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We consider the motion of ballistic electrons in a miniband of a semiconductor supen&@teunder the
influence of an external, time-periodic electric field. We use a semiclassical, balance-equation approach, which
incorporates elastic and inelastic scatteriag dissipation and the self-consistent field generated by the
electron motion. The coupling of electrons in the miniband to the self-consistent field produces a cooperative
nonlinear oscillatory mode which, when interacting with the oscillatory external field and the intrinsic Bloch-
type oscillatory mode, can lead to complicated dynamics, including dissipative chaos. For a range of values of
the dissipation parameters we determine the regions in the amplitude-frequency plane of the external field in
which chaos can occur. Our results suggest that for terahertz external fields of the amplitudes achieved by
present-day free-electron lasers, chaos may be observable in SSL's. We clarify the nature of this interesting
nonlinear dynamics in the superlattice—external-field system by exploring analogies to the Dicke model of an
ensemble of two-level atoms coupled with a resonant cavity field, and to Josephson junctions.
[S0163-18296)05440-9

I. INTRODUCTION of these studies have been in the semiclassical regime, the
consequences of a fully quantum-mechanical treatment of
More than two decades ago, Esaki and Tdiscovered a miniband transport in an intense oscillating EM field have
striking nonlinear effect in semiconductor superlatticesalso been examined.Reviews of these and other theoretical
(SSL’9), establishing that the dissipative motion of electronsstudies are given in Refs. 16 and 17. All these investigations
within a single SSL miniband in the presence ofttic  have dealt with théntraminibanddynamics of the electron,
electric field can produce regative differential conductivity neglecting the possibility ointerminibandtransitions; addi-
(NDC) in the stationary current-voltage characteristic. Intional nonlinear phenomena can become relevant if inter-
view of its potential applications to ultrasmall electronic miniband dynamics are considered.
devices? interest in this effect remains highand it contin- In a previous papel® we extended earlier studies of the
ues to be studied by a variety of different theoretical andntraminibanddynamics of ballistic electrons in a SSL with
experimental techniqués. The importance of these systems an ac external electric field by taking into account the self-
is reflected, for example, in the many articles in semipopulaconsistent EM field generated by the electron current. The
physics literaturg. coupling of the electron motion to the self-consistent field
In the past several years, technological advances in semiesults in cooperative oscillations which alter the dynamics
conductor nanostructure fabrication and in electromagnetisubstantially. In particular, we showed that, with the inclu-
field generation techniques have made possible detailed studion of the self-consistent field, the inherently nonlinear na-
ies of a wide range of other nonlinear phenomena involvingure of the electron dynamics implies that, under the influ-
electron transport in SSL’s in the presence of a variety ofence of the external ac field, various dynamical instabilities,
electromagnetidEM) fields*® Very recently, the effect of including transitions to chaos, can océfirHowever, our
alternating fields in the teraher(ZHz) domain on the non- previous work was limited to theondissipativeegime and
linear current-voltage characteristics of superlattices hathus was strictly valid only on time scales shorter than all
been investigated experimentallyand observations of characteristic relaxation times for the electron’s energy and
photon-assisted resonant tunneling and negabsolutere- momentum. Hencea priori we could not determine the
sistance have been reporfed. long-time (stationary dynamical behavior. More impor-
These extensive experimental efforts have been parallele@ntly, the assumption of no dissipation is of dubious appli-
by many related theoretical studi€s’ These studies have cability to the interpretation of experiments in real systems,
examined the propagation of the electromagnetic solitongn which dissipative effects are certainly present at some
through the superlattice self-consistent nonlinear plasma level.
oscillations!®~*2 Hamiltonian chaotic dynamics of electrons  In the present study, we generalize our previous work by
in a constant magnetic field interacting with electromagneticonsidering explicitly the role of dissipation in the balance
waves!® and emission of electromagnetic radiation from su-equations describing the SSL plus field system. After recall-
perlattices due to multiphoton transitiolfsAlthough most ing briefly how the conventional balance equations recover

0163-1829/96/54.5)/1062512)/$10.00 54 10625 © 1996 The American Physical Society



10 626 ALEKSEEV, BERMAN, CAMPBELL, CANNON, AND CARGO 54

the standard results of Bloch oscillations and negative differwhereA is the miniband width, and is the SSL periodicity.
ential conductivity, we show that our extension of the bal-This nonquadratic dependence of the electron energy on the
ance equations to account for collective effects on the elecguasimomentum within the miniband renders the dynamics
tron’'s motion can(for certain conditionsresult in chaotic  of electrons inherently nonlinear.

dynamics, both transient and stationary, even in the presence Generalizing the balance equation approach of Ref. 14 to
of damping. We discuss and exploit analogies between thimcorporate the self-consistent fi&ld® generated by the
electrons in a SSL plus field system, and the dynamics o&lectron current, we find thdwith the assumption of spatial
lasers and optical bistable systems and of damped, drivelmomogeneitythe equations describing the electron’s motion
Josephson junctions; the extensive tradition of studying disin the combined external and self-consistent field become
sipative nonlinear dynamics in these problems allows us to

use these analogies to guide our studies of the semiconductor V=—eEqyt)/m(s)—7,V, (33
system.

