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We report femtosecond time-resolved pump-probe DECP experiments using a colliding pulse mode-locked
laser performed on Ti2O3 as the sample lattice temperatureTL is raised from 300 K through the ‘‘soft
transition’’ at 450 K to a temperature of 570 K. We have observed DECP spectra through the transition, with
oscillations in reflectivity of a few percent associated with the low frequencyA1g mode. A thermodynamic
relation is found between the low frequencyA1g equilibrium displacement and the number of excited electrons
removed from the valence band. When applied toTL-dependent equilibrium coordinate data for Ti2O3 ob-
tained in x-ray experiments, the theory allows a determination of the band overlap vs lattice temperature. The
band overlap atTL5621 K is found to be;0.06 eV. TheA1g mode frequencynph, the electronic relaxation
rate (1/tel), and the phonon relaxation rate (1/tph) have all been followed through the transition.nph decreases,
and shows a partial recovery in agreement with other Raman studies. The behavior of (1/t el) can be under-
stood as due to an increase in available states for interband electron-phonon scattering as the band crossing
takes place. Applying a deformation potential model to the data for (1/tel) before band crossing, with the low
frequencyA1g mode as the dominant scattering mechanism, a value ofuDu>2.0 eV is obtained for the valence
band deformation potential associated with this mode. (1/tph) does not show a clearcut correlation with
bandcrossing due to greater scatter in the data. The temperature dependence is partially explained by the
two-phonon decay of the coherent phonon excited in DECP, and may also have a component due to interaction
with hot electrons as well as a dephasing contribution.@S0163-1829~96!01625-6#

I. INTRODUCTION

We have performed temperature dependent optical pump-
probe experiments on the reflectivity of the oxide compound
Ti 2O3 . In earlier publications,1,2 we reported the observa-
tion of large amplitude oscillations in the reflectivity vs time
from Ti 2O3 at room temperature, in addition to the usual
exponentially decaying background due to the disturbance of
the electron distribution. An oscillatory component has been
observed in a number of other materials.1,3–9 Other mecha-
nisms can produce such structure, but strongA1 oscillations
are due to what we have termed displacive excitation of co-
herent phonons~DECP!.1,2 In this paper, we report changes
in DECP as the temperature is increased through the ‘‘soft’’
phase transition of Ti2O3 at ;450 K.

Since the discovery10 that Ti2O3 undergoes a soft phase

transition with no change of symmetry, a large body of ex-
perimental work on this transition has been reported in the
literature. This includes studies of changes in lattice
parameters,11 specific heat,12 Raman scattering,13 optical
properties,14 and transport properties.15–17It is now generally
accepted that the transition is due to the crossing of bands at
different points in the Brillouin zone as the temperature is
increased,18 with the resulting disappearance of an energy
gap. Theoretical calculations have indicated that there should
be no energy gap according to