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We consider the motion of ballistic electrons in a miniband of a semiconductor superlattice~SSL! under the
influence of an external, time-periodic electric field. We use a semiclassical, balance-equation approach, which
incorporates elastic and inelastic scattering~as dissipation! and the self-consistent field generated by the
electron motion. The coupling of electrons in the miniband to the self-consistent field produces a cooperative
nonlinear oscillatory mode which, when interacting with the oscillatory external field and the intrinsic Bloch-
type oscillatory mode, can lead to complicated dynamics, including dissipative chaos. For a range of values of
the dissipation parameters we determine the regions in the amplitude-frequency plane of the external field in
which chaos can occur. Our results suggest that for terahertz external fields of the amplitudes achieved by
present-day free-electron lasers, chaos may be observable in SSL’s. We clarify the nature of this interesting
nonlinear dynamics in the superlattice–external-field system by exploring analogies to the Dicke model of an
ensemble of two-level atoms coupled with a resonant cavity field, and to Josephson junctions.
@S0163-1829~96!05440-9#

I. INTRODUCTION

More than two decades ago, Esaki and Tsu1 discovered a
striking nonlinear effect in semiconductor superlattices
~SSL’s!, establishing that the dissipative motion of electrons
within a single SSL miniband in the presence of astatic
electric field can produce anegative differential conductivity
~NDC! in the stationary current-voltage characteristic. In
view of its potential applications to ultrasmall electronic
devices,2 interest in this effect remains high,3 and it contin-
ues to be studied by a variety of different theoretical and
experimental techniques.4,5 The importance of these systems
is reflected, for example, in the many articles in semipopular
physics literature.6

In the past several years, technological advances in semi-
conductor nanostructure fabrication and in electromagnetic
field generation techniques have made possible detailed stud-
ies of a wide range of other nonlinear phenomena involving
electron transport in SSL’s in the presence of a variety of
electromagnetic~EM! fields.4,5 Very recently, the effect of
alternating fields in the terahertz~THz! domain on the non-
linear current-voltage characteristics of superlattices has
been investigated experimentally,7 and observations of
photon-assisted resonant tunneling and negativeabsolutere-
sistance have been reported.8

These extensive experimental efforts have been paralleled
by many related theoretical studies.9–17 These studies have
examined the propagation of the electromagnetic solitons
through the superlattice,9 self-consistent nonlinear plasma
oscillations,10–12Hamiltonian chaotic dynamics of electrons
in a constant magnetic field interacting with electromagnetic
waves,13 and emission of electromagnetic radiation from su-
perlattices due to multiphoton transitions.14 Although most

of these studies have been in the semiclassical regime, the
consequences of a fully quantum-mechanical treatment of
miniband transport in an intense oscillating EM field have
also been examined.15 Reviews of these and other theoretical
studies are given in Refs. 16 and 17. All these investigations
have dealt with theintraminibanddynamics of the electron,
neglecting the possibility ofinterminibandtransitions; addi-
tional nonlinear phenomena can become relevant if inter-
miniband dynamics are considered.

In a previous paper,18 we extended earlier studies of the
intraminibanddynamics of ballistic electrons in a SSL with
an ac external electric field by taking into account the self-
consistent EM field generated by the electron current. The
coupling of the electron motion to the self-consistent field
results in cooperative oscillations which alter the dynamics
substantially. In particular, we showed that, with the inclu-
sion of the self-consistent field, the inherently nonlinear na-
ture of the electron dynamics implies that, under the influ-
ence of the external ac field, various dynamical instabilities,
including transitions to chaos, can occur.18 However, our
previous work was limited to thenondissipativeregime and
thus was strictly valid only on time scales shorter than all
characteristic relaxation times for the electron’s energy and
momentum. Hence,a priori we could not determine the
long-time ~stationary! dynamical behavior. More impor-
tantly, the assumption of no dissipation is of dubious appli-
cability to the interpretation of experiments in real systems,
in which dissipative effects are certainly present at some
level.

In the present study, we generalize our previous work by
considering explicitly the role of dissipation in the balance
equations describing the SSL plus field system. After recall-
ing briefly how the conventional balance equations recover
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the standard results of Bloch oscillations and negative differ-
ential conductivity, we show that our extension of the bal-
ance equations to account for collective effects on the elec-
tron’s motion can~for certain conditions! result in chaotic
dynamics, both transient and stationary, even in the presence
of damping. We discuss and exploit analogies between the
electrons in a SSL plus field system, and the dynamics of
lasers and optical bistable systems and of damped, driven
Josephson junctions; the extensive tradition of studying dis-
sipative nonlinear dynamics in these problems allows us to
use these analogies to guide our studies of the semiconductor
system.