The remainder of the paper is organized into three sec-
tions. In Sec. Il we use a balance equation approach to for-
mulate (phenomenologicalequations of the motion for the .
electron in the SSL in the presence of an external ac field, Esc=— 47— aEg, (30
including the self-consistent field generated by the electron h
current. We show how to incorporate various dissipativeW ere
channels in these equations, and illustrate that the solutions
to these equations capture the anticipated behavior in several

simple limiting cases, including those aindampefiBloch | Egs.(3), V is the average velocityalong the SSL axis

ity. In preparation for our study of the general case, we inthe average electron current densityis the average energy
troduce a rescaletpseudospinrepresentation of the equa- of the electronsg, is the equilibrium energy of carriefse-
tions of mptlon, and demqnstrate t_he qnalogy with the optlcagumng from thermal energy and/or external pumpjrand
systems, in which chaotic behavior is well established. Ine_ is the self-consistent EM field generated by the electron
Sec. Il we present the details of our study of the d'SS'pat'VQ:urrentj. All quantities are measured in cgs units.

chaotic dynamics of the SSL plus field system. First, we | at s say a few words about the physical interpretation

show that our equations redude two different limits o f these equations. Equatiaa) is the basic equation of
the equations of two well-known chaotic systeni®) the  motion of electrons belonging to one minibafdith the

Lorenz equations an) the damped, driven pendulum. Sec- gispersion law(2)] in the presence of the electric field

ond, we present numerical st_udies of the full equations. OuEtot(t)- Importantly, the dependence of the electron’s effec-
results suggest that, for a wide range of values of the freg,o massm(s) on energy in Eq(3a) is*

guency and amplitude of the external field and for experi-

mentally relevant values of the damping, stationary chaotic Mo 272
dynamics should be observed, interspersed with transient M(e)= ——%—+, My=-——7,
chaos, leading eventually to periodic motion. We provide 1-2e/A Aa
detailed confirmation of the chaotic behavior in the form Ofwheremo is the electron’s effective mass at the bottom of the
Lyapunov exponents, power spectra, and direct time evoluyininand. Note thatm(s) may take negative values for
tion traces. In Sec. IV we summarize our results, examing > x> The occurrence of a negative effective mass is con-

critically the possible parameter ranges in which the effect§gteq with the existence of negative differential drift veloci-
we predict can be observed in experiments, discuss hoyyeq (see, e.g., Ref. 14 and references theérein

these effects might manifest themselves in experimental ob- Equation(3b) describes the heating.e., increase in en-
servables, and mention a number of open theoretical issueérgw of the electrons by the fielé(t) and cooling(i.e.,

relaxation of energyto the equilibrium valuesy. The ther-

e=—eEu(t)V—7y.(e— &), (3b)

Eiol(t) =Es{t) T Eex(t) and j=-—-eNV. (3d)

4

Il. BALANCE EQUATION APPROACH mal equilibrium energy values, has the temperature
. . - _ _ dependencé?!
Consider the motion of ballistic electrons in a SSL in the
presence of an external ac electric field with amplitige A 1 (A/2kgT)
and frequency, sM="|q_ L2787 (5)
02 [o(A/2kgT) |’
Eex(t) = Eqcodt, (1) wherel, are the modified Bessel functiori,is the lattice

hich i lied in the directi dicular to the | temperature, anllg is Boltzmann’s constant.
which IS applied in the direction pérpendicufar 10 tn€ 1ayers o parametery,, vy,, anda are thephenomenological

of the SSL, i.e., in the direction of the motion within the SSL ; ; 3
miniband. In the standard tight-binding approximation, therelaxatlon constants of the average velocity, energy, and self

. . ) _ . . _consistent field, respectively. The treatment of these relax-
d|sper_3|on relatlo?sﬁ_)f the electron belonging to a single mini-;,, parameters as constants, independent of energy, is an
band in the SSL approximation; we shall discuss our present understanding of
the validity of this approximation in Sec. IV. Physically, in a
@) SSL, the damping of the average velocity is mainly due to

the elastic scattering of electrons with the impurities, struc-
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tural disorder, and interface roughness. Typically, the mairhave been observed. In this regard, it is interesting to note
channel of energy dissipation for the electron subsystem ithat the generalization of the formula of Esaki and Tsu to
inelastic phonon scattering. finite temperature and tg,# v, describes with reasonable
Equation(3c) is Maxwell's equation for the time evolu- accuracy the stationary transport properties of a SSL, even in
tion of the self-consistent electric field, with an additional the case when the energy of the external field and the thermal
term describing its relaxation. The form of this equation,energy of the electrons are comparable to the miniband
including the phenomenological relaxation constamt—  width, and the quasiclassical description becoraggriori
which models effects of interactions of the self-consisteninadequaté.
field with degrees of freedom beyond the ballistic electrons We have considered these two special cases in the ab-
described dynamically in our equations — is familiar from sence of the self-consistent field, i.Eg{t)=0. Importantly,
the literature on bulk semiconductdrsExamples of the pro-  if we include E¢{t), we again find Bloch oscillation@lbeit
cesses contributing ta include surface effects and the gen- not simple sinusoidal motignin the case of no relaxation
eration of polar phonons due to the finite polarization of theeffects, and the NDC for the steady-state current-voltage
crystal produced by the field. characteristic when relaxation effects are included. We do
Following the original deviations of the “balance equa- not present these results in detail h&tas they are not es-
tions” (3a) and(3b) in Refs. 22 and 23, several articles have sential to our present study.
discussed thenicroscopicderivation and justification of the To prepare for our study of the time-varying external field
equations and their use in modeling both general transpodase, including{t), we introduce some scalings of the
properties in SSLs(Ref. 24 and specific nanoscale variables in Eq(3), for these will both simplify the analysis
devices>? For our present purposes, however, it is sufficientand make apparent an important analogy with the nonlinear
to consider Eqs(3) as a phenomenological set of equations.dynamics in optical systems.
Before analyzing the nonlinear dynamics of the full sys- We introduce the variables
tem (3) in detail, let us examine briefly several important
limiting cases, in order to illustrate the consistency of the 2h _e—A2 go—A/2

