
Resonant electron-phonon coupling: Magnetopolarons in InP
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We present a theoretical analysis of recent experimental data on resonant magnetopolarons in InP. These
effects appear as strong anticrossings in Landau-level fan plots obtained from magneto-Raman profiles of the
longitudinal-optic~LO!-phonon scattering intensity vs magnetic field. We calculate renormalized Landau lev-
els using electron self-energies due to Fro¨hlich electron–LO-phonon interaction, and find an analytical expres-
sion for the self-energy of the magnetopolaron quasiparticle. A Green’s-function treatment leads to close
agreement with the experiment, even though we use relatively simple approximations for the self-energy. We
find that the data can only be explained when couplings between adjacent Landau levels are taken into account.
At this point our model supersedes previous theories, where resonant magnetopolarons have been approxi-
mated by two-level systems.@S0163-1829~96!04139-2#

I. INTRODUCTION

The present work is concerned with a theoretical investi-
gation of recent experimental results on magnetopolaron
resonances in InP which have been measured for a wide
range of energies and magnetic fields by magneto-Raman
spectroscopy.1,2 In this technique, fan plots of resonance en-
ergies vs magnetic field are obtained from the enhancement
of the LO-phonon Raman-scattering intensity which occurs
when either incoming or scattered photons coincide with in-
terband magneto-optical transitions between Landau levels.
The analysis of fan plots yields information on basic proper-
ties of the electronic structure such as effective masses and
g factors, the mixing of valence-band wave functions, or
band nonparabolicity. Furthermore it allows one to investi-
gate modifications of electronic states due to perturbations
such as Coulomb interaction~exciton effects! and electron-
phonon coupling~resonant and nonresonant polarons!.

Magnetopolaron resonances have been investigated both
theoretically and experimentally for a long time, particularly
in bulk semiconductors.3–9 In recent theoretical studies these
effects have been calculated using modified Wigner-
Brillouin perturbation theory.10–12In the usual~nonresonant!
magnetopolaron effect, Landau levels are shifted to lower
energies, and the slopes of fan lines change due to mass
renormalization. Resonant anticrossings, however, appear
when the energies of higher levelsuN& ~Landau indices
N51,2, . . . ) arecomparable to that of the (N50! Landau
state plus the energy of an LO-phonon\vLO , denoted in the
following as uN50,1LO&. Due to electron-phonon interac-
tion, such states couple. In a simple picture of two interact-
ing levels, one obtains an energy splitting which lifts the
degeneracy at each crossing point. As a consequence of these
magnetopolaron resonances each Landau level is split into
two branches: a lower one which is pinned to the energy of
the so-called polaron threshold, i.e., the energy of the
uN50,1LO&-state at high magnetic fields; and an upper one
which approaches the same threshold at low magnetic fields.

Recent magneto-Raman experiments on the weakly polar
semiconductor InP (a50.11, wherea is the standard Fro¨h-
lich constant! described in Ref. 2 have revealed additional
aspects of resonant magnetopolaron coupling which are be-
yond this simple picture. In that work, magnetopolaron reso-
nances have been investigated over a wide range of magnetic
fields up to 14 T. After subtraction of valence-band contri-
butions and excitonic corrections which had been determined
previously~see Refs. 1 and 13!, fan plots ofelectronLandau
states were obtained from which the energies and anticross-
ings of levels with indices up toN57 could be analyzed. It
was found that Landau levelsuN& do not become pinned at
the polaron threshold, where their intensity should rapidly
decrease due to mixing with theuN50,1LO& state. On the
contrary, they can be observed over a much wider range of
energies and magnetic fields, and their slopes are signifi-
cantly different than those expected from the pure pinning
effect. The lower branch of the stateuN& becomes the upper
branch of uN21& beyond the region of resonant coupling,
and vice versa. The simple theoretical analysis in terms of
two-level models cannot explain these observations. Accord-
ing to Ref. 2, this effect can be understood if a coupling
between neighboring Landau states via their interaction with
the polaron threshold state is taken into account.

The renormalization of Landau levels due to electron–
LO-phonon interaction was calculated in Ref. 11 within
second-order perturbation theory. As a function of the
Landau-level indexN, the total splitting at a magnetopolaron
resonance fora!1 was found to be11

DE~N!52\vLO~a/2N!2/3. ~1!

