13!

Hereq is an arbitrary point inside the junction, and the inte-
gration contour is any closed boundary surroundingq. “8
denotes the derivative with respect to the primed~boundary!
coordinates, andn̂8 is a unit vector pointing inward from the
boundary. Equation~13! is exact. In the Kirchhoff approxi-
mation we take the boundary to be the line segment
(xj850, 2w/2,yj8,w/2) defining the boundary between
the j th lead and the junction, and on the right-hand side of
Eq. ~13! we takec(q8) to be the incoming lead wave func-
tion c i ,n

lead,in defined in Eq.~3!.
G(q,q8) is taken to be the two-dimensional free-particle

Green function, which is27

G~q,q8!5
i

4
H0

~1!~kFuq2q8u!, ~14!

whereH0
(1)(x) is the Hankel function of the first kind. The

Green function and its derivative required in Eq.~13! are
approximated for largeuq2q8u, q8 small, by

G~q,q8!'
1

A8pkFr
eikFr2 ikFr 8cos~u2u8!1 ip/4, ~15a!

]

]x8
G~q,q8!'S kF

8pr D
1/2

cos~u!eikFr2 ikFr 8cos~u2u8!2 ip/4.

~15b!

The left-hand side of Eq.~13!, c(q)[c i ,n
in,diff(q), is then

the appropriate wave function diffracted into the junction
from thenth incoming mode of thei th lead. Inserting Eqs.
~3! and~15! into Eq. ~13! and integrating only over the lead
mouth, we obtain

c i ,n
in,diff~qi !'

eikFr i

Ar i
Q i ,n

in ~u i !, ~16!

where

Q i ,n
in ~u i !52nApwi S kFv i ,nD

1/2

eip/4~cos~u i !1ki ,n /kF!

3xnSwikF
2

sinu i D , ~17!

xn~a!5@~np!22~2a!2#21H icos~a!, n odd

2sin~a!, n even.
~18!

In Eq. ~16! we see a circular wave propagating radially out-
ward from the entrance lead into the junction with an angular
dependence given byQ i ,n

in (u i). As seen in Fig. 4, this angular
component is peaked near sinui56np/(wikF), the angles for
a classical electron with transverse and longitudinal mo-
mentanp\/wi and ki ,n\, respectively. The angular depen-
dence becomes strongly peaked around the classical angles
for large wave vector, as one would expect. Near threshold
(kF5np/wi) this formula breaks down. It no longer ap-
proximately obeys the boundary conditionsc50 along the
walls, and it diverges due to the 1/Av i ,n factor.

We may also define a diffracted out-state: i.e., the wave
function in the junction which is connected through the
Kirchhoff formula with the outgoing lead wave function
c j ,m
lead,out. This diffracted out-statec j ,m

out,diff(q) is a circular
wave approaching the center of thej th lead with an appro-
priate angular modulation. It is the complex conjugate of
c j ,m
in,diff ,

c j ,m
out,diff5

e2 ikFr j

Ar j
Q j ,m

out ~u j !5
e2 ikFr j

Ar j
„Q j ,m

in ~u j !…* . ~19!

D. Semiclassical propagation inside the junction

Inside the junction, the wave function propagates in a
manner that is consistent with the semiclassical approxima-
tion ~the wavelength is short compared to the size of the
junction!. The semiclassical method for propagating a wave
function goes as follows~Figs. 1 and 5!. An initial curve
corresponding to an initial wave front is defined. In our case
the curve is the circle of radiusr b at the center of leadi .
Trajectories are launched perpendicular to this wave front at
all angles2(p/2),u i,p/2. At any pointq inside the junc-
tion, the wave function c(q) is a sum of terms
$c l(q), l51,2, . . .%, one for each trajectoryl that arrives at
the point q from a corresponding point
qi ,l(q)5(r i5r b , u i5u i ,l) on the initial arc,

c~q!5(
l

c l~q!. ~20!

The wave function associated with trajectoryl is

c l~q!5c~0!~qi ,l !Al~q!exp@ iSl~q!/\2 im lp/2#. ~21!

Herec (0)(qi ,l(q)) is the wave function at the pointqi ,l(q)
which comprises the initial conditions of thel th trajectory. In
our case this wave function is the Kirchhoff-diffracted in-
state corresponding to the lead wave functionc i ,n

lead,in,

c~0!~qi ,l !5c i ,n
in,diff~r b ,u i ,l !. ~22!

Sl(q) is the classical action on the path fromqi ,l to q, and
since we have free-particle motion with the magnitude of the
momentum constant, this action is equal to the Fermi mo-
mentum times the length of the pathLl(q)

Sl~q!5E
qi ,l

q
p•dq5pFLl~q!. ~23!

The amplitudeA(q) is related to the classical density of
particles at the pointq. It can be computed from certain
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Jacobians. Let us think about the whole family of trajectories
that emanate from the initial arc, and let us consider the
instantaneous position on one of these trajectoriesq5(x,y)
to be a function of time and of the angleu i on the initial
circle,

q5q~ t,u i !5„x~ t,u i !,y~ t,u i !…. ~24!

Define

J~q!5J~ t,u i !5
]

]~ t,u i !
„x~ t,u i !,y~ t,u i !…. ~25!

Derivatives such as]x(t,u i)/]t are components of instanta-
neous velocity on the path. Derivatives such as
]x(t,u i)/]u i can be computed as finite differences
Dx(t,u i)/Du i by integrating two adjacent trajectories to time
t.28

Then the amplitude factorAl(q) is given by a ratio of
Jacobians,

Al~q!5uJ„qi ,l~q!…/J~q!u1/2

5uJ~ t50,u i !/J~ t,u i !u1/2. ~26!

Finally, m l is the Maslov index for each path, and gives
the phase shift associated with caustics or focal points en-
countered on each path. In the present case, the Maslov index
is incremented by two for each bounce off the hard walls,
and one for each focus. For the circular junction, there is one

focus between each bounce after the first~Fig. 5 shows this
geometrically, and it can be verified by analytic evaluation of
the Jacobian!.

As the electron continues to bounce around the enclosure,
a large number of paths can contribute to the wave function
at each point. In the semiclassical method, we cut off this
sum over paths in some way, for example by including only
paths of length less than some maximum. The hypothesis is
that conductance fluctuations are dominated by interference
among waves that follow relatively short paths from entrance
to exit. This hypothesis is partially supported by our calcu-
lations.

E. Wave function near the exit lead

To calculate theS-matrix elements from semiclassical
wave functions, we identify paths that go from the center of
the entrance leadi (xi50, yi50) to the center of any lead
j (xj50, yj50), including the entrance lead itself,j5 i .
There is a discrete set of such paths, and each is labeled by
the indexl . The wave function associated with each path at
the final point is given by combining Eqs.~21!–~26! with Eq.
~16!,

c l~xj50, yj50!