balance equation approach with known results. For simplic- ve EV' W A2 Wo= A2 ™
ity, we shall momentarily ignore the self-consistent field

equation entirely and focus on the consequences of (Bgs. ea dE,

and(3b) alone. Consider first the case in which the electrons E= 7Bt wsCOKt, Ws= 2 d=ea ®)

in the SSL are influenced only by @nstantexternal field )
Et=Eex=Eo=const, and for which the relaxation pro- In these variables, Eq¢3) become
cesses can be neglected: i2.=y,=0. In this simple lim-

iting case, a straightforward calculation shows that the elec- v=Ew=y,, (93
trons perform harmonic oscillations with velocity .
V=V,sinwg. These are the familiar Bloch oscillatioh§and W= —Ev = y,(W=Wy), (9b)
the characteristic frequency of these oscillations )
ws=eak,/# is known as the Blochor Stark® frequency. E=owiv—aE+f(1), (90
For typical SSL’'s and for typical electric fields~(1—10 where
kVv/cm), the Bloch frequency belongs to the THz domain.
Although there remains some controversy, experimental evi- f(t)= awLcofNt— wsin Ot and
dence for these Bloch oscillations has recently been
reported® 2me’NaA ]2
Consider next the case in which there is still a constant We=| Tz (10)

electric field and the relaxation effects are also included, so
that y,#0, y,#0. This problem was first considered by |t follows from Eq. (5) thatw{"=2{P/A—1. The variable
Esaki and Tstifor the particular case, =y, , and the gen- w in Eq. (7) has a simple physical interpretation: namely, it
eralization to the case,+ vy, is given in Refs. 14, 22, and s the electron’s energy measured from the middle of the
23. Again, a straightforward calculation shows that the sysminiband and normalized by the half-width of the miniband.
tem undergoes damped oscillations and that in the steadyence the valuav=—1 corresponds to the bottom of the

state the current=—eNV becomes miniband, andw=1 corresponds to the upper edge of the
miniband. The fielcE is the total electric fieldmeasured in
e’NEo/y, l1(A/2kgT) 1 units of frequency acting on the electrons. Note that the

1= 1+ (eEpalt)?(y,7,)) lo( Al2kgT) m_o’ (6) frequencywg is formally equal to the frequency of electron
plasma oscillationsw,=[47e*N/my]*?, providedthat m,

which reduces to the original Esaki-Tsu reSit the zero-  is taken as the effective electron mass at the bottom of the
temperature limit(so the ratio of Bessel functions goes to miniband, as given by Eq4). For this reason, the corre-
one and when we choosg,=vy,=1/7. In this limit, it is  sponding cooperative oscillations of the coupled SSL system
easy to see thatj/dEy,<0 for (eaEy7/A)>1, so that there were called “nonlinear plasma oscillations” by Epshtétn.
is NDC in this regime. Experimentally, both the NDC effect However, since the term “plasma oscillations” is usually
in SSL (Ref. 4 and the effect of thermal saturation of mini- used in a different context in semiconduct®fd,we shall
band transport in a SST/, due to the dependence of the refer to these as “cooperative oscillations,” and denote their
equilibrium electron energyg) [cf. Eq.(5)] on temperature, frequency bywg.
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The analogy mentioned in Sec. | between the present SSWhich exhibit chaos. We discuss these two limits in the en-
problem and optical systems helps to clarify this point fur-suing two subsections.
ther. If we consider the variables in Egs. (9) to be the
population difference and the polarization, then Eqg9) A. Lorenz equation limit
are equivalent to the coupled Maxwell-BlogBMB) system, When the external ac field is absdif(t)=0], Egs. (9)

taking into account the external fie{dee, for example, Ref. o equivalent to the well-known Lorenz mod&Although
29). Recall that the CMB equations describe the dynamics 0gne can derive this equivalence directly, it can also be seen

two-level atoms placed in a single-mode cavity, and 'nteraCtimmediately from our optical analogy: namely, foft)=0,

ing with the cavity field via a dipole interaction. The width Egs. (9) coincide with the CMB equations describing a
of the SSL miniband 4/#) is equivalent to the transition single-mode homogeneously broadened laser at exact reso-
frequency oo) of the two-level atom. The valuea of the  npance between the cavity mode and two-level atomic
SSL is the transition dipole momend) in the CMB case. transition®* and it has been shown by Hak&rthat CMB
Finally, the analog of the frequenaye defined by Eq(10)  equations can be reduced to the Lorenz model by a simple
is the so-called “COOperative frequencyﬁcE(ZﬂwodzN/ transformation of variables.