The remainder of the paper is organized into three sec-
tions. In Sec. II we use a balance equation approach to for-
mulate ~phenomenological! equations of the motion for the
electron in the SSL in the presence of an external ac field,
including the self-consistent field generated by the electron
current. We show how to incorporate various dissipative
channels in these equations, and illustrate that the solutions
to these equations capture the anticipated behavior in several
simple limiting cases, including those of~undamped! Bloch
oscillations and~stationary! negative differential conductiv-
ity. In preparation for our study of the general case, we in-
troduce a rescaled~pseudospin! representation of the equa-
tions of motion, and demonstrate the analogy with the optical
systems, in which chaotic behavior is well established. In
Sec. III we present the details of our study of the dissipative
chaotic dynamics of the SSL plus field system. First, we
show that our equations reduce~in two different limits! to
the equations of two well-known chaotic systems,~1! the
Lorenz equations and~2! the damped, driven pendulum. Sec-
ond, we present numerical studies of the full equations. Our
results suggest that, for a wide range of values of the fre-
quency and amplitude of the external field and for experi-
mentally relevant values of the damping, stationary chaotic
dynamics should be observed, interspersed with transient
chaos, leading eventually to periodic motion. We provide
detailed confirmation of the chaotic behavior in the form of
Lyapunov exponents, power spectra, and direct time evolu-
tion traces. In Sec. IV we summarize our results, examine
critically the possible parameter ranges in which the effects
we predict can be observed in experiments, discuss how
these effects might manifest themselves in experimental ob-
servables, and mention a number of open theoretical issues.

II. BALANCE EQUATION APPROACH

Consider the motion of ballistic electrons in a SSL in the
presence of an external ac electric field with amplitudeE0
and frequencyV,

Eext~ t !5E0cosVt, ~1!

which is applied in the direction perpendicular to the layers
of the SSL, i.e., in the direction of the motion within the SSL
miniband. In the standard tight-binding approximation, the
dispersion relation of the electron belonging to a single mini-
band in the SSL is1,16

«~p!5
D

2 F12cosS pa\ D G , ~2!

whereD is the miniband width, anda is the SSL periodicity.
This nonquadratic dependence of the electron energy on the
quasimomentum within the miniband renders the dynamics
of electrons inherently nonlinear.

Generalizing the balance equation approach of Ref. 14 to
incorporate the self-consistent field19,20 generated by the
electron current, we find that~with the assumption of spatial
homogeneity! the equations describing the electron’s motion
in the combined external and self-consistent field become

V̇52eEtot~ t !/m~«!2gvV, ~3a!

«̇52eEtot~ t !V2g«~«2«0!, ~3b!

Ėsc524p j2aEsc, ~3c!

where

Etot~ t !5Esc~ t !1Eext~ t ! and j[2eNV. ~3d!

In Eqs. ~3!, V is the average velocity~along the SSL axis!,
andN is the number of electrons per unit volume, so thatj is
the average electron current density,« is the average energy
of the electrons,«0 is the equilibrium energy of carriers~re-
sulting from thermal energy and/or external pumping!, and
Esc is the self-consistent EM field generated by the electron
current j . All quantities are measured in cgs units.

Let us say a few words about the physical interpretation
of these equations. Equation~3a! is the basic equation of
motion of electrons belonging to one miniband@with the
dispersion law~2!# in the presence of the electric field
Etot(t). Importantly, the dependence of the electron’s effec-
tive massm(«) on energy in Eq.~3a! is14

m~«!5
m0

122«/D
, m0[

2\2

Da2
, ~4!

wherem0 is the electron’s effective mass at the bottom of the
miniband. Note thatm(«) may take negative values for
«.D/2. The occurrence of a negative effective mass is con-
nected with the existence of negative differential drift veloci-
ties ~see, e.g., Ref. 14 and references therein!.

Equation~3b! describes the heating~i.e., increase in en-
ergy! of the electrons by the fieldEtot(t) and cooling~i.e.,
relaxation of energy! to the equilibrium value«0. The ther-
mal equilibrium energy value«0 has the temperature
dependence14,21

«0
~T!5

D

2 F12
I 1~D/2kBT!

I 0~D/2kBT!G , ~5!

whereI 0,1 are the modified Bessel functions,T is the lattice
temperature, andkB is Boltzmann’s constant.

The parametersgv , g« , anda are thephenomenological
relaxation constants of the average velocity, energy, and self-
consistent field, respectively. The treatment of these relax-
ation parameters as constants, independent of energy, is an
approximation; we shall discuss our present understanding of
the validity of this approximation in Sec. IV. Physically, in a
SSL, the damping of the average velocity is mainly due to
the elastic scattering of electrons with the impurities, struc-
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tural disorder, and interface roughness. Typically, the main
channel of energy dissipation for the electron subsystem is
inelastic phonon scattering.

Equation~3c! is Maxwell’s equation for the time evolu-
tion of the self-consistent electric field, with an additional
term describing its relaxation. The form of this equation,
including the phenomenological relaxation constant,a —
which models effects of interactions of the self-consistent
field with degrees of freedom beyond the ballistic electrons
described dynamically in our equations — is familiar from
the literature on bulk semiconductors.19 Examples of the pro-
cesses contributing toa include surface effects and the gen-
eration of polar phonons due to the finite polarization of the
crystal produced by the field.

Following the original deviations of the ‘‘balance equa-
tions’’ ~3a! and~3b! in Refs. 22 and 23, several articles have
discussed themicroscopicderivation and justification of the
equations and their use in modeling both general transport
properties in SSLs ~Ref. 24! and specific nanoscale
devices.2,25For our present purposes, however, it is sufficient
to consider Eqs.~3! as a phenomenological set of equations.