5
ei ~kFLl2m lp/2!

Ar b
Al~xj50, yj50!Q i ,n

in ~u i ,l !.

~27!

Here kFLl is the phase associated with the entire length of
the l th path from the center of the entrance to the center of
the exit. It arises by combining exp(ikFri) in Eq. ~16! with the
action integral term~23! which goes from the initial circle to
the final point.

We make the approximation that near this final point, but,
inside the junction, the wave functionc l(xj ,yj ) is a plane
wave approaching the lead from angleu j ,l :

c l~xj.0,yj !5c l~xj50, yj50!exp@ ipj ,l•qj /\#, ~28!

FIG. 4. Angular distribution of the diffracted wave function.
uc i ,n

in,diff~r58wi ,u!u2 for three values ofn: n51 at kF53.5p/wi ,
n52 at kF54.5p/wi , and n53 at kF54.5p/wi . The dotted
curves are from the Kirchhoff approximation used here, Eq.~16!.
The solid curves are from an exact calculation described in Appen-
dix C. The thick vertical bars represent the exit angles of a classical
electron.

FIG. 5. Three trajectories with similaru i . There is a focus be-
tween each bounce after the first one. The foci are circled in this
figure. At each focus, the Maslov index increases by 1. For each
bounce off a hard wall, the Maslov index increases by 2~if the
walls were soft, it would increase by 1!.
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wherepj ,l is the momentum at leadj on the pathl . The rays
associated with this plane wave are all parallel to this final
momentum. With this approximation, let us evaluate the Ja-
cobians in Eq.~26!. On the initial arc,

J~ t50,u i !5U]~x,y!

]~ t,u i !
U5Ur ]~r ,u i !

]~ t,u i !
U5r bvF . ~29!

At the final point,

J~ t f ,u i !5U]~x,y!

]~ t,u i !
U5U]~xj ,yj !

]~ t,u i !
U

5U]xj]t

]yj
]u i

2
]yj
]t

]xj
]u i

U
5vFUcosu j ,l S ]yj

]u i
D
t

2sinu j ,l S ]xj
]u i

D
t
U

5vFcosu j ,lUS ]yj
]u i

D
x
U. ~30!

The last of these formulas follows from

]yj
]u i

U
t

5
]yj
]u i

U
x

1
]yj
]xj

U
u i

]xj
]u i

t5
]yj
]u i

U
x

1
]yj /]tuu i
]xj /]tuu i

]xj
]u i

U
t

5
]yj
]u i

U
x

1tanu j ,l

]xj
]u i

U
t

. ~31!

Equation~30! has the following meaning. Let us define a
coordinates that goes around the circumference of the junc-
tion, passing straight across the leads. From the initial circle,
we find thel th path that lands at the center of thej th lead.
Then we incrementu i and ask where on the boundary the
adjacent path lands. The derivativeu]yj /]u i ux is equivalent
to u]s/]u i u for that path. Then the amplitude factor for the
wave function is

1

Ar b
Al~xj50, yj50!5Ucosu j ,l

dsl
du i

U21/2

. ~32!

Combining Eqs.~27!, ~28!, and ~30!, the wave function
near thej th lead is a sum of plane waves

c l~qj !5exp~ ipj ,l•q/\!TlQ i ,n
in ~u i ,l !, ~33!

where

Tl5Ucosu j ,l

dsl
du i

U21/2

exp~ ikFLl2 im lp/2!. ~34!

F. Semiclassical formula for theS matrix

We use this semiclassical approximation@Eq. ~33!# for the
wave function to representc i ,n

1 in Eq. ~12! near the exit lead.
Now we use Eq.~12! to calculate theS-matrix element. As
stated in Sec. III B, thisS-matrix element is calculated by
integration around a half-circle centered on thej th lead. The
integral is evaluated using the stationary-phase approxima-
tion.

On the arc around the mouth of leadj , r j5r b , the state
c j ,m
out is approximately equal to the Kirchhoff wave function

c j ,m
out,diff defined in Eq.~19!. When we apply the stationary-

phase approximation we examine theu j dependence of the
phase of the plane-wave contribution of each trajectory,

F l~u j ![pj ,l•q/\52kFr bcos~u j2u j ,l !. ~35!

This phase is stationary whenu j , the angle defining points
on the arc, is equal tou j ,l , the direction from which the
l th trajectory approaches the lead. The second derivative of
the phase at this point is

d2F l

du j
2 5kFr b.0, ~36!

and it follows that

E du jexp~ ipj ,l•q/\!'e2 ikFr bS 2p

kFr b
D 1/2eip/4. ~37!

At the stationary phase point,]c/]r j52 ikFc, both for
c5c l and forc5c j ,m

out,diff. Everything else in the integral in
Eq. ~12! is taken to be constant.

Now using Eqs.~33! and ~19! in Eq. ~12!, and applying
Eq. ~37!, the result is that the contribution to anS-matrix
element from thel th trajectory is

A2pkF
\

M
eip/4Q i ,n

in ~u i ,l !TlQ j ,m
in ~u j ,l ! ~38!

or, in full and in abbreviated notation,

Smn
~ j i !5mnA2wiwjp

3/2ei3p/4
kF
3/2

Aki ,nkj ,m
(
l

Fcos~u i ,l !1
ki ,n
kF

G
3Fcos~u j ,l !1

kj ,m
kF

GxnSwikF
2

sinu i ,l D xmSwjkF
2

sinu j ,l D
3

1

Acosu j ,l
U ]sl
]u i

U21/2

expS i\Eqlp•dq2 i
p

2
m l D ~39!

5(
l
alexp~ ikFLl !. ~40!

The same result for theS matrix can be obtained by an-
other method. Instead of evaluatingc i ,n

1 andc j ,n
out,diff on an

arc, we could continue the plane-wave representation of
c i ,n

1 up to the lead mouth, and combine it withc j ,m
lead,outin Eq.

~12!, integrating straight across the lead mouth instead of
along the arc. These two approaches are consistent with the
Kirchhoff approximation.29

The power spectrum ofSmn
( j i )(kF) is defined as

Ŝmn
~ j i !~L ![U E

0

kF
max

e2 ikFLSmn
~ j i !~kF!dkFU2. ~41!