£2)123% The physical interpretation of this cooperative fre-  Translating the necessary conditions for instability and
quency is the frequency of the slow resonant exchange ahe transition to chaos in the Lorenz motef® into our
energy between thdl two-level atoms and the field in the notation, we find that these conditions can be written as
cavity, as first described by the Dicke mod@In the balance

equations describing the SSL systHags.(9)], the miniband a>y,+y, (113

is treated as initially empty. When the electrons are in-

jected, the assumption that they are distributed with spatiallfznd

homogeneous density means that the “populated” miniband

2
becomes analogous to an optical system consisting of an W Yoa© (aly,+y.lv,+3) (11b)
ensemble of two-level atoms with densily in the Dicke 7 wi (a—v¥e— )

model. Our self-consistent field is analogous to the cavity o ]

field, and the cooperative oscillations of the Dicke type ap-1he condition in Eq(11b) requires that the value, corre-

pear due to the coupling of the electrons in the miniband tFPonding to the electron’s equilibrium energy should be

the self-consistent field. The relaxation parametein our  larger then some critical value{™>0. From Eq.(5), we

SSL equations plays the role of the finite quality factor of thesee that even at high temperaturds—<{~) the equilibrium

cavity in the optical system. Finally, the Stark frequencyvalueng)—>—O. Hence we find the interesting result that in

w;=eaEy/a is equivalent to the Rabi frequency the Lorenz limit f(t)=0), the necessary conditiorf$1b)

wr=0dEq/#. for the transition to chaos can not be satisfied in the SSL
Equations(9) are also similar to the CMB equations de- system; to obtain chaos in the SSL system, we require addi-

scribing the dynamics of a laser with an injected sighaly  tional driving (f(t) #0).

a bistable system in the framework of the Bonifacio-Lugiato

model?%32 I?o)wevgr, hthere artle imp?ortant differences br?_ B. Damped, driven Josephson junction limit

tween Egs.(9) and the optical analog systems. First, the . . .

CMB equations are derived for the field and the polarization, WNen,=7,=0, Egs.(8a and (8b) immediately imply

envelopes: hence the variablesand E in the CMB equa- the existence of a constant of motion: namely, the length of

tions are generally complex. Second, the form of the externéﬁe pseudospin vector, which we can, without loss of gener-
force f(t) that perturbs the cavity mode is different in the ality, scale to 1, so that

CMB equations. Nonetheless, the structural similarities and
the well-known results that under certain conditions transi-
tions to chaos take place in the bistable devit#and also  we can incorporate this conservation law explicitly and con-

in lasers both witff and without injected signal$**suggest sistently into the dynamics by introducing the change of vari-
that one should expect transitions to chaotic dynamics in thgples

SSL plus field interaction problem. In Sec. Il we will show
that this is indeed the case.

v2(t) +wA(t)=1. (12)

t
v=—sinf, w=—Cod, 0=fdt’E(t’). (13
0

IIl. CHAQTIC DYNAMICS IN SEMICONDUCTOR From these definitiongand noting tha=E), one sees that
SUPERLATTICES Egs. (9a) and (9b) are automatically satisfied, and that Eq.

Exploring the chaotic dynamics in Ed9) is a formidable ~ (9¢) becomes
task, for we have in effect a four-dimensional dynamical . )
system — three independent variablesv(, andE) plus the 0+ af+ wgsing=wy(a cosdt—0 sinQt). (14
explicit external time dependence — involving six param- . .
ettfrs Gor Ver @ O, wz, and 0). Fortunate%/, wepcan Introducing ¢o=tan }(Q/«), we can recast Eq14) into
obtain some guidance concerning the “interesting” regionsthe form
of parameter and state space by noting that our equations . ) 5 .
reduce, in two different limits, to two well-known systems 0+ a0+ wgsingd=p cogQt+ ¢y), (15
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where p=w¢\/a?+ Q2. This is the canonical form of the 1 ,
damped,(ag driven pendulum equation, widely studied in

chaotic dynamics both in its own right and as a model for a
damped, driven Josephson junctiiriwe shall exploit this N w

connection further in our detailed analysis of the numerical v o
results below.
In the limit of no dissipation whatever -«=0 as well as

v, andy, — the SSL plus field system reduces to the Hamil-

tonian system which we studied in Ref. 18 for a range of o 200 400

physically reasonable initial conditions; interested readers wpt

should consult this reference for details. Here we simply re-

mark that this nondissipative chaos in the SSL plus field 0.3

system has its own optical analogy, involving the generalized

semiclassical Tavis-Cumming$C) model, which describes

the dynamics of two-level atoms in a single-mode high-

quality cavity, interacting with self-consistent and external v

fields3® Details of the chaotic dynamics in the TC model can

be found in Refs. 38 and 39.