Before analyzing the nonlinear dynamics of the full sys-
tem ~3! in detail, let us examine briefly several important
limiting cases, in order to illustrate the consistency of the
balance equation approach with known results. For simplic-
ity, we shall momentarily ignore the self-consistent field
equation entirely and focus on the consequences of Eqs.~3a!
and~3b! alone. Consider first the case in which the electrons
in the SSL are influenced only by aconstantexternal field
Etot5Eext5E05const, and for which the relaxation pro-
cesses can be neglected: i.e.,g«5gv50. In this simple lim-
iting case, a straightforward calculation shows that the elec-
trons perform harmonic oscillations with velocity
V5V0sinvst. These are the familiar Bloch oscillations,

1,6 and
the characteristic frequency of these oscillations
vs5eaE0 /\ is known as the Bloch7 or Stark16 frequency.
For typical SSL’s and for typical electric fields, (;1–10
kV/cm!, the Bloch frequency belongs to the THz domain.
Although there remains some controversy, experimental evi-
dence for these Bloch oscillations has recently been
reported.26

Consider next the case in which there is still a constant
electric field and the relaxation effects are also included, so
that gvÞ0, g«Þ0. This problem was first considered by
Esaki and Tsu1 for the particular casegv5g« , and the gen-
eralization to the casegvÞg« is given in Refs. 14, 22, and
23. Again, a straightforward calculation shows that the sys-
tem undergoes damped oscillations and that in the steady
state the currentj52eNV becomes

j5
e2NE0 /gv

11„~eE0a/\!2/~gvg«!…

I 1~D/2kBT!

I 0~D/2kBT!

1

m0
, ~6!

which reduces to the original Esaki-Tsu result1 in the zero-
temperature limit~so the ratio of Bessel functions goes to
one! and when we choosegv5g«[1/t. In this limit, it is
easy to see that] j /]E0,0 for (eaE0t/\).1, so that there
is NDC in this regime. Experimentally, both the NDC effect
in SSL ~Ref. 4! and the effect of thermal saturation of mini-
band transport in a SSL,27 due to the dependence of the
equilibrium electron energy«0

(T) @cf. Eq.~5!# on temperature,

have been observed. In this regard, it is interesting to note
that the generalization of the formula of Esaki and Tsu to
finite temperature and togvÞg« describes with reasonable
accuracy the stationary transport properties of a SSL, even in
the case when the energy of the external field and the thermal
energy of the electrons are comparable to the miniband
width, and the quasiclassical description becomesa priori
inadequate.5

We have considered these two special cases in the ab-
sence of the self-consistent field, i.e.,Esc(t)[0. Importantly,
if we includeEsc(t), we again find Bloch oscillations~albeit
not simple sinusoidal motion! in the case of no relaxation
effects, and the NDC for the steady-state current-voltage
characteristic when relaxation effects are included. We do
not present these results in detail here,28 as they are not es-
sential to our present study.

To prepare for our study of the time-varying external field
case, includingEsc(t), we introduce some scalings of the
variables in Eq.~3!, for these will both simplify the analysis
and make apparent an important analogy with the nonlinear
dynamics in optical systems.

We introduce the variables

v5
2\

Da
V, w5

«2D/2

D/2
, w05

«02D/2

D/2
. ~7!

E5
ea

\
Esc1vscosVt, vs5

dE0
\

, d5ea. ~8!

In these variables, Eqs.~3! become

v̇5Ew2gvv, ~9a!

ẇ52Ev2g«~w2w0!, ~9b!

Ė5vE
2v2aE1 f ~ t !, ~9c!

where

f ~ t !5avscosVt2vsVsin Vt and

vE5F2pe2Na2D

\2 G1/2. ~10!

It follows from Eq. ~5! thatw0
(T)52«0

(T)/D21. The variable
w in Eq. ~7! has a simple physical interpretation: namely, it
is the electron’s energy measured from the middle of the
miniband and normalized by the half-width of the miniband.
Hence the valuew521 corresponds to the bottom of the
miniband, andw51 corresponds to the upper edge of the
miniband. The fieldE is the total electric field~measured in
units of frequency! acting on the electrons. Note that the
frequencyvE is formally equal to the frequency of electron
plasma oscillations,vpl5@4pe2N/m0#

1/2, provided thatm0
is taken as the effective electron mass at the bottom of the
miniband, as given by Eq.~4!. For this reason, the corre-
sponding cooperative oscillations of the coupled SSL system
were called ‘‘nonlinear plasma oscillations’’ by Epshtein.11

However, since the term ‘‘plasma oscillations’’ is usually
used in a different context in semiconductors,2,10 we shall
refer to these as ‘‘cooperative oscillations,’’ and denote their
frequency byvE .
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The analogy mentioned in Sec. I between the present SSL
problem and optical systems helps to clarify this point fur-
ther. If we consider the variablew in Eqs. ~9! to be the
population difference andv the polarization, then Eqs.~9!
are equivalent to the coupled Maxwell-Bloch~CMB! system,
taking into account the external field~see, for example, Ref.
29!. Recall that the CMB equations describe the dynamics of
two-level atoms placed in a single-mode cavity, and interact-
ing with the cavity field via a dipole interaction. The width
of the SSL miniband (D/\) is equivalent to the transition
frequency (v0) of the two-level atom. The valueea of the
SSL is the transition dipole moment (d) in the CMB case.
Finally, the analog of the frequencyvE defined by Eq.~10!
is the so-called ‘‘cooperative frequency’’vc[(2pv0d

2N/
\2)1/2.30 The physical interpretation of this cooperative fre-
quency is the frequency of the slow resonant exchange of
energy between theN two-level atoms and the field in the
cavity, as first described by the Dicke model.30 In the balance
equations describing the SSL system@Eqs.~9!#, the miniband
is treated as initially empty. When theN electrons are in-
jected, the assumption that they are distributed with spatially
homogeneous density means that the ‘‘populated’’ miniband
becomes analogous to an optical system consisting of an
ensemble of two-level atoms with densityN in the Dicke
model. Our self-consistent field is analogous to the cavity
field, and the cooperative oscillations of the Dicke type ap-
pear due to the coupling of the electrons in the miniband to
the self-consistent field. The relaxation parametera in our
SSL equations plays the role of the finite quality factor of the
cavity in the optical system. Finally, the Stark frequency
vs5eaE0 /\ is equivalent to the Rabi frequency
vR5dE0 /\.