It follows from Eq. ~40! that Ŝmn
( j i )(L) is a set of peaks atLl

~the length of thel th trajectory from the center of the en-
trance to the center of the exit!. The height of each peak
should be proportional to the absolute square of the preex-
ponential factoral in Eq. ~40!.
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G. Comparison with previous semiclassical theory

Baranger, Jalabert, and Stone,11 along with Lin and
Jensen,16 developed a similar~BJSLJ! semiclassical theory in
which the initial quantum state was taken as the undiffracted
lead state. In our theory, the initial wave front is circular as a
result of diffraction, and trajectories are launched from the
center of the lead mouth in all directions. In the BJSLJ
theory, the initial wave front is a straight line, and the clas-
sical trajectories are launched in only the two classical direc-
tions dictated by the parallel and transverse momenta of the
particular mode in the lead.

For leads with large lead widths compared to the charac-
teristic dimensions of the junction~strongly open junctions!,
and for wavelengths short in comparison with these lengths,
we expect that the BJSLJ formulas are appropriate. When-
ever diffraction is important~whenever the wavelength is
comparable to the size of the leads!, the present theory
should be better. On the other hand, some of our formulas
assume that the lead is narrow compared to the size of the
junction; this assumption is not made in BJSLJ.

A nice feature of our theory is that the contribution to the
S matrix from each path is given by the same formula, Eq.
~39!. The BJSLJ theory requires two different expressions
depending on whether the path has encountered a curved
wall between the entrance and exit.

IV. COMPARISON WITH QUANTUM RESULTS

Ishio and Burgdo¨rfer13 carried out a fully quantum-
mechanical calculation of the conductance of a circular junc-
tion. They showed that the Fourier transform of the transmis-
sion amplitude displays distinct peaks at frequencies
corresponding to trajectories connecting the entrance and
exit leads.

We originally intended to compare our semiclassical for-
mulas with their quantum results. However, we found that
their method~even with the improvements incorporated in
Ref. 6! did not give results sufficiently precise and reliable to
allow a definitive comparison of peak heights. Therefore, we
developed an improvement upon their method, using an ex-
pansion in appropriately normalized Bessel functions rather
than plane waves. This method is described in Appendix A.
Below we show results of our calculations and comparisons
with semiclassical formulas.

Following Ref. 13 the system consists of a circular junc-
tion of radiusR5A114/p, joined at a right angle to two
wire leads of widthw50.0935Ap14. For purposes of cal-
culating the classical trajectories, the lead mouths were taken
as curved surfaces, continuations of the circle. This circle
geometry is particularly convenient because all of the prop-
erties of trajectories can be calculated in closed form. We
compared our semiclassical theory with exact quantum re-
sults over the energy range corresponding to
wkF /p5@1 . . . 5# with zero magnetic field; in this range the
radius to wavelength ratio isR/l5@3 . . . 15#.

If we start a large number of trajectories on the initial arc
around the entrance lead mouth, and allow them to bounce
around the junction 15 times, we find that about 70% of the
trajectories have hit the mouth of one of the leads and there-
fore have left the junction. Our semiclassical calculation in-
cludes only such trajectories, so it necessarily gives transmis-

sion and reflection coefficients that are too small.
Accordingly, the purpose of the semiclassical calculation

is not to reproduceSmn
( j i ) but rather to reproduce its large-

scale structure. From Eq.~39! we see that fluctuations of
Smn
( j i )(kF) having long wavelength on thekF axis arise from
relatively short trajectories. To see this structure, it is best to
take a Fourier transform.

A. Transmission coefficientt11

Figure 6 shows the real part of the semiclassical and
quantum transmission amplitudet11[S11

(21) as a function of
kF . This quantity is the amplitude for transmission from the
lowest mode of lead 1 to the lowest mode of lead 2. The
semiclassical version employs 120 trajectories~up to 15
bounces!. Both the quantum and semiclassical results are
highly oscillatory, and it is hard to see any correspondence
between them.

Examination of the two curves shows three discrepancies.
~1! The amplitude of the semiclassical curve is generally too
small. This is due to the finite number of trajectories used in
this calculation.~2! The semiclassical formula diverges as
small kF ~near the threshold wherekFw/p51) due to a
breakdown of the Kirchhoff approximation for diffraction at
the lead mouths@Eq. ~16! contains a factor ofAv i ,n in the
denominator; this factor goes to zero at threshold#. This
breakdown could be eliminated if a better expression for the
diffracted wave function were obtained, but the failure oc-
curs in only a very small range ofkF , and it is not visible in
Fig. 6. ~3! The magnitude of the semiclassicalt11 is not
necessarily less than 1: semiclassical formulas are not neces-
sarily unitary.

Despite all of this, the large-scale structure of the fluctua-
tions of t11 is correctly described by the semiclassical for-
mula. This is best shown by examination of the Fourier
transform.

The power spectrum of thet11(kF) in Fig. 6 is denoted
t̂11, and is shown in Fig. 7. The agreement between quantum

FIG. 6. Real part of the transmission amplitude.~a! Quantum.
~b! Semiclassical. The transmission amplitude fluctuates wildly as a
function of kF , and little correspondence between quantum and
semiclassical calculations is visible.
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and semiclassical results up toL;21 is remarkable, and,
aboveL;21, there is still substantial agreement. Each major
peak corresponds to an identifiable path from the center of
the entrance to the center of the exit. The location of the peak
is the length of the path, and the height of the peak is given
accurately by our formula Eq.~39!.

As we go to longer lengths some discrepancies arise. We
believe that this is primarily due to the fact that we use a
finite number of trajectories in the semiclassical calculation.
@There is also some possibility that numerical errors contrib-
ute to the high-frequency~long-length! fluctuations in the
quantum calculations.#

As reported in Ref. 13, we see that the ‘‘asterisk’’ trajec-
tories dominate the power spectrum. Some of these are
shown as insets in Fig. 7 at the corresponding peak positions.
‘‘Asterisks’’ are those trajectories which, for a given number
of bounces between entrance and exit, have the smallest
angles~those angles closest to the lead normals! at the en-
trance and exit leads. The reason for the importance of these
trajectories lies in the entrance geometry and the mode num-
ber. The entering electrons are rather well collimated in the
forward direction, and the amplitude of the diffracted wave
function falls off rapidly with increasing angle. Furthermore,
for moden51, the diffracted wave function has no nodes in
this direction.

‘‘Whispering gallery’’ trajectories, which run along the
edges of the walls, do not play an important role here. For
example, the shortest path from entrance to exit has an initial
angle at 45° from the normal; this produces the small peak in
Fig. 7 atL;2. There is an infinite family of similar paths
which travel one-fourth of the way around the circle; each
successive member has a larger initial angle~between 45°
and 90°) and one more bounce against the wall. The limiting
length of these trajectories is142pR(;2.4), but there is no
peak there in Fig. 7. Again, this happens because electrons
leaving the lead are collimated in the forward direction by
the entrance geometry.