It is well known that both Eq(15) and its undamped

counterpart contain chaotic dynamf@sin terms of our pa- 03, 5000 10000

rameters, the parameter region in which strong chaos is ex- wgl

pected iswg~ ws~Q; in Sec. Il C, we shall use this infor-

mation as the starting point for our study of chaos in the full FIG. 1. Dependence of the electron’s average velocity on time

SSL plus field problem. for E(0)=ws, v(0)=0, andw(0)=—1: (a) “regular” (periodio
dynamics(for ws/wg=0.1, Q/wg=1); (b) chaotic dynamicgfor
ws/wg=1.6,Q/wg=0.2).

C. Dissipative chaos in the presence

of an external time-periodic field Josephson junction literatt¥eand in related studies of

We now consider the general case, in whitft), y, , coupled oscillators. Figure(i) shows a typical behavior in
Y., and a are all nonzero. The structure of the Eq9)  the “chaotic” region, in which the velocity varies erratically
suggests that we takeg as the scale ofinversg time, and  and with no apparent periodicity for as long as we observe it;
thus the natural damping parameters that occur in the rethis is “stationary chaos,” and is the behavior in which we
scaled equations are the dimensionless quantifigRog, are most interested. Within the region of parameters in which
v.lwg, anda/wg. Since there is considerable uncertainty chaos is observed, we also observe a behavior which exhibits
in the individual values of the phenomenological dampingcharacteristics of both regular and stationary chaotic motion:
parameters, we will study a broad range of values of thesaamely, a(typically long) interval of “erratic,” aperiodic
parameters: & vy,/wg, y./wg<0.2, and Ga/wg=<0.2. motion, followed by a near vanishing of the oscillations and
Since there are as yet no direct measurements of the cootien a locking into a periodic motion; thisansient chaoss
erative oscillations or their damping, we have chosen conserHustrated in Fig. 2. Importantly, the time at which the tran-
vative upper damping limits inferred from recent results desient chaos disappears, is a sensitive function of the nu-
termining that the ratio of the line width of thplasma merics, especially the level of accuracy demanded of the
oscillations to their frequency can be as large asiumerical integrator. This is commonly encountered in simu-
2x101*2 For initial conditions, we takeE(0)=ws, lations of chaotic systems.
v(0)=0, andw(0)= —1, corresponding to the initially un- In the regions of transient chaos, the asymptotic state is
excited SSL just being struck by the incident EM radiation.periodic. Visual inspection of Fig.(B) shows that for these
For our numerics we used a fifth-order Runge-Kutta algoparameter values the final period is also the fundamental of
rithm incorporating adaptive step size, accuracy checkingthe external period, but we have also obseryfn other
and Cash-Karp optimized parameters. parameter valugdocking to different subharmonics of this

The variable most directly related to experimental observperiod. The general case of locking into periods other than
ables is the average electron veloaityAccordingly, we will  the fundamental period of the external drive is well known
focus on the various different behaviors ofthat follow  from general results in nonlinear dynamics, and is exhibited
from the solutions of EqH9) and the regions in which they explicitly by the damped, driven Josephson junctibiven
occur. In Fig. 1 we show the two basic types of behavior forour present focus on establishing the possibility of chaotic
v observed in our simulations. Fig(dl shows behavior in motion in the SSL system, we shall not present further de-
the “regular” region, in which the velocity varies periodi- tails here?®
cally. In Fig. X(a), the basic frequency is just the fundamental To quantify these three types of behavior systematically,
frequency of the external EM field with a longer period we used standard dynamical systems tests: for each set of
modulation(caused by the nonlinearity of the equatipea-  parameters, we calculated the maximum Lyapunov exponent
perimposed. The “locking” of the oscillations of the elec- \ using the method described in Ref. 43 and determined the
tron’s velocity to the fundamental frequency of the externalpower spectrun{using a fast Fourier transform algorithm
field is referred to as “1:1 mode-locking behavior” in the for each of the velocity plots. In Fig. 3 we show the typical
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FIG. 2. Dependence of the electron’s average velacioy time FIG. 4. Power spectrum vs frequency for the electron’s velocity

for transient chaos «,/wg=7y.w/we=0.01, alwg=10"3, v: (a)_ regular motion parameters are the same as in Fig) It (b)

wlwe=15, andQ/wz=1): (a) long-time behavior(b) transition transient ch_aosparameters are the same as in Fig.For the case

to the laminar phase. of the transient chaos, the frequency spectrum was calculated only
for the turbulent phase.

behavior of the maximal Lyapunov exponent for the cases of

regular motion and chaotic motion. With the standard deﬁ_reflectlng the underlying long-time dynamics. We see from

itons and cacultonal procedtatsthe Lyspunov expo- 1% 3 1AL 1 e chaotc moton, e aeympote vaue of
nent will vary in time, eventually converging to the value ™ | 9 Lo ’ ' P
odic behavior it is less than zero. For the parameter values

chosen in Fig. @), this asymptotic value is only slightly
negative, consistent with the fairly weak dissipation for these
values of the parameters. For the case of transient chaos,
shown in Fig. ), the Lyapunov exponent decays to its final
value only very slowly. In Fig. 4 we show typical power

A 004 1 spectra for periodic and chaotic motion. Note the expected
| appearance of a broad power spectrum in the chaotic case, in
‘\ a contrast to the isolated peaks associated with the periodic
-0.01 Bttt bttt evolution.