Equations~9! are also similar to the CMB equations de-
scribing the dynamics of a laser with an injected signal,31 or
a bistable system in the framework of the Bonifacio-Lugiato
model.29,32 However, there are important differences be-
tween Eqs.~9! and the optical analog systems. First, the
CMB equations are derived for the field and the polarization
envelopes; hence the variablesv andE in the CMB equa-
tions are generally complex. Second, the form of the external
force f (t) that perturbs the cavity mode is different in the
CMB equations. Nonetheless, the structural similarities and
the well-known results that under certain conditions transi-
tions to chaos take place in the bistable devices29,32and also
in lasers both with33 and without injected signals34,35suggest
that one should expect transitions to chaotic dynamics in the
SSL plus field interaction problem. In Sec. III we will show
that this is indeed the case.

III. CHAOTIC DYNAMICS IN SEMICONDUCTOR
SUPERLATTICES

Exploring the chaotic dynamics in Eqs.~9! is a formidable
task, for we have in effect a four-dimensional dynamical
system — three independent variables (v,w, andE) plus the
explicit external time dependence — involving six param-
eters (gv , g« , a, vE , vs , andV). Fortunately, we can
obtain some guidance concerning the ‘‘interesting’’ regions
of parameter and state space by noting that our equations
reduce, in two different limits, to two well-known systems

which exhibit chaos. We discuss these two limits in the en-
suing two subsections.

A. Lorenz equation limit

When the external ac field is absent@ f (t)[0#, Eqs. ~9!
are equivalent to the well-known Lorenz model.36 Although
one can derive this equivalence directly, it can also be seen
immediately from our optical analogy: namely, forf (t)[0,
Eqs. ~9! coincide with the CMB equations describing a
single-mode homogeneously broadened laser at exact reso-
nance between the cavity mode and two-level atomic
transition,34 and it has been shown by Haken35 that CMB
equations can be reduced to the Lorenz model by a simple
transformation of variables.

Translating the necessary conditions for instability and
the transition to chaos in the Lorenz model34–36 into our
notation, we find that these conditions can be written as

a.gv1g« ~11a!

and

w0.
gva

2

vE
2

~a/gv1g« /gv13!

~a2g«2gv!
. ~11b!

The condition in Eq.~11b! requires that the valuew0 corre-
sponding to the electron’s equilibrium energy should be
larger then some critical valuew0

(cr).0. From Eq.~5!, we
see that even at high temperatures (T→`) the equilibrium
valuew0

(T)→20. Hence we find the interesting result that in
the Lorenz limit (f (t)[0), the necessary conditions~11b!
for the transition to chaos can not be satisfied in the SSL
system; to obtain chaos in the SSL system, we require addi-
tional driving (f (t)Þ0).

B. Damped, driven Josephson junction limit

Whengv5g«50, Eqs.~8a! and ~8b! immediately imply
the existence of a constant of motion: namely, the length of
the pseudospin vector, which we can, without loss of gener-
ality, scale to 1, so that

v2~ t !1w2~ t !51. ~12!

We can incorporate this conservation law explicitly and con-
sistently into the dynamics by introducing the change of vari-
ables

v52sinu, w52cosu, u5E
0

t

dt8E~ t8!. ~13!

From these definitions~and noting thatu̇5E), one sees that
Eqs. ~9a! and ~9b! are automatically satisfied, and that Eq.
~9c! becomes

ü1au̇1vE
2sinu5vs~a cosVt2V sinVt !. ~14!

Introducingf05tan21(V/a), we can recast Eq.~14! into
the form

ü1au̇1vE
2sinu5r cos~Vt1f0!, ~15!
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where r5vsAa21V2. This is the canonical form of the
damped,~ac! driven pendulum equation, widely studied in
chaotic dynamics both in its own right and as a model for a
damped, driven Josephson junction.37 We shall exploit this
connection further in our detailed analysis of the numerical
results below.

In the limit of no dissipation whatever —a50 as well as
gv andg« — the SSL plus field system reduces to the Hamil-
tonian system which we studied in Ref. 18 for a range of
physically reasonable initial conditions; interested readers
should consult this reference for details. Here we simply re-
mark that this nondissipative chaos in the SSL plus field
system has its own optical analogy, involving the generalized
semiclassical Tavis-Cummings~TC! model, which describes
the dynamics of two-level atoms in a single-mode high-
quality cavity, interacting with self-consistent and external
fields.38 Details of the chaotic dynamics in the TC model can
be found in Refs. 38 and 39.

It is well known that both Eq.~15! and its undamped
counterpart contain chaotic dynamics.40 In terms of our pa-
rameters, the parameter region in which strong chaos is ex-
pected isvE;vs;V; in Sec. III C, we shall use this infor-
mation as the starting point for our study of chaos in the full
SSL plus field problem.