B. Reflection coefficientr 11: diffractive scattering
and ‘‘ghost paths’’

The power spectrum of the reflection coefficient
(r 11[S11

(11)) is shown in Fig. 8. Again, the locations and
heights of several of the major peaks are accurately predicted
by the semiclassical formula@Fig. 8~A!#. For example, the
lowest-frequency peak arises from the ‘‘straight-ahead’’
path, which bounces once from the far wall before going
directly back out the entrance, and has a length of 4R.

On the other hand, certain interesting discrepancies ap-
pear between Figs. 8~A! and 8~C!. Peaks markeda andc are
not present in the semiclassical calculation, while peakb has
the wrong magnitude.

Peak a occurs at a length exactly twice that of the
straight-ahead path (8R). We may guess, then, that this peak
arises from waves which propagate across the circle and
back, but then they are not totally absorbed by the entrance
aperture. These waves are partially absorbed, but also par-
tially reflected diffractively from the aperture and they re-
trace the straight-ahead path.

In the simple semiclassical calculations@Figs. 7 and
8~A!#, when a trajectory reaches a lead mouth it is assumed
that all of the flux associated with that trajectory is absorbed:

FIG. 7. Power spectrum of the transmission amplitude. Each
major peak corresponds to one of the trajectories between entrance
and exit.

FIG. 8. Power spectra of the semiclassical and quantum reflec-
tion amplitudes.~A! Semiclassical without diffractive scattering
from lead mouths.~B! Semiclassical including diffractive scatter-
ing. ~C! Quantum. Again, the major peaks arise from identifiable
paths. Peaksa andc are missing in the simple semiclassical calcu-
lation in panel~A!. They are ‘‘ghost paths,’’ caused by diffractive
reflection from the mouth of a lead. Waves go from the entrance
lead across the junction, and are reflected back to the entrance lead;
there they are partially absorbed and partially reflected with diffrac-
tion. Peaka represents four traverses, and peakc six traverses of
the diameter of the circle.
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the lead casts a sharp shadow in the reflected wave. In real-
ity, diffractive scattering blurs these shadows. A diffracted
wave goes out in all directions; it only partially cancels the
specularly reflected wave, and it produces nonzero amplitude
on paths that are not permitted by geometrical optics.

Therefore, diffractive scattering produces peaks associ-
ated with ‘‘ghost paths’’ that bounce elastically around the
enclosure and diffract one or more times off a lead mouth.
Diffractive reflection from an opening can be treated by
Babinet’s principle: the total reflected wave is the specularly
reflected waveminus the wave produced by a small barrier
coinciding with the opening.

In Appendix B we give an approximate formula for this
diffractive scattering. With this formula we have recalculated
t11(kF) and r 11(kF). These calculations include trajectories
of up to 15 bounces which travel from entrance to exit, en-
trance to entrance, and exit to exit. The trajectories are con-
nected by up to two scattering events as specified in Appen-
dix B. In addition, we discard those trajectories whose
cumulative length is longer than 50: this is the Nyquist fre-
quency from the grid ofkF used in our quantum calculations.

The results of a calculation including diffractive scatter-
ing are shown in Fig. 8~B!. Now there is excellent agreement
between the quantum and semiclassical calculations. Peaks
a andc, respectively, represent four and six traverses of the
circle.

Peakb arises from an interesting effect. The largest con-
tribution to this peak arises from the star-shaped five-bounce
trajectory from entrance to entrance, with length;14.3
~heavy line in Fig. 9!. However, a significant contribution
also comes from two trajectories which go from entrance to
exit, where they are connected by diffractive scattering.
These trajectories are shown by the dashed and dotted curves
in Fig. 9, and have a total length approximately equal to that
of the star trajectory. They interfere destructively with the
star-shaped trajectory and reduce the magnitude of peakb. In
effect, a portion of the wave front associated with the star-
shaped trajectory is absorbed by the exit lead, and the dif-

fracted ‘‘shadow’’ of the lead mouth reduces the amplitude
of the wave function reflected out the entrance lead.

C. Squares of matrix elements,zS11
„ j i …z2

A far more severe test of the semiclassical formula comes
from examination of the absolute squares of theS-matrix
elements,Smn

( j i ) , the transmission and reflection probabilities.
These are directly related to the measurable conductance by
Eq. ~1!.

The large-scale structure ofSmn
( j i )(kF) arises from short

paths, but the same formula, Eq.~40!, predicts that the large-
scale structure ofuSmn

( j i )(kF)u2 comes from pairs of paths with
short length differences:

uSmn
~ j i !~kF!u25 (

l1 ,l2
al1
* al2e

ikF~Ll2
2Ll1

!. ~42!

Pairs of very long paths can have short length differences, so
any scheme in which long paths are omitted might fail com-
pletely. In fact, we will see that short path semiclassical cal-
culations are partially successful.

Quantum and semiclassical Gaussian-smoothed plots of
the transmission probabilityT115ut11u2 are shown in Fig. 10
for Gaussian widthss corresponding to cutoff frequencies
~lengths! of 5, 10, and 20,

SmoothedT115E dkF8T11~kF8 !e2~kF2kF8 !2/s2. ~43!

One again notes that the semiclassical result tends to have a
slightly smaller amplitude than the quantum version. Never-
theless, the quantum and semiclassical results match rather
well in phase and amplitude: the large-scale structure of
T11(kF) is rather well predicted by our short-path semiclas-
sical calculation (<15 bounces, total length,50, two dif-
fractive scattering events!.

Figure 11~A! showsT̂11, the power spectrum of both the
quantum and the semiclassical transmission probability.30 It

FIG. 9. Three trajectories which contribute to peakb of Fig. 8.
The heavy line is a star-shaped trajectory that bounces specularly
around the enclosure, and produces peakb in Fig. 8~A!. The dashed
lines forming the distorted star together constitute a pair of ‘‘ghost
paths.’’ One path has one bounce from entrance to exit, diffractive
reflection from the exit, and then two bounces back to the entrance.
The other member of the pair is the reverse of this path. The dis-
torted star destructively interferes with the star, reducing the height
of peakb in Fig. 8~B!.

FIG. 10. Gaussian smoothed quantum~solid! and semiclassical
~dotted! transmission probability.~a! s5p/5, ~b! s5p/10, ~c!
s5p/20.
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corroborates the good agreement gleaned from inspection of
the smoothed plots in Fig. 10. One surprising aspect of these
results is the lack of structure present inT11 relative to that in
t11.

There are very many pairs of paths with short length dif-
ferences, and they contribute a very large number of peaks.
Many of these peaks interfere destructively, however, so
there remain only two sizable~non-dc! peaks in Fig. 11~A!.

The largest peak in Fig. 11~A!, at L;3, corresponds to
the length difference of successive asterisk trajectories hav-
ing a large number of bounces. That length difference con-
verges to the diameter of the circle. The peak at;17.5 is due
in part to interference between entrance-to-exit asterisk tra-
jectories~recall that these are the longest trajectories for a
given number of bounces! with n bounces and the second-
longest trajectories withn16 bounces.