0 8000 16000 The best overview of the qualitative nature — chaotic
versus periodic — of the behavior of the system is provided
by a two-dimensional plot showing, for fixed values gf,

0.10 ' v., anda, the locations of the regions withositivevalues
of the Lyapunov exponent as functions of the two parameters
of the external fieldwg and (), measured in units obg .
This sort of plot provides a clear visual presentation of the
chaotic regions, and has been used very effectively in studies
of chaos in the damped, driven Josephson junctidtere it
b will allow us readily to see how various types and amounts
) of damping effect the extent of chaos in our system.
8000 16000 In Fig. 5 we present the first of the plots »fvs wg and
wgt Q). For purposes of comparison with Ref. 37, we have chosen
the parameters to correspond to the case of the Josephson
FIG. 3. Dependence of the maximal Lyapunov exponent onunction (y,=v,=0), and have produced a plot of thein
time: (a) for chaotic motion[solid curve; the parameters are the the (p—) plane instead of theds—(1) plane; again, the
same as in Fig. (b)]; and for periodic motiondashed curve; for ~plots are in units ofwg. As stressed above, this is not a
ws/we=1.3,0/wg=0.2); (b) for the transient chaos shown in Fig. physically plausible set of parameters for real a SSL because
2. it neglects crucial velocity and energy dissipation effects, but

0.09

0.00
0
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two tiny isolated regions of chaos in Figi®. These figures
make clear that while the size and shape of the chaotic region
are strong functions of damping, chaos is expected to occur
L ! R 111 e for a wide range of values. In particular, for the expected
0.90 i i e, i range of the velocity and energy damping parameters,

A 0.01=vy,,y,<0.1 (Refs. 41 and 4Pfound in the highest
quality SSL'’s, chaos appears likely to occur over a substan-
tial range of parameters.

Let us comment on several qualitative features of the cha-
otic regions in Fig. 6, beginning with Fig.(®. Perhaps the
most striking qualitative feature here is the clear distinction
between the left boundary of the chaotic region, which ap-
pears very sharply defined, and the right boundary, which is
substantially more diffuse.

An enlargement of the right boundary, shown in Figp)7
indicates fractal-like behavior, since zooming in on the re-
gion does not decrease its ramified structure. Although this

FIG. 5. A plot of the regions of periodi¢white, \<0) and  structure is theoretically interesting, the experimental conse-
chaotic(symbols\ >0) motion in thep-Q) plane; the values of the quences are likely to be limited. First, in this region, many of
damping constants arg, =y, =0 anda=0.2, corresponding to the * the positive Lyapunov exponents are nearly zero, and are
case of the damped, drlvgn Josephson junction studied in Ref.. 37. us sensitive to small effects from the numerics. It is thus
g;ui)and all subsequent figures, all parameters are measured in Unlifkficult to be certain of the boundaries between periodic and

£ chaotic behavior. To illustrate the sensitivity to a cutoff on
the size ofA, in Fig. 7(b) we show the same enlargement of

it does provide a convincing test of our numerics, for directthe right boundary with the constraint thet-0.01. The dif-
comparison shows that our resuli@lotted here with ference between Figs(d and 1b) is readily apparent. Sec-
al wg=0.2) are in full agreement with those of Ref. 37 as farond, since, as shown in Fig(i8 and discussed above, the
as concerns the structure of the chaotic regions; further, al-yapunov exponents can sometimes relax very slowly to
though we shall not present the details of the harmonics itheir asymptotic values — leading to regions of “transient
the periodic regions because they are not germane to owhaos"— determining the true asymptotic valuenotan be
current discussion, we have also fodhgood agreement difficult. Indeed, the precise boundary in FigaVis very
with Ref. 37 for the periodic regions. Qualitatively, Fig. 5 sensitive to the details of the numerical code, including dis-
shows us the triangularly shaped southern extremity of &retization effects, and a different code would likely not re-
large chaotic region(which extends upwards for toward produce it exactly. Particularly if there is a fractal boundary
larger values op). From the left-hand boundary of the cha- for the actual differential equation system, this effect is to be
otic region (indicated by the symbolsnany different peri- expected. In contrast, the left boundary in Figa)ds very
odic channelgindicated by the white regiongut into the  sharply defined: the negative exponents jump suddenly to
chaotic region; these channels correspond to the differerlrge positive ones as the chaotic region is entered.
subharmonic periodic lockings observed in simulations of Our interpretation of these features can be described
Josephson junctions. qualitatively in terms of familiar concepts from dynamical

Turning to parameter values more relevant to SSL’s, wesystems. Recall that in exhaustive studies of general nonlin-
show in Figs. 6a)—6(d) the evolution of the chaotic region as ear dissipative dynamical systems, one fixes the parameters
the values of the damping parameters are varied over a widend varies the initial conditions, searching for all the “attrac-
range. In Fig. 68) we begin from the limit of fairly small tors” and determining the shape of each basin of attraction
dissipation fy,= v,=0.01 anda=0.001). Note that in Fig. in the space of initial conditions. Typically there is more than
6 and henceforth, all damping parameters are scaled in unitsne attractor in the system, and the boundaries between the
of wg. In this case, the “order-chaos” boundary is very different basins of attraction can be smooth or fratiaifter
close to the boundary found in Ref. 18 for the Hamiltoniandetermining completely the attractor structure for one set of
model; given the fairly small values of the relaxation param-parameters, one then moves on to another set, and does a
eters, this is perhaps not terribly surprising. Further, the chasimilar search through the space of initial conditions. In our
otic region is very solid, with few of the channels observedstudy, which is intended to be illustrative of the possible
in Fig. 5 (or in subsequent figures discussed below existence of chaos in SSL(gather than exhaustiyewe have