This result is a generalization obtained by the application of
improved Wigner-Brillouin perturbation theory described in
Ref. 10 to all Landau levels at arbitrary magnetic fields. In
the model of Ref. 2 the splittings given by Eq.~1! were
phenomenologically introduced as off-diagonal coupling
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constants between theuN& and uN50,1LO& Landau states,
and the experimental fan plots could be reproduced well.

In the present work we give a rigorous description of
magnetopolaron resonances on the basis of a systematic
Green’s-function formalism which confirms the fundamental
ideas discussed in Ref. 2. We find that the peculiarities of the
fan plots just mentioned can be understood if the coupling of
each Landau level with all the others is taken into account by
means of a systematic consideration of electron–LO-phonon
interaction via the Fro¨hlich Hamiltonian. This leads to a self-
energy which renormalizes the Landau levels and includes
the coupling of different states in a natural way. We obtain a
rather good agreement with the experimental curves,2 even
within a relatively simple approximation for the self-energy
which can be expressed by a compact mathematical expres-
sion. Similarly, the lifetime broadening, which is important
especially for the higher Landau levels, is calculated vs mag-
netic field.

The paper is organized as follows: In Sec. II, we briefly
outline the general theoretical background of the model and
our calculations of the self-energy. In Sec. III, we give a
discussion of the results and compare them with the experi-
mental data. Some technical aspects of the theory are sum-
marized in the Appendix.

II. GENERAL THEORY AND CALCULATIONS

The energy levels of an electron in a simple parabolic
conduction band with the effective electron massm* and a
magnetic field B, described by the Landau gauge
AW [(0,Bx,0), are given by

EN~k3!5\vc~N1 1
2 !1

\2k3
2

2m*
, ~2!

where vc5eB/m* c is the cyclotron frequency,
N50,1,2 . . . the Landau index, andkW5(k1 ,k2 ,k3) the
crystal-momentum vector. The electron–LO-phonon interac-
tion has not yet been taken into account. The wave functions
are

C5
1

AL2
eik2y1 ik3zwN~x2x0!, ~3!

where

wN~x2x0!5g21/2expF2
1

2
S x2x0

g
D GHNS x2x0

g
D

A2NN!Ap
, ~4!

andg5(\c/Be)1/2 is the magnetic length, andL is the nor-
malization length,x052g2k2 andHN(j) are the Hermite
polynomials.14 In Eq. ~2! the spin interaction with the mag-
netic field is neglected. It can be easily added in all expres-
sions obtained by introducing the appropriateg factor.15

TheT50-K one-particle Green’s function for the electron
~considering just the one-electron case! in the magnetic field
is defined by16

G~k3 ,x,x8,E!5\(
N

wN~x2x0!wN~x82x08!

E2EN~k3!1 id
, ~5!

whered→10, the Fourier transform has been taken for the
coordinatesy and z, andE is the energy parameter. This
Green’s function is easily transformed into a representation
in terms of Landau levelsG0(k3 ,N,N8,E) by means of

G0~k3 ,N,N8,E!5E
2`

` E
2`

`

wN~x2x0!wN8~x82x08!

3G~k3 ,x,x8,E!dx dx8, ~6!

leading to

G0~k3 ,N,N8,E!5dNN8G0~k3 ,N,E!, ~7!

where

G0~k3 ,N,E!5
\

E2EN~k3!1 id
. ~8!

On the other hand, the Fro¨hlich-interaction Hamiltonian in a
completely second-quantized description is given by17

Ĥe-ph5 (
kW , qW , N, N8

CqW LNN8~q1!B̂qW âkW1qW ;N

1
âkW ;N8, ~9!

where

CqW 52 i S 2p\vqW e
2

q2L3
~«`

212«0
21! D 1/2, ~10!

«0 («`) is the static~high frequency! dielectric constant;
\vqW the LO-phonon energy,qW the phonon wave vector;B̂qW

5b̂qW 1b̂2qW
1 , with the LO-phonon annihilation~creation! op-

eratorsb̂qW (b̂qW
1), âkW ,NW (â

kW ,NW
1
), the electron annihilation~cre-

ation! operator with energyEN(k3); and

LNN8~q1 ,k2 ,k28!5E
2`

`

wN@x2x0~k2!#wN8@x2x0~k28!#

3eiq1xdx. ~11!

It is well known that the phonon Green’s function is defined
by18

D0~qW ,v!5
2vqW

v22vqW
2
1 id

; d→10. ~12!