Overall, the agreement between semiclassical and quan-
tum results in Fig. 11~A! is good enough that the semiclas-
sical formula is credible for this case. However, when we
examine the square of the reflection coefficient
R115ur 11(kF)u2, the results are not very good@Fig. 11~B!#.
Both quantum and semiclassical spectra show more structure
than is present inT11, but the peaks differ significantly in
position and magnitude. This lack of agreement should be
contrasted with the nice agreement for the power spectrum of
r 11 in Fig. 8~B!.

Why does the semiclassical formula give a good approxi-
mation to the power spectra of transmission and reflection
amplitudes~Figs. 7 and 8! and a decent approximation to the
power spectrum of the transmission probability@Figs. 10 and
11~A!#, but a poor representation of the reflection probabil-
ity? Two possible explanations are available.~1! Diffractive
scattering is more important for reflection than for transmis-
sion, and our approximate formulas for this process are not
yet sufficiently accurate.~2! For some reason, long paths are
more important for reflection than for transmission, and trun-

cation of the sum over classical paths causes the discrepancy.
We have studied these issues at some length, and have not
yet reached a conclusion. In the Sec. V, we offer a hypoth-
esis which, if correct, will make this problem less relevant to
experimental comparisons.

V. A HYPOTHESIS ABOUT LONG PATHS

Even in a semiconductor microstructure with no defects
or impurities, thermal fluctuations disturb the electrons as
they bounce around, distorting the paths and causing a loss
of coherence. We expect that long paths through the junction
may be more disturbed by thermal fluctuations than short
paths. It is credible, then, to suggest that in experimental
measurements, interference fluctuations associated with short
length differences between long paths may be quenched by
thermal fluctuations. If this hypothesis is correct, then for
comparison with measurements, Eq.~42! should be replaced
by

uSmn
~ j i !~kF!u25uSmn

~ j i !~kF!u inc
2 1 (

l1 ,l2
al1
* al2e

ikF~Ll2
2Ll1

! f l f l 8,

~44!

whereuSmn
( j i )(kF)u inc

2 is an incoherent ‘‘background’’ contribu-
tion, and f l is a function which cuts off long paths, such as
exp@2(L/L)2#. The hypothesis is that because of thermal
fluctuations, a reduced semiclassical sum like Eq.~44! could
be a better representation of measured interference fluctua-
tions than the full semiclassical sum Eq.~42!, which in prin-
ciple includes small path differences between arbitrarily long
paths.

How do we express this same hypothesis in terms of the
quantumS matrix? If there are no thermal fluctuations, we
would simply compute the power spectrum ofTmn(kF) as in
Fig. 11~A!. Naively, we might think that thermal fluctuations
would act to smoothuSmn

( j i )(kF)u2, and thereby simply reduce
or remove its high-frequency~largeDL) components.

However, the hypothesis is that thermal fluctuations re-
duce coherence in long paths more than in short paths. This
hypothesis implies that we shouldfirst smoothSmn

( j i ) eliminat-
ing its high-frequency components, andthen square the
smooth result to obtain a partially coherentuSmn

( j i )(kF)u2. We
propose that ‘‘smoothing then squaring’’ may give a better
representation of experimentally measured interference fluc-
tuations than ‘‘squaring then smoothing.’’ Such calculations
are shown in Figs. 12~A! and 12~B! ~related procedures were
suggested in Refs. 24 and 13!.

In this case, this procedure improves the agreement be-
tween semiclassical and quantum calculations. The semiclas-
sical formula for the power spectrum of the transmission
probability agrees reasonably well with the quantum result,
and the semiclassical formula for the reflection probability
@Fig. 12~B!# is much improved over that seen in Fig. 11~B!.
However, this improved agreement by itself does not justify
the hypothesis. Experimental tests of this hypothesis could
occur when conductance fluctuations dependent only upon
geometry are obtained. In any case, the proposed semiclas-
sical formula accurately predicts the large-scale structure of
S-matrix elements.

FIG. 11. Power spectra of~A! the transmission probability, and
~B! the reflection probability.
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~It is important to draw a distinction between thermal
fluctuations in the electron reservoirs or the leads outside the
junction, and the thermal fluctuations within the junction it-
self. Thermal fluctuations from sources outside the junction
typically will not reduce coherence on long paths relative to
short paths; only thermal fluctuations within the junction it-
self could have the effect of retaining short-path coherence
but reducing long-path coherence.!

VI. SUMMARY

~1! We have improved upon previous methods for calcu-
lating the quantumSmatrix for a two-dimensional junction.

~2! We have derived a semiclassical formula for theS
matrix of such a junction.

~3! The semiclassical formula gives a good representation
of the large-scale structure of the transmissionamplitude.

~4! For the reflection amplitude, the semiclassical formula
must be modified to include diffractive scattering and ‘‘ghost
paths.’’ With that modification, it gives a good representa-
tion of the large-scale structure of the reflection amplitude.

~5! The semiclassical formula gives a good representation
of the large-scale structure of the transmissionprobability.

~6! At present, this formula gives a poor representation of
the quantum reflection probability.

~7! We have offered a hypothesis that thermal fluctuations
within the junction may reduce coherence on long paths. If
this is correct, then we expect that formulas including only
short paths will give a good representation of measured con-
ductance fluctuations.

APPENDIX A: SOLVING FOR THE FULLY QUANTUM
S MATRIX

We used two different methods for the quantum calcula-
tions reported in this paper. To calculate theSmatrix for the
circular junction, we used a basis set expansion described in
this appendix. To check the validity of the Kirchhoff ap-
proximation, and that of our formula for diffractive scatter-
ing ~Appendix B!, we used the boundary element method
described in Appendix C.

For the basis set expansion method we followed the
method of Nakamura and Ishio31. A similar approach was
also employed in Ref. 32. We found that we needed a modi-
fication of these previous approaches in order to obtain nu-
merically converged results.

We wish to match a representation of the wave function
inside the junction with a different representation which is
appropriate outside of the junction. Outside the junction, the
wave function is zero except in the leads. The wave function
in lead j can be expanded in lead wave functions,

c lead
~ j ! ~qj ;n!5d j ic i ,n

lead,in~qj !1 (
m51

M

Smn
~ j i !c j ,m

lead,out~qj !.

~A1!

This equation is similar to Eq.~6!, but here the sum includes
closed channels~evanescent modes! so Eq. ~A1! holds ev-
erywhere in leadj .

The wave function inside the junction is expanded in ba-
sis functionsFb(q), which are selected solutions to the
Schrödinger equation,

c junc~q!5(
b

cbFb~q!, ~A2!