C. Dissipative chaos in the presence
of an external time-periodic field

We now consider the general case, in whichf (t),gv ,
g« , and a are all nonzero. The structure of the Eqs.~9!
suggests that we takevE as the scale of~inverse! time, and
thus the natural damping parameters that occur in the re-
scaled equations are the dimensionless quantitiesgv /vE ,
g« /vE , anda/vE . Since there is considerable uncertainty
in the individual values of the phenomenological damping
parameters, we will study a broad range of values of these
parameters: 0<gv /vE , g« /vE<0.2, and 0<a/vE<0.2.
Since there are as yet no direct measurements of the coop-
erative oscillations or their damping, we have chosen conser-
vative upper damping limits inferred from recent results de-
termining that the ratio of the line width of theplasma
oscillations to their frequency can be as large as
231021.41,42 For initial conditions, we takeE(0)5vs ,
v(0)50, andw(0)521, corresponding to the initially un-
excited SSL just being struck by the incident EM radiation.
For our numerics we used a fifth-order Runge-Kutta algo-
rithm incorporating adaptive step size, accuracy checking,
and Cash-Karp optimized parameters.

The variable most directly related to experimental observ-
ables is the average electron velocityv. Accordingly, we will
focus on the various different behaviors ofv that follow
from the solutions of Eqs.~9! and the regions in which they
occur. In Fig. 1 we show the two basic types of behavior for
v observed in our simulations. Fig. 1~a! shows behavior in
the ‘‘regular’’ region, in which the velocity varies periodi-
cally. In Fig. 1~a!, the basic frequency is just the fundamental
frequency of the external EM field with a longer period
modulation~caused by the nonlinearity of the equations! su-
perimposed. The ‘‘locking’’ of the oscillations of the elec-
tron’s velocity to the fundamental frequency of the external
field is referred to as ‘‘1:1 mode-locking behavior’’ in the

Josephson junction literature37 and in related studies of
coupled oscillators. Figure 1~b! shows a typical behavior in
the ‘‘chaotic’’ region, in which the velocity varies erratically
and with no apparent periodicity for as long as we observe it;
this is ‘‘stationary chaos,’’ and is the behavior in which we
are most interested. Within the region of parameters in which
chaos is observed, we also observe a behavior which exhibits
characteristics of both regular and stationary chaotic motion:
namely, a~typically long! interval of ‘‘erratic,’’ aperiodic
motion, followed by a near vanishing of the oscillations and
then a locking into a periodic motion; thistransient chaosis
illustrated in Fig. 2. Importantly, the time at which the tran-
sient chaos disappears,t tr is a sensitive function of the nu-
merics, especially the level of accuracy demanded of the
numerical integrator. This is commonly encountered in simu-
lations of chaotic systems.

In the regions of transient chaos, the asymptotic state is
periodic. Visual inspection of Fig. 2~b! shows that for these
parameter values the final period is also the fundamental of
the external period, but we have also observed~for other
parameter values! locking to different subharmonics of this
period. The general case of locking into periods other than
the fundamental period of the external drive is well known
from general results in nonlinear dynamics, and is exhibited
explicitly by the damped, driven Josephson junction.37 Given
our present focus on establishing the possibility of chaotic
motion in the SSL system, we shall not present further de-
tails here.28

To quantify these three types of behavior systematically,
we used standard dynamical systems tests: for each set of
parameters, we calculated the maximum Lyapunov exponent
l using the method described in Ref. 43 and determined the
power spectrum~using a fast Fourier transform algorithm!
for each of the velocity plots. In Fig. 3 we show the typical

FIG. 1. Dependence of the electron’s average velocity on time
for E(0)5vs , v(0)50, andw(0)521: ~a! ‘‘regular’’ ~periodic!
dynamics~for vs /vE50.1, V/vE51); ~b! chaotic dynamics~for
vs /vE51.6,V/vE50.2).
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behavior of the maximal Lyapunov exponent for the cases of
regular motion and chaotic motion. With the standard defi-
nitions and calculational procedures,43 the Lyapunov expo-
nent will vary in time, eventually converging to the value

reflecting the underlying long-time dynamics. We see from
Fig. 3 that, for the chaotic motion, the asymptotic value of
l is greater than zero, as it should be, whereas for the peri-
odic behavior it is less than zero. For the parameter values
chosen in Fig. 3~a!, this asymptotic value is only slightly
negative, consistent with the fairly weak dissipation for these
values of the parameters. For the case of transient chaos,
shown in Fig. 3~b!, the Lyapunov exponent decays to its final
value only very slowly. In Fig. 4 we show typical power
spectra for periodic and chaotic motion. Note the expected
appearance of a broad power spectrum in the chaotic case, in
contrast to the isolated peaks associated with the periodic
evolution.

The best overview of the qualitative nature — chaotic
versus periodic — of the behavior of the system is provided
by a two-dimensional plot showing, for fixed values ofgv ,
g« , anda, the locations of the regions withpositivevalues
of the Lyapunov exponent as functions of the two parameters
of the external field,vs andV, measured in units ofvE .
This sort of plot provides a clear visual presentation of the
chaotic regions, and has been used very effectively in studies
of chaos in the damped, driven Josephson junction.37 Here it
will allow us readily to see how various types and amounts
of damping effect the extent of chaos in our system.