In Fig. &) all relaxation rates have been increased by dor simplicity fixed the initial conditions and varied the pa-
factor of 10(so thaty,=v,=0.1, anda=0.01). The chaotic rameters. As a consequence, if there are multiple attractors,
region in this case shows considerably more structure, with as we change parameters for fixed initial conditions, we can
number of channels cutting into the left boundary, while thepass from one basin of attraction another, and the structure of
right boundary has receded substantially, leaving a smallethe basin boundaries —fractal or smooth— will be reflected
isolated separate region of chaos. Increasing the dampirig the plots of the chaotic regions as in Figs. 5-7. More
still more reduces the chaotic region, first to the narrow mairextensive numerical studies, which we will report
region plus small isolated regions in Figcpand then to the  elsewheré® confirm this explanation.
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FIG. 6. Plots showing the regions of periodighite, A <0) and chaotidsymbols,A>0) motion in thew-Q) plane for four different
values of the damping parameter& vy,=7y,.=0.01, «=0.001; (b) vy,=v,=0.1, «=0.01; (¢) y,=7.=0.1, «=0.05; and (d)
Y,=7v.=0.2, a=0.

In Figs. @b) and Gc¢), the size of the chaotic region de- IV. SUMMARY, DISCUSSION, AND CONCLUSION

creases successively, and the periodic channels become ap—W h idered the infl f lectric field
parent. These figures — particularly Fighp— interpolate € have considered he influénce ot an ac electric field on

nicely between the case of the damped, driven Josephscme motion of ballistic electrons in a miniband of a semicon-
junction (Fig. 5 and the case of Fig.(6). The presence of ductor superlattice. Within a phenomenological balance

these periodic channels within the chaotic region raises th8duation approach, we established that accounting for collec-
possibility of observing not only chaos in SSL's but also Ve effects(via a self-consistent fiejJdeads to the possibility
mode lockings to various subharmonics of the driving fre-Of chaotic dynamics. Our numerical and analytic results sug-
quency, and we are currently investigating this possibffity. gest that for a transition to chaos one must satisfy the fol-
In real SSL’s, one typically hag,> v, . In our previous lowing conditions: (i) the frequency of the ac field(X)
discussion, we have for simplicity considered only the casghould be close to the characteristic frequency of the collec-
v,= 7. - Figure 8 illustrates the extent of the chaotic regiontive electron motion ¢g) in the SSL;(ii) at the same time,
when y,=0.1>y,=0.02; this reduction in the chaotic re- the frequency of the ac field should be close to the Stark
gion for unequal damping is typic&.Restricting ourselves frequencyws=eaE,/#, which is determined by thampli-
to the physically relevant regime in which,>vy,, we can tudeof the external field; andii) the relaxation rates of the
summarize our data qualitatively by saying the region ofelectron’s energy and momentum should not be too large
chaos is largest whep, is roughly equal toy, or @, which-  (y/wg=0.2).
ever is larger. Importantly, it appears possible to achieve these condi-
Finally, we note that for simplicity in all the above results tions in real SSL’s, now or in the near future. For typical
we worked at zero temperature. From Ef), we see that superlattices &€~10°® cm, A~102 eV, and
this corresponds te,=0 (Wo=—1). ForQ/wg=1 and for ~N~10" cm™3), the characteristic frequency of the coopera-
various values ofvs/wg, We investigated the influence of tive oscillations lies in the THz domainwg~1.5x 10"
the temperature effects on the transition to chaos. When s™1).242%If an ac field with amplitude~ 1 kV/cm is applied
was varied from helium to the room temperature, keeping alto an SSL with perioci~ 10~ cm, the Stark frequency also
other parameters fixed, we found no qualitative changes ifies in the THz domain. Thus the frequency constraints can
the nonlinear dynamics within our phenomenological bal-likely be achieved.
ance equation model. Quantitative details of the temperature Although the damping effects and relaxation rates are
dependence will be presented elsewttére. much less well known, there nonetheless appears to be rea-
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FIG. 8. Plots showing the chaotic region in the case in which the
elastic scattering time is considerably larger than the inelastic scat-
tering time. The parameters age=0.1,y,=0.02, anda=0.01.