~¹21kF
2 !Fb~q!50. ~A3!

The coefficientsSmn
( j i ) and cb are chosen so that the ‘‘in-

side’’ and ‘‘outside’’ representations match along the perim-
eter of the junction. The normal derivatives of each represen-
tation must also match along this boundary. Thus

c junc50 ~A4a!

along the walls, and

c junc5c lead
~ j ! , ~A4b!

]

]xj
c junc5

]

]xj
c lead

~ j ! ~A4c!

at the mouth of leadj .
Equation~A4c! allows us to express theSmn

( j i ) in terms of
the cb . Multiplying both sides byf j ,m and integrating over
the mouth of leadj (xj50), results in the expression

Smn
~ j i !5d i , jdn,m2(

b
cbFjmb , ~A5!

where

Fjmb5 i
Avm
km

E
2wj /2

wj /2

dyjf j ,m~yj !
]

]xj
Fb~q!. ~A6!

FIG. 12. Quantum-mechanical and semiclassical power spectra
of ~A! the transmission probability and~B! the reflection probability
resulting from first smoothingSII

( i j )(kF) using a cutoff width of
s5p/40.
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Now let us define a coordinates,0<s,L, that goes
around the perimeter of the junction, and straight across the
lead mouths. We expand the inside and outside representa-
tions in a Fourier series ins with coefficients c̃ junc,l

and c̃ lead,l , respectively~Ref. 31!. We find

c̃ junc,l[
1

LE
0

L

dsc junc~s!e2 i2p ls/L ~A7!

5(
b

cbGbl , ~A8!

where

Gbl5
1

LE
0

L

dsFb@q~s!#e2 i2p ls/L. ~A9!

Similarly, the Fourier coefficients corresponding to the out-
side representation are

c̃ lead,l5Hinl1(
j ,m

Smn
~ j i !Hjml , ~A10!

where

Hjml5
1

LE
0

L

dsfn
~ j !@yj~s!#e2 i2p ls/L. ~A11!

Using Eq.~A5! to eliminateSmn
( j i ) and equating Fourier coef-

ficientsc̃ junc,l5c̃ lead,l , we obtain a set of linear equations for
the cb :

(
b

FGbl1(
j ,m

FjmbHjmlGcb52Hinl . ~A12!

One generally choosesNl , the number of Fourier coeffi-
cients, to be equal toNb , the number of junction basis func-
tions, and then solves for thecb . Smn

( j i ) can then be obtained
using Eq.~A5!. These are the desiredS-matrix elements for
the propagating modes.

Initially, we followed Ref. 31 in using plane waves trav-
eling in different directions as a basis:

Fa~q!5eika•q ~A13!

~here we have replaced the indexb with the anglea), where

ka•q5kFr cos~u2a!, ~A14!

r5Ax21y2, tan(u)5y/x anda5@0 . . . 2p#. However, we
found that this basis set has poor convergence properties for
the system under consideration. The dotted curves in Fig. 13
represent results obtained for the junction treated in Sec. IV
with kFw53.167 38~one propagating mode!. It is seen that
the unitarity condition,uS11

(21)u21uS11
(11)u251 is significantly

violated for basis sizes larger thanNb;120. However, to
have enough angular resolution~with a chosen uniformly in
its range! to describe even the first evanescent mode (m52
here!, Nb must be larger than about 160.

The cause of the instability in the plane-wave expansion
for a junction of approximate circular geometry can be un-
derstood as follows. The derivative of the wave function
along the perimeter is discontinuous at the edge of the leads.

For this reason the Fourier summations are slowly converg-
ing ~high Fourier components make important contributions!.
For the circular junction, the perimeter variable can be ap-
proximately written ass;uL/2p, so that

Ga l;
1

2pE0
2p

due2 i l ueikFrcos~u2a! ~A15!

5~ i ! lJl~kFr !e2 i l a, ~A16!

whereJl(x) is the Bessel function of the first kind. For large
l ,

Jl~x!→
1

A2p l
S e2D

l S xl D
l

~A17!

soJl(x) becomes quite small forx, l , l large. For example,
J200(36);33102125.

Becausec̃ junc,l must be of comparable magnitude for
small and largeu l u, cb must be quite large by Eq.~A8!. But
in order for c̃ junc,l to be of reasonable size for smalll , the
sum of the large terms must cancel. The result is a numeri-
cally singular matrix defined on the left-hand side of Eq.
~A12!.

We therefore chose to use a basis set of Bessel functions
directly,

Fb~q!5GbJb~kFr !eibu ~A18!

These are the solutions to the free-particle Schro¨dinger equa-
tion when expressed in circular coordinates. As previously
noted,Jb becomes quite small for largeb, but in this basis
set it is straightforward to directly rescale the Bessel func-
tions with weightsGb such that eachGbJb(kFr ) has a com-
parable magnitude around the perimeter (r is approximately
constant!. This basis set gives much better convergence be-
havior than the plane waves, as is seen in Fig. 13. Note,
however, the drift ofT11 over the range of basis sizes

FIG. 13. Comparison of convergence properties for plane-wave
~dotted curves! and Bessel-function~solid curves! basis sets as a
function of basis set size.~a! Norm (T1R). ~b! An individual ma-
trix element.
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Nb5100→300. This is due to the slow convergence of the
Fourier sum mentioned previously, so that large basis sets
are necessary. In our calculations we used a basis size of 400
for one open lead mode up to 900 for four open modes. Flux
was conserved to 0.03% or better for all calculations.

In Refs. 6 and 32 bases of unrescaled Bessel functions
were used. In those works the numerical instability was cir-
cumvented using singular value decomposition. We also
tried this method, but found that it did not work well for our
case; rescaling the Bessel functions gave much better results.

This Bessel function expansion works for circular geom-
etry. For arbitrary junction geometries, the boundary element
method given in Appendix C is better.

APPENDIX B: DIFFRACTIVE SCATTERING FROM
LEAD APERTURES

In Sec. III we approximated the wave function near the
mouth of the exit lead as a sum of plane waves. Let us
reexamine one of these plane waves incident on a lead
mouth. While some of the amplitude associated with the
plane wave can exit the junction on this encounter, a portion
of the amplitude will be diffractively reflected from the nar-
row mouth of the lead, and will continue to bounce around
the junction. This reflection produces some of the peaks seen
in Fig. 8~B!.

Diffractive reflection from an opening can be treated by
Babinet’s principle.26 The total reflected wave is the plane
wave produced by reflection from a complete wallminusthe
wave produced by a small barrier coinciding with the open-
ing. To apply this method, we use the following approach.