In Fig. 5 we present the first of the plots ofl vs vs and
V. For purposes of comparison with Ref. 37, we have chosen
the parameters to correspond to the case of the Josephson
junction (gv5g«50), and have produced a plot of thel in
the (r2V) plane instead of the (vs2V) plane; again, the
plots are in units ofvE . As stressed above, this is not a
physically plausible set of parameters for real a SSL because
it neglects crucial velocity and energy dissipation effects, but

FIG. 2. Dependence of the electron’s average velocityv on time
for transient chaos (gv /vE5g«v/vE50.01, a/vE51023,
vs /vE51.5, andV/vE51): ~a! long-time behavior;~b! transition
to the laminar phase.

FIG. 3. Dependence of the maximal Lyapunov exponent on
time: ~a! for chaotic motion@solid curve; the parameters are the
same as in Fig. 1~b!#; and for periodic motion~dashed curve; for
vs /vE51.3,V/vE50.2); ~b! for the transient chaos shown in Fig.
2.

FIG. 4. Power spectrum vs frequency for the electron’s velocity
v: ~a! regular motion@parameters are the same as in Fig. 1~a!#; ~b!
transient chaos~parameters are the same as in Fig. 2!. For the case
of the transient chaos, the frequency spectrum was calculated only
for the turbulent phase.
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it does provide a convincing test of our numerics, for direct
comparison shows that our results~plotted here with
a/vE50.2) are in full agreement with those of Ref. 37 as far
as concerns the structure of the chaotic regions; further, al-
though we shall not present the details of the harmonics in
the periodic regions because they are not germane to our
current discussion, we have also found28 good agreement
with Ref. 37 for the periodic regions. Qualitatively, Fig. 5
shows us the triangularly shaped southern extremity of a
large chaotic region~which extends upwards for toward
larger values ofr). From the left-hand boundary of the cha-
otic region ~indicated by the symbols! many different peri-
odic channels~indicated by the white regions! cut into the
chaotic region; these channels correspond to the different
subharmonic periodic lockings observed in simulations of
Josephson junctions.

Turning to parameter values more relevant to SSL’s, we
show in Figs. 6~a!–6~d! the evolution of the chaotic region as
the values of the damping parameters are varied over a wide
range. In Fig. 6~a! we begin from the limit of fairly small
dissipation (gv5g«50.01 anda50.001). Note that in Fig.
6 and henceforth, all damping parameters are scaled in units
of vE . In this case, the ‘‘order-chaos’’ boundary is very
close to the boundary found in Ref. 18 for the Hamiltonian
model; given the fairly small values of the relaxation param-
eters, this is perhaps not terribly surprising. Further, the cha-
otic region is very solid, with few of the channels observed
in Fig. 5 ~or in subsequent figures discussed below!.

In Fig. 6~b! all relaxation rates have been increased by a
factor of 10~so thatgv5g«50.1, anda50.01). The chaotic
region in this case shows considerably more structure, with a
number of channels cutting into the left boundary, while the
right boundary has receded substantially, leaving a smaller,
isolated separate region of chaos. Increasing the damping
still more reduces the chaotic region, first to the narrow main
region plus small isolated regions in Fig. 6~c! and then to the

two tiny isolated regions of chaos in Fig. 6~d!. These figures
make clear that while the size and shape of the chaotic region
are strong functions of damping, chaos is expected to occur
for a wide range of values. In particular, for the expected
range of the velocity and energy damping parameters,
0.01<gv ,g«<0.1 ~Refs. 41 and 42! found in the highest
quality SSL’s, chaos appears likely to occur over a substan-
tial range of parameters.

Let us comment on several qualitative features of the cha-
otic regions in Fig. 6, beginning with Fig. 6~a!. Perhaps the
most striking qualitative feature here is the clear distinction
between the left boundary of the chaotic region, which ap-
pears very sharply defined, and the right boundary, which is
substantially more diffuse.

An enlargement of the right boundary, shown in Fig. 7~a!,
indicates fractal-like behavior, since zooming in on the re-
gion does not decrease its ramified structure. Although this
structure is theoretically interesting, the experimental conse-
quences are likely to be limited. First, in this region, many of
the positive Lyapunov exponents are nearly zero, and are
thus sensitive to small effects from the numerics. It is thus
difficult to be certain of the boundaries between periodic and
chaotic behavior. To illustrate the sensitivity to a cutoff on
the size ofl, in Fig. 7~b! we show the same enlargement of
the right boundary with the constraint thatl.0.01. The dif-
ference between Figs. 7~a! and 7~b! is readily apparent. Sec-
ond, since, as shown in Fig. 3~b! and discussed above, the
Lyapunov exponents can sometimes relax very slowly to
their asymptotic values — leading to regions of ‘‘transient
chaos’’— determining the true asymptotic value ofl can be
difficult. Indeed, the precise boundary in Fig. 7~a! is very
sensitive to the details of the numerical code, including dis-
cretization effects, and a different code would likely not re-
produce it exactly. Particularly if there is a fractal boundary44

for the actual differential equation system, this effect is to be
expected. In contrast, the left boundary in Fig. 6~a! is very
sharply defined: the negative exponents jump suddenly to
large positive ones as the chaotic region is entered.