The Dyson equation for the motion of an electron being
simultaneously subjected to a magnetic fieldBW and to the
electron–LO-phonon interaction is diagrammatically pre-
sented in Fig. 1~a!, whereG0(k3 ,N,E) represents the unper-
turbed Green’s function andM (k3 ,N,N2 ,E) the irreducible
self-energy. As discussed in Refs. 3 and 4, the self-energy
can be approximated to lowest order in the coupling constant
a ~due to electron–LO-phonon interaction! by the diagram
shown in Fig. 1~b!. In this approximation the Dyson equation
reduces to

54 10 503RESONANT ELECTRON-PHONON COUPLING: . . .



G~k3 ,N,E!

5G0~k3 ,N,E!F11 (
N1 ,N2 ,qW

uCqW u2LNN1~q1 ,k22q2 ,k2!

3LN1N2
* ~q1 ,k2 ,k22q2!

3G0~k32q3 ,N1 ,E2\vqW !G~k3 ,N2 ,E!G . ~13!

In the general case, no self-energy part can be separated from

the rest of the diagram. For the matrix elementLNN1 the
integral over the spatial coordinate can be performed exactly,
thus leading to19

LNN152uN12Nu/2minF SN1!

N! D 1/2;S N!N1!
D 1/2G

3e2
q'

2 Lmin[N;N1]
uN12Nu S q'

2

2 D
3S sgn@N12N#

q2
2

2 i
q1
2 D uN12Nu

, ~14!

where sgn@z#51 ~21! if z.0 (z,0), q'
25q1

21q2
2 , and

Ln
m(z) are the generalized Laguerre polynomials. Consider-

ing dispersionless LO phonons (vqW→vLO) and the Dyson
equation just fork350, we are led to

G~0,N, E!5G0~0,N, E!

3F11(
N2

M ~0,N,N2 , E!G~0,N2 , E!G .
~15!

Transforming the summation overqW into integrals~in the
standard way! we finally obtain the following self-energy
~see some details in the Appendix!:

M ~0,N,N2 , E!5M ~N, E!dNN2

5
e2

g
~«`

212«0
21!S 2

vLO

vc
D(
N1

minFN1!

N!
;
N!

N1!
G eQ2~nmin1m!!

2AQ22nminnmin!
(
k50

nmin S 2~nmin2k!

nmin2k D ~2k!!

k!

1

~m1k!!

3(
j50

2k

~21! j S 2~m1k!

2k2 j D 1j ! H SQ2 Dm1 jF iG~m1 j11!GS 2@m1 j #;
Q

2 D
2G~m1 j1 1

2 !GS 122@m1 j #;
Q

2 D G J dNN2, ~16!

with

nmin[min@N1 ; N#,

m[uN12Nu,

S pqD[
p!

q! ~p2q!!
,

Q[
2vLO

vc
S E

\vLO
2

vc

vLO
@N11

1
2 #211 i

d

\vLO
D .

It is worth mentioning that a selection rule is obtained, for-
bidding transitions between initial and final states with dif-

ferentN which simplifies the expressions. The self-energy of
Eq. ~16! involves a summation over all Landau levels in
order to renormalize theNth state. In this way our treatment
introduces directly the above mentioned couplings between
different Landau levels.

In order to determine the renormalized energy spectrum
for conduction electrons as well as their life-time broadening
we need to solve the real and imaginary parts of the tran-
scendental equation~for k350)

E5\vc~N1 1
2 !1M ~N,E!, ~17!

which is done numerically by applying an iterative method.
The equations involved in this procedure are

FIG. 1. ~a! Dyson equation for the magnetopolaron process.
Solid lines represent the Green’s functionG0(k3 ,N,E) of an elec-
tron in an external magnetic field.~b! The irreducible self-energy
part M (k3 ,N,N2 ,E) in the lowest order of the electron–LO-
phonon coupling constant. The wavy line symbolizes the unper-
turbed phonon Green’s function.
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ReE5\vcSN1
1

2D1ReM ~N,ReE,ImE!

~18!

ImE5ImM ~N,ReE,ImE!.