First let us note that a wave reflected from a circular wall
differs in an essential way from a wave reflected from a
straight-line wall. Parallel trajectories incident on a circular
boundary will cross each other at a focus after reflection,
while there is no focusing of like trajectories reflected from a
line. If a refocusing occurs, it produces an increment in the
Maslov index, so that the phase associated with the reflected
wave differs byp/2 between the two wall types. Naturally,
all of our calculated reflections take this into account.

To apply Babinet’s principle, we smoothly extend the
boundary across the lead mouth, i.e., we continue it as an arc
of a circle~not as a straight line across the lead mouth!. Let
us call the wave function reflected from that small circular
arccarc

refl and the wave function reflected from the entire cir-
cular wall including the arcccircle

refl Then according to Babi-
net’s principle the actual reflected wave is the difference be-
tween these two,

c refl5ccircle
refl 2carc

refl . ~B1!

The wave reflected from the circle is obtained from the semi-
classical approximation. This wave reflects as if the lead
were not present. The wave reflected from the arc can be
calculated by again applying the Kirchhoff approximation:
each point on the small circular arc is a point source
weighted by the incident semiclassical wave at that point.
Equation~13! is used, but now the boundary is a small cir-
cular arc instead of of a straight line.

Finally, we make one more approximation. The arc is
sufficiently small that we can replace it by a straight line
segment. Then if the wave incident on this line segment is a

plane wave exp@2ikFr jcos(uj2ul)# moving in the direction
u l of the l th trajectory approaching leadj , the Kirchhoff
formula gives

c line
refl'2

exp~ ikFr j !

Ar j
Q j

scat~u j ;u l !, ~B2!

where

Q j
scat~u j ;u l !52 iw j S kF8p D 1/2eip/4~cosu j1cosu l !

3sinc@ 1
2kFwj~sinu j1sinu l !#, ~B3!

sinc~x!5sin~x!/x. ~B4!

We have an outgoing circular wave with angular dependence
given byQ j

scat(u j ;u l) representing the diffractive ‘‘shadow’’
of the lead aperture. Plots of the modulus squared of this
formula are shown in Fig. 14 for three angles at
kF52.5p/w, and compared with the exact quantum solution
~of an infinite lead connected to a half-plane!. The quantum
solution was computed using the method of Appendix C.

Equation~B2! may seem to contradict our physical de-
scription in the third paragraph of this appendix: Eq.~B2!
describes an outgoing circular wave with diverging rays,
while a wave reflected from a circular arc should have con-
verging rays. However, we have tested this approximation by
calculating the exact quantum wave reflected from a circular

FIG. 14. uc line
refl(r58w,u)u2 for three values of u l at

kF52.5p/w is shown as the dotted curves, from Eq.~B2!. The
solid curves are exact solutions of a plane wave diffracting from a
lead mouth as described in Appendix C. The thick vertical bars
represent the direction of the classical shadow.
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arc, and found that the approximation is adequate provided
that the arc is not too many wavelengths long.

Finally let us note that our use of Babinet’s principle ap-
plies if the lead apertures open into ‘‘empty space’’ outside
of the junction. We have not taken into account the fact that
the leads are straight wires of fixed width. This approxima-
tion seems to be an appropriate first step, but the wire nature
of the leads may be important in quantitative comparisons
with quantum results.

The shadow corresponding toc line
refl is represented by a

new family of trajectories launched at all angles a distance
r j from the center of the lead mouth. These trajectories are
connected toc line

refl in a manner directly analogous to the
method used at the initial entrance lead. For instance, to
include the lead-scattered trajectories for one and two en-
counters with the lead mouths one modifies Eq.~39! in the
following manner: a! include those trajectories which exit
once or twice before encountering leadj in the sum in Eq.
~39!; and ~b! add the components corresponding to diffrac-
tive scattering from the resulting value of theS-matrix ele-
ment, i.e., add

eip/4A2pkF (
j 1 , j 2

(
l1 ,l3

H Q i ,n
in ~u i ,l1!TlFd j 1 , j 2

Q j 1
scat~u j 1 ,l1

,u j 2 ,l3
!

1(
l2

Q j 1
scat~u j 1 ,l1

,u j 1 ,l2
!TlQ j 2

scat~u j 2 ,l2
,u j 2 ,l3

!G
3TlQ j ,m

in ~u j 2 ,l3
!J , ~B5!

where j 1 and j 2 label intermediate leads andl 1, l 2, and l 3
label trajectories between leadsi and j 1, j 1 and j 2, and j 2
and j , respectively.

To correctly achieve unitarity in the relatively large wave-
length to lead-width regime studied here, the diffractive scat-
tering process must conserve flux. In particular, we require
that the flux integral Eq.~11! is obeyed for the contour
shown in Fig. 3, wherec15c25c lead for intervalAB, and
c15c25c inc1c ref2cshadowfor arcCD. The approximation
which we used forcshadow, Eq. ~B2!, does not obey this
current conservation condition, so strict unitarity should not
be expected here, even if a very large number of trajectories
were included.

APPENDIX C: SOLUTION OF BILLIARD SCATTERING
PROBLEMS USING THE BOUNDARY ELEMENT

METHOD

The boundary element method~BEM! or boundary inte-
gral method has been widely used in engineering33 and
physics.34,35We use it to solve quantum scattering problems
for billiardlike potentials.

The starting point for the BEM is the Kirchhoff-
Helmholtz equation, which expresses the wave function at
point q in terms of the wave function and its normal deriva-
tive on a contourC enclosing regionA.

u i
2p

c~q!5 R
C
ds8Fc@q8~s8!#

]

]n8
G@q,q8~s8!#

2G@q,q8~s8!#
]

]n8
c@q8~s8!#G

14i
me

\c R
C
ds8G@q,q8~s8!#c@q8~s8!#

3A@q8~s8!#•n̂8, ~C1!

whereG(q,q8) is the free-particle Green function, andn̂8 is
the inward-pointing normal on the contour.A is the vector
potential, which is taken to be zero in the current study.u i is
called the internal angle. Forq inside the regionA,
u i52p. For q outside this region,u i50. On the boundary
u i is defined in the inset of Fig. 15. At any point at which the
boundary is a smooth curve,u i5p, while if the boundary
has a sharp bend,u i for the vertex is the angle subtended
inside regionA.

In the BEM the bounding contourC is discretized, and the
wave function and its normal derivative on this curve are
solved for. Once values are known on the surface, the wave
function anywhere inA can be calculated using Eq.~C1!.

Let us introduce some simplifying notation. For pointsq
andq8 on the boundary,

g~s8![c@q8~s8!#, ~C2!

f ~s8![
]

]n8
c@q8#U

q85q8~s8!

, ~C3!

G~s,s8![G@q~s!,q8~s8!#, ~C4!

Ġ~s,s8![
]

]n8
G@q~s!,q8#U

q85q8~s8!