Our interpretation of these features can be described
qualitatively in terms of familiar concepts from dynamical
systems. Recall that in exhaustive studies of general nonlin-
ear dissipative dynamical systems, one fixes the parameters
and varies the initial conditions, searching for all the ‘‘attrac-
tors’’ and determining the shape of each basin of attraction
in the space of initial conditions. Typically there is more than
one attractor in the system, and the boundaries between the
different basins of attraction can be smooth or fractal.44 After
determining completely the attractor structure for one set of
parameters, one then moves on to another set, and does a
similar search through the space of initial conditions. In our
study, which is intended to be illustrative of the possible
existence of chaos in SSL’s~rather than exhaustive!, we have
for simplicity fixed the initial conditions and varied the pa-
rameters. As a consequence, if there are multiple attractors,
as we change parameters for fixed initial conditions, we can
pass from one basin of attraction another, and the structure of
the basin boundaries —fractal or smooth— will be reflected
in the plots of the chaotic regions as in Figs. 5–7. More
extensive numerical studies, which we will report
elsewhere,28 confirm this explanation.

FIG. 5. A plot of the regions of periodic~white, l,0) and
chaotic~symbols,l.0) motion in ther-V plane; the values of the
damping constants aregv5g«50 anda50.2, corresponding to the
case of the damped, driven Josephson junction studied in Ref. 37. In
this and all subsequent figures, all parameters are measured in units
of vE .

54 10 631DISSIPATIVE CHAOS IN SEMICONDUCTOR SUPERLATTICES



In Figs. 6~b! and 6~c!, the size of the chaotic region de-
creases successively, and the periodic channels become ap-
parent. These figures — particularly Fig. 6~b! — interpolate
nicely between the case of the damped, driven Josephson
junction ~Fig. 5! and the case of Fig. 6~a!. The presence of
these periodic channels within the chaotic region raises the
possibility of observing not only chaos in SSL’s but also
mode lockings to various subharmonics of the driving fre-
quency, and we are currently investigating this possibility.28

In real SSL’s, one typically hasgv@g« . In our previous
discussion, we have for simplicity considered only the case
gv5g« . Figure 8 illustrates the extent of the chaotic region
when gv50.1@g«50.02; this reduction in the chaotic re-
gion for unequal damping is typical.28 Restricting ourselves
to the physically relevant regime in whichgv.g« , we can
summarize our data qualitatively by saying the region of
chaos is largest wheng« is roughly equal togv or a, which-
ever is larger.

Finally, we note that for simplicity in all the above results
we worked at zero temperature. From Eq.~5!, we see that
this corresponds to«050 (w0521). ForV/vE51 and for
various values ofvs /vE , we investigated the influence of
the temperature effects on the transition to chaos. WhenT
was varied from helium to the room temperature, keeping all
other parameters fixed, we found no qualitative changes in
the nonlinear dynamics within our phenomenological bal-
ance equation model. Quantitative details of the temperature
dependence will be presented elsewhere.28

IV. SUMMARY, DISCUSSION, AND CONCLUSION

We have considered the influence of an ac electric field on
the motion of ballistic electrons in a miniband of a semicon-
ductor superlattice. Within a phenomenological balance
equation approach, we established that accounting for collec-
tive effects~via a self-consistent field! leads to the possibility
of chaotic dynamics. Our numerical and analytic results sug-
gest that for a transition to chaos one must satisfy the fol-
lowing conditions: ~i! the frequency of the ac field (V)
should be close to the characteristic frequency of the collec-
tive electron motion (vE) in the SSL;~ii ! at the same time,
the frequency of the ac field should be close to the Stark
frequencyvs5eaE0 /\, which is determined by theampli-
tudeof the external field; and~iii ! the relaxation rates of the
electron’s energy and momentum should not be too large
(g/vE&0.2).

Importantly, it appears possible to achieve these condi-
tions in real SSL’s, now or in the near future. For typical
superlattices (a;1026 cm, D;1022 eV, and
N;1014 cm23), the characteristic frequency of the coopera-
tive oscillations lies in the THz domain (vE'1.531012

s21).9,41,45If an ac field with amplitude;1 kV/cm is applied
to an SSL with perioda;1026 cm, the Stark frequency also
lies in the THz domain. Thus the frequency constraints can
likely be achieved.

Although the damping effects and relaxation rates are
much less well known, there nonetheless appears to be rea-

FIG. 6. Plots showing the regions of periodic~white, l,0) and chaotic~symbols,l.0) motion in thevs-V plane for four different
values of the damping parameters:~a! gv5g«50.01, a50.001; ~b! gv5g«50.1, a50.01; ~c! gv5g«50.1, a50.05; and ~d!
gv5g«50.2, a50.
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son for some optimism. As we have indicated above, stan-
dard estimates of the relevant relaxation constants for the
plasma oscillations give values in the range of
(1021–1022)vpl .

41,42 That the damping is more likely near
the larger end of this range is suggested by the observation
that the phase relaxation rate even in a good quantum well is
the relatively rapidtv.3.5310212 s,46 which corresponds to
near-THz frequencies. For a modulation-doped superlattice,
tv is almost certain to be shorter, since the electrons may
scatter from dopant impurities not present in the remotely
doped quantum wells. Hence, the damping effects in current
SSL’s may be nearer the high end of our range of param-
eters. One intriguing possibility for producing SSL’s with
lower relaxation rates involves ‘‘implanting’’ the superlat-
tices within parabolic quantum wells;47 in this manner, one
could hope to achieve the low damping levels of good quan-
tum wells and avoid the damping effects associated with
modulational doping. A separate complication concerning
damping effects is that energy relaxation processes in both
wells and superlattices also involve many distinct processes.