III. RESULTS AND DISCUSSION

In Fig. 2 we show the real~solid line! and imaginary
~dotted line! parts of M (N,E) as given by Eq.~16! vs
ReE. The following parameters for bulk InP were used:
m*50.077m0,

20 where m0 is the free-electron mass;
\vLO543 meV;21 «0512.6; «`59.6;20 and the broadening
parameterd54.3 meV. The curves were calculated for
N51 and N150 and, in the resonance region, we set
vc5vLO . As can be seen from Fig. 2, resonance occurs near
ReE.1.5\vLO , in agreement with the expression
E/\vLO5(vc /vLO)(N11

1
2)11, i.e., when for a given mag-

netic field two Landau levels~not necessarily consecutive
ones! are separated by the LO-phonon energy\vLO . The
imaginary part ofM (N,E) in Fig. 2 is related to the electron
lifetime broadening. An example of the enhancement of the
level width near resonance is shown in Fig. 3, where the
lifetime broadening~ImE) vs vc /vLO is given for the third
perturbed Landau level (N52, N150).

The fundamental result of this paper is shown in Fig. 4.
Plotting the renormalized Landau levels~ReE) vs magnetic
field ~solid lines!, we obtain fanlike spectra with characteris-
tic anticrossings as found experimentally for the lowest po-
laron threshold in Ref. 2. The dashed lines describe the un-
perturbed system. Note that renormalization leads to a
different arrangement of Landau levels which exhibits a
staircaselike structure reflecting coupled two-level systems.
Near resonance, the levels are no longer pinned at the po-
laron threshold, but rather pick up the character of adjacent
levels, following their course after having moved through a
subsequent resonance.

Figure 5 shows a comparison of our theory with experi-
mental data from Ref. 2. The solid lines represent the renor-
malized Landau levels calculated according to Eq.~18!. The
data points~open circles!, obtained from interband magneto-
Raman resonances@ z̄(s2,s1)z geometry# after the subtrac-
tion of valence band and exciton contributions and the en-
ergy of one LO phonon to account for their outgoing
character,1,2,13 almost coincide with these curves. Hence the
Green’s-function calculation leads, even within a relatively
simple approximation for the self-energy, to a very good
description of the experimental results. Such close agreement

FIG. 2. Resonant part of the self-energyM (0,N,E) for electrons
in InP with N51, N150, andvc5v LO , and a level width of
d54.3 meV. The solid line represents the real part of the self-
energy, and the dotted line the corresponding imaginary part. Ener-
gies are given in units of\vLO .

FIG. 3. Imaginary part of the magnetopolaron energy vs mag-
netic field in InP for the third perturbed Landau level (N52,
N150). This quantity is related to the lifetime broadening. Ener-
gies are given in units of\vLO, andB is expressed by the relative
cyclotron frequencyvc /vLO .

FIG. 4. Real part of the magnetopolaron energies vs magnetic
field. Energies are given in units of\vLO , andB is expressed by
the relative cyclotron frequencyvc /vLO . The dashed lines repre-
sent unperturbed electron Landau levels with indicesN.
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with experiment can be achieved only when couplings with
other Landau levels are taken into account in the renormal-
ization of the states. These results also confirm the theoreti-
cally predicted dependence of the magnitude of the polaron
splittings on the Landau-level index given by Eq.~1!.

Figure 6 illustrates the consequences of these differences
between the simple description of magnetopolaron reso-
nances in a two-level picture@Fig. 6~a!#, and changes due to
the more complete treatment given here@Fig. 6~b!# for
magneto-opticalinterband transitions, which are observed
experimentally in magneto-Raman profiles. To be specific,
we consider the magnetopolaron resonance between the
threshold and theN55 Landau state. We use effective
masses ofme*50.077m0 andmlh*50.12m0 for electrons and
holes, resulting in slopes\e/m* of about 1.5 and
1.0 meV/T for the fan lines, respectively, and\vLO543

meV.20 For simplicity,g factors have been neglected. Inter-
band transitions, involving electron and hole states, are de-
noted byEn

m in the following, where the lower~upper! num-
ber gives the hole~electron! Landau index, respectively. The
pure electronic levels for N55 and the~lowest! polaron
threshold state are denoted byE5 andE0,LO, respectively. In
interband transitions the polaron threshold is observed via
the renormalization of the electron part of theEn

m fan lines.
The relevant asymptotes are thusEn

0,LO. The solid lines in
Fig. 6~a! are resonances ofE5

5 expected in a two-level model
if one assumes that mixing with the thresholdE5

0,LO, which
is approached asymptotically by the renormalized states, re-
duces its wave function such that it can only be observed
within 1 T of the crossing point. The unrenormalized states
are indicated by dashed lines. Let us now consider the cou-
pling of E5

5 with neighboring transitions shown in Fig. 6~b!.
Approaching the threshold from lower~higher! energies, it
first bends over towardE5