e lil“ From quantum-well studi€®$,we expect that the energy re-
Iiﬂ "“W'” N laxation cannot be describepiantitativelyby a single con-
||l|l|l|l"|" u | : B . stanty,. Although it would clearly be possible to introduce
Ig'l,"H Je - R energy-dependent relaxation rates into our phenomenological
P - equations, without more detailed experimental guidance as to
' ||l]|ﬂ|"" h the form of this dependence, it is premature to incorporate
m“ ll such an additional complication. Given the relatively large
~--mumww“" b range of relaxation parameters over which our phenomeno-
logical model predicts chaotic behavior for the SSL plus field
. . . system, the present uncertainties in the exact level and nature
060 0.60 Q 1.00 120 of damping in these systems are not cause for undue concern.
Thus, we believe that by applying an ac field of order
~1 kV/cm with frequency of the order of several THz to a
FIG. 7. Plots showing an enlargement of the right boundary ofS,S,L’ one ShOUId,b_e ‘f"ble to satisfy the requwements for tran-
the chaotic region for the parameteys= y,=0.05x=0.01 as de- smon_to deFermlnlstl_c chaos. For instance, in the recent
termined by requiring thatg) A>0.001 and(b) A>0.01. experiment first studying the influence of a THz field on the
stationary electron transport properties in a SSL, the experi-
mental conditions were close to those required for the obser-
vation of chaos in our model system. Further, continuing
son for some optimism. As we have indicated above, stanprogress in both the fabrication of heterostructures with high
dard estimates of the relevant relaxation constants for thearrier mobility and in the design of powerful sources of
plasma oscillations give values in the range ofTHz radiatiof® suggests that the experimental observation
(107 1-10"?)w,.*** That the damping is more likely near of the deterministic chaos in a SSL plus field interaction may
the larger end of this range is suggested by the observatidpe close at hand.
that the phase relaxation rate even in a good quantum well is An essential question for experimentalists is how to rec-
the relatively rapidr,=3.5x 10~ *? s * which corresponds to  ognize the underlying chaotic electron dynamics in the ob-
near-THz frequencies. For a modulation-doped superlatticeservables measured in a real experiment. As the controversy
7, IS almost certain to be shorter, since the electrons magver the observation of Bloch oscillations suggests, this may
scatter from dopant impurities not present in the remotelynot be a simple matter. In large part, it will depend on pre-
doped quantum wells. Hence, the damping effects in currentisely how the experiment is configured and instrumented.
SSL’'s may be nearer the high end of our range of paramAt this stage, and without considering in detail the configu-
eters. One intriguing possibility for producing SSL’s with ration of a particular proposed experiment, we can most ap-
lower relaxation rates involves “implanting” the superlat- propriately give a somewhat general answer. If chaos is
tices within parabolic quantum welfé:in this manner, one present, we expect a complex, aperiodic behavior for the
could hope to achieve the low damping levels of good quanaverage velocity, and hence the average current. Given the
tum wells and avoid the damping effects associated withhigh frequencies involved, it seems unlikely that one could
modulational doping. A separate complication concerningneasure this directly in the time domain. However, in the
damping effects is that energy relaxation processes in botpresence of an additional dc voltage, to create nonzero mean
wells and superlattices also involve many distinct processesdrift” in this average velocity, the oscillatory chaotic com-
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ponent would appear as a substantial additional source @oltzmann equation or an approach based on Wigner distri-
apparent “noise” in drift velocity and that this additional bution function?® and on the anticipated region of validity
noise would appear suddenly as one crossed the threshold fir any miniband-based approach. Although there has been
chaos, particularly for the parameter regime corresponding tsome recent progress on the former is&uthere remains
the left boundary of the chaotic region. Specifically, if one much to be done on both problems.
measured the power spectrum associated with the current, Let us conclude with a brief speculative comment related
one would observe the same substantial increase in th®e the possible consequences and relevance of chaotic behav-
broadband “noise” component that we see in Fig. 4. In anior in SSL’s. Based on the earlier experience of studying
experiment on a resistively shunted Josephson tunnel junchaos in semiconductor devices used for infrared radiation
tion [related to the model in our E@15)], precisely such a detectiorr® mapping out the boundary of chaos experimen-
dramatic increase in experimental noise was observed wheally is important to reliable use of the devices in the “nor-
the parameters of the experimental system were moverhal” regime. However, recent developments in “controlling
through the transition to chad88A second option for detect- chaos’®? suggest that one might actually deliberately choose
ing chaos would involve sampling the current at given timeto drive the SSL into a chaotic regime, in order to take ad-
intervals and using the ‘“phase-space reconstruction’vantage of the myriad possible behaviors there for device
technique®’ to create a geometrical image of the underlyingapplications. Alternatively, using methods of chaotic control,
attractor. For regular motion, the attractor will be a simpleone may be able to suppress the onset of chaos, as was re-
periodic structure; for chaotic motion, it will be a “strange cently done in an experimental laser systérhaotic con-
attractor.” The details of this approach are described in therol and reduction of chaos are also likely to be important for
context of an experiment involving germanium photocon-future nanofabricated semiconductor integrated circuits,
ductors in Ref. 50. Additional details about experimentalwhere the expected chip densities will be of the order
techniques for detecting chaotic motion in semiconductorl0’/cn?.? At such densities, the devices actually forntag
structures are described in Ref. 46. eral surface superlatticesand device-device interactions can
Apart from the most central issue of experimental verifi-generate both  cooperative effects and additional
cation of the existence of chaos, there are a number of openstabilities> In any case, a large number of exciting experi-
theoretical issues which merit further study. First, our modemental and device-related problems remain.
is applicable in the limit oiminibandtransport for the elec-
trons_ and assumes a spatially homogeneous strgcture for the ACKNOWLEDGMENTS
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