From quantum-well studies,46 we expect that the energy re-
laxation cannot be describedquantitativelyby a single con-
stantge . Although it would clearly be possible to introduce
energy-dependent relaxation rates into our phenomenological
equations, without more detailed experimental guidance as to
the form of this dependence, it is premature to incorporate
such an additional complication. Given the relatively large
range of relaxation parameters over which our phenomeno-
logical model predicts chaotic behavior for the SSL plus field
system, the present uncertainties in the exact level and nature
of damping in these systems are not cause for undue concern.

Thus, we believe that by applying an ac field of order
;1 kV/cm with frequency of the order of several THz to a
SSL, one should be able to satisfy the requirements for tran-
sition to deterministic chaos. For instance, in the recent
experiment7 first studying the influence of a THz field on the
stationary electron transport properties in a SSL, the experi-
mental conditions were close to those required for the obser-
vation of chaos in our model system. Further, continuing
progress in both the fabrication of heterostructures with high
carrier mobility and in the design of powerful sources of
THz radiation46 suggests that the experimental observation
of the deterministic chaos in a SSL plus field interaction may
be close at hand.

An essential question for experimentalists is how to rec-
ognize the underlying chaotic electron dynamics in the ob-
servables measured in a real experiment. As the controversy
over the observation of Bloch oscillations suggests, this may
not be a simple matter. In large part, it will depend on pre-
cisely how the experiment is configured and instrumented.
At this stage, and without considering in detail the configu-
ration of a particular proposed experiment, we can most ap-
propriately give a somewhat general answer. If chaos is
present, we expect a complex, aperiodic behavior for the
average velocity, and hence the average current. Given the
high frequencies involved, it seems unlikely that one could
measure this directly in the time domain. However, in the
presence of an additional dc voltage, to create nonzero mean
‘‘drift’’ in this average velocity, the oscillatory chaotic com-

FIG. 7. Plots showing an enlargement of the right boundary of
the chaotic region for the parametersgv5g«50.05,a50.01 as de-
termined by requiring that~a! l.0.001 and~b! l.0.01.

FIG. 8. Plots showing the chaotic region in the case in which the
elastic scattering time is considerably larger than the inelastic scat-
tering time. The parameters aregv50.1,g«50.02, anda50.01.
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ponent would appear as a substantial additional source of
apparent ‘‘noise’’ in drift velocity and that this additional
noise would appear suddenly as one crossed the threshold to
chaos, particularly for the parameter regime corresponding to
the left boundary of the chaotic region. Specifically, if one
measured the power spectrum associated with the current,
one would observe the same substantial increase in the
broadband ‘‘noise’’ component that we see in Fig. 4. In an
experiment on a resistively shunted Josephson tunnel junc-
tion @related to the model in our Eq.~15!#, precisely such a
dramatic increase in experimental noise was observed when
the parameters of the experimental system were moved
through the transition to chaos.48 A second option for detect-
ing chaos would involve sampling the current at given time
intervals and using the ‘‘phase-space reconstruction’’
techniques49 to create a geometrical image of the underlying
attractor. For regular motion, the attractor will be a simple
periodic structure; for chaotic motion, it will be a ‘‘strange
attractor.’’ The details of this approach are described in the
context of an experiment involving germanium photocon-
ductors in Ref. 50. Additional details about experimental
techniques for detecting chaotic motion in semiconductor
structures are described in Ref. 46.

Apart from the most central issue of experimental verifi-
cation of the existence of chaos, there are a number of open
theoretical issues which merit further study. First, our model
is applicable in the limit ofminibandtransport for the elec-
trons and assumes a spatially homogeneous structure for the
EM field. One could ask whether these assumptions are cru-
cial to the possible existence of chaos in SSL’s. A recent
study by Bulashenko and Bonilla51 suggests strongly that this
is not the case. Focusing on the resonant-tunneling regime
and considering the possibility of high-field domain effects
~nonhomogeneity in space!, these authors also find possible
chaotic behavior. Since the crossover between the resonant-
tunneling and miniband regimes of transport depends on
many experimental and material parameters, some more con-
trollable than others, and remains a complicated problem for
theorists, it is important to note that these essentially comple-
mentary studies, taken together, suggest that chaos is a ro-
bust phenomenon in SSL’s. Second, there is a clear need to
understand the extent to which our phenomenological bal-
ance equation approach correctly captures the physics con-
tained in more microscopic considerations, such as the full

Boltzmann equation or an approach based on Wigner distri-
bution function,20 and on the anticipated region of validity
for any miniband-based approach. Although there has been
some recent progress on the former issue,24 there remains
much to be done on both problems.

Let us conclude with a brief speculative comment related
to the possible consequences and relevance of chaotic behav-
ior in SSL’s. Based on the earlier experience of studying
chaos in semiconductor devices used for infrared radiation
detection,50 mapping out the boundary of chaos experimen-
tally is important to reliable use of the devices in the ‘‘nor-
mal’’ regime. However, recent developments in ‘‘controlling
chaos’’52 suggest that one might actually deliberately choose
to drive the SSL into a chaotic regime, in order to take ad-
vantage of the myriad possible behaviors there for device
applications. Alternatively, using methods of chaotic control,
one may be able to suppress the onset of chaos, as was re-
cently done in an experimental laser system.53 Chaotic con-
trol and reduction of chaos are also likely to be important for
future nanofabricated semiconductor integrated circuits,
where the expected chip densities will be of the order
109/cm2.2 At such densities, the devices actually form alat-
eral surface superlattices, and device-device interactions can
generate both cooperative effects and additional
instabilities.54 In any case, a large number of exciting experi-
mental and device-related problems remain.
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