0,LO. However, before reaching the
transition with the next lower~higher! index, its curvature
changes again, and it follows along fan lines for which the
electronLandau index has been lowered~raised! by one unit,
i.e., E5

4 (E5
6). The hole index does not change at all. This

behavior is indicated by the solid lines in Fig. 6~b!, where we
have again assumed that the resonances can be experimen-
tally observed only within 1 T away from the anticrossing
point. In contrast to Fig. 6~a!, the renormalized fan lines
approach significantly different asymptotes away from the
resonance region. This case corresponds to our experimental
observations.1,2 Subtracting the hole Landau levels, we ob-
tain results similar to those of Fig. 5. Note that a precise
measurement of the slopes of renormalized interband transi-
tion fan lines in the quasiclassical limit~largeN, smallB)
~Ref. 22! should allow one to determine not only the reduced
effective mass but also the electron and hole mass separately.

IV. CONCLUSIONS

We have calculated magnetopolaron resonances in InP by
a Green’s-function method. Experimental fan plots obtained
from magneto-Raman profiles can be explained only when
coupling between more than two Landau levels is taken into
account. A simple two-level model is not sufficient to de-
scribe the behavior of the fan lines away from resonance,
where they are no longer pinned but take over the character
of neighboring transitions. The dependence of the magnitude
of resonant magnetopolaron splittings on the Landau level
index is experimentally confirmed.
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APPENDIX

In order to obtain Eq.~16!, the following integrations
were performed. From Eq.~13! the self-energy part can be
written

FIG. 5. Electron energy levels vs magnetic field for InP. The
open circles correspond to experimental data~Ref. 2! from
magneto-Raman scattering for thez̄(s2,s1)z configuration, solid
lines represent theoretical calculations according to Eq.~17!.

FIG. 6. Renormalization of magneto-opticalinterband transi-
tions En

m between Landau levels due to resonant magnetopolarons
presented schematically for theN55 Landau level~solid lines!. ~a!
Two-level system: fan lines ofE5

5 are pinned at the polaron thresh-
old E5

0,LO . ~b! Coupling between different Landau levels and the
resulting wave-function mixing significantly changes the course of
fan lines across resonances. Dashed lines indicate unrenormalized
transitions.E5 andE0,LO denoteelectronparts of theN55 Landau
level and the lowest polaron threshold, respectively. See text for
details.
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M ~0,N,N2 ,E!5 (
N1 ,qW

uCqW u2LNN1~q1 ,k22q2 ,k2!

3LN1N2
* ~q1 ,k2 ,k22q2!

3G0~k32q3 ,N1 ,E2\vqW !. ~A1!

The summation overqW in Eq. ~A1! must be transformed into
an integral in polar coodinates. Applying Eq.~14!, with the
substitution gqi→qi and measuring energies in units of
\vLO in order to obtain dimensionless quantities under the
integral, we are led to

M ~0,N,N2 , E!5
e2

2p2g
~«`

212«0
21!S 2

vLO

vc
D

3(
N1

E
0

`

q'dq'E
2`

` dq3
~q3

21q'
2 !~q3

22Q!

3E
0

2p

du LNN1LN1N2
* . ~A2!

The integral overu is

E
0

2p

duS sgn@N2N1#
q'sinu

2
2 i

q'cosu

2 D uN12Nu

3S sgn@N22N1#
q'sinu

2
1 i

q'cosu

2 D uN22N1u

52pS q'

2 D 2uN12Nu

dN1N2. ~A3!

Integrating overq3, Eq. ~A3! reduces to

M ~0,N, E!5
e2

g
~«`

212«0
21!S 2

vLO

vc
D

3(
N1

22uN12NuminFN1!

N!
;
N!

N1!
G

3E
0

`du e2 ~1/2! uuuN12Nu

2~u1Q! S i

AQ
2

1

AuD
3FLmin[N;N1]uN12Nu S u2D G 2. ~A4!

Equation~16! can be derived using the series expansion of
generalized Laguerre polynomials23

FLnmS u2D G25~n1m!!

22nn! (
k50

n S 2~n2k!

n2k D ~2k!!

k!

1

~m1k!!

3(
j50

2k
~21! j

j ! S 2~m1k!

2k2 j D xj , ~A5!

and expressing Eq.~A4! in terms of integrals of the form23

E
0

`

dx
e2mxxn21

x1b
5by21ebmG~n!G~12n;bm!, ~A6!

whereuargbu,p, Rem.0, andG(j) @G(j;h)# are the com-
plete ~incomplete! gamma functions.
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