. ~C5!

Then, for smooth boundaries andA50, we can rewrite Eq.
~C1! as

FIG. 15. Boundary contour definition for diffraction at the in-
terface between a lead and a half-plane. Inset: definition ofu i .
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1

2
g~s!5 R

C
ds8@Ġ~s,s8!g~s8!2G~s,s8! f ~s8!#. ~C6!

We wish forc to obey boundary conditions, correspond-
ing to physical constraints. These boundary conditions imply
that the value of a wave function and the value of its normal
derivative on the boundary are not independent. For hard-
wall boundary conditions it is convenient to write these con-
straints in a general form:

g~s!5N~s!1 R
C
ds8M ~s,s8! f ~s8!. ~C7!

N(s) andM (s,s8) will be specified later, as particular cases
are considered. For the moment, we are just asserting that the
boundary conditions imply a second linear integral relation
betweenf (s8) andg(s).

For G(q,q8) it is convenient to use the point source
Green function, which for zero magnetic field is given by Eq.
~14! ~the point-source Green function for nonzero magnetic
field is also known36!.

Substituting Eq.~C7! into Eq. ~C6! and rearranging gives
an inhomogeneous linear integral equation forf (s):

R
C
ds8K~s,s8! f ~s8!5I ~s!, ~C8!

where

K~s,s8!52 1
2M ~s,s8!1 R

C
ds9Ġ~s,s9!M ~s9,s8!

2G~s,s8! ~C9!

and

I ~s!5 1
2N~s!2 R

C
ds8Ġ~s,s8!N~s8!. ~C10!

We now apply the above procedure to two scattering
problems involving the geometry shown in Fig. 15.

1. Incoming lead state diffracting into an infinite half-plane

Consider a single incoming lead state propagating in the
positive-x direction. It diffracts atx50, part of the wave
function is scattered back into the lead, and some becomes
an outgoing circular wave~with some angular modulation! in
the half-planex.0.

The full wave function in the lead can be written

c lead~q;n!5cn
lead,in~q!1 (

m51

`

cmcm
lead,out~q!, ~C11!

wherecn
lead,in andcm

lead,out are defined as in Sec. III A. The
coefficientscm are unknown.

In the half-plane, forr.w/2, the wave function can be
expanded in a basis of outgoing Hankel functions with an-
gular components which satisfy the hard-wall boundary con-
ditions

cout5 (
n51

`

dnsin@n~u1p/2!#Hn
~1!~kFr !/Hn

~1!~kFr 0!,

~C12!

with coefficientsdn . TheHn
(1)(kFr 0) has been included in

the denominator to ensure that thedn are of the same order
of magnitude, as was done in Appendix A.

Figure 15 defines a bounding contour on which we solve
for f (s). There are three distinct intervals on the contour, in
which the wave function must satisfy different boundary
conditions. In interval I, the boundary lies along a wall so
that the wave function is zero. Interval II spans the mouth of
the lead, while interval III traces out an arc of constant
r5r 0 in the half-plane.

In interval II, the boundary lies alongx50,
2w/2,y,w/2. Here we require continuity of the wave
function and its normal derivative. We substitute Eqs.~3!
and ~5! into Eq. ~C11! and take thex derivative to obtain

f ~s!5 i
kn

Avn
fn@y~s!#2 i (

m51

`

cm
km

Avm
fm@y~s!#.

~C13!

Because of the orthogonality of thefm , it is convenient to
multiply this equation byfm(y) and integrate over the lead
mouth to get an expression for thecm in terms of f (s), in
analogy to Eq.~A5!. Now, for points in the lead mouth we
combine this expression with Eqs.~C11!, ~3!, and~5! to ob-
tain

g~s!5fn@y~s!#/Avn1(
m

cmfm@y~s!#/Avm

52fn@y~s!#/Avn1E ds8S dyds8D(m i

km
fm@y~s!#

3fm@y~s8!# f ~s8!, ~C14!

where the integral is over the lead mouth. This has the form
of Eq. ~C7!; N(s) andM (s,s8) can be read in Eq.~C14!.

On the arc~interval III!, the inward normal is in the2r
direction, so

f ~s!52 (
n51

`

dnsin@n~u~s!1p/2!#
]

]r
Hn

~1!~kFr !/Hn
~1!~kFr 0!.

~C15!

Again, theu-dependent functions are orthogonal, so thedn
can be expressed in terms off (s). The wave function on the
arc is then

g~s!5(
n

dnsin@n~u~s!1p/2!#

5E ds8(
n

S 2
2

pkF
D Hn

~1!~kFr 0!

Hn
~1!8~kFr !

S du

ds8D
3sinFnS u~s!1

p

2 D GsinFnS u~s8!1
p

2 D G f @u~s8!#.

~C16!
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We have again arrived at a form like Eq.~C7!, with
N(s)50 and M (s,s8), the kernel of the integral in Eq.
~C16!. This method was used to obtain the quantum results
in Fig. 4.

2. Incoming plane wave diffracting off a lead mouth

Here we consider the same geometry as in the previous
case, but we change the incoming asymptotic conditions to
be a plane wave in the half-plane incident on the lead mouth
at an anglea. In the half-plane we write the wave function as
a sum of incident, reflected, and diffracted parts,

chp5c inc1c ref2cd , ~C17!

where

c inc5e2 ikF@x cosa1ysina#, ~C18!

c ref52eikF@x cosa2ysina#. ~C19!

cd is to be determined. In the lead

c lead5 (
m51

`

cmcm
lead,out. ~C20!

In the lead mouth we require that the total wave function
and its normal derivative be continuous,

c lead@x50,y~s!#5chp52cd5g~s! ~C21!

and

]

]x
c lead5

]

]x
chp522ikFcos~a!e2 ikFy~s!sina1 f ~s!.

~C22!

A procedure analogous to that used in the previous ex-
ample can then be used to obtain a linear equation forf (s).
The quantum results in Fig. 14 were obtained using this
method.

APPENDIX D: A STADIUM

We mentioned that the semiclassical formula is easily ap-
plied to any geometry. The BEM can also be used for a
variety of geometries. We carried out quantum and semiclas-
sical calculations of the transmission and reflection ampli-
tudes for a stadium geometry. Figure 16 shows the geometry
of the stadium and a few important trajectories. Figure 17
shows the power spectra of the transmission and reflection
amplitudes. In the semiclassical calculation we included only
paths with no more than eight bounces, and we neglected
diffractive scattering. Again, the semiclassical formula gives
a good approximation.

We made no attempt to optimize the efficiency of the
computer codes for either calculation. For a crude compari-
son, let us remark that the quantum calculation took almost
three orders of magnitude more computer time than its semi-
classical counterpart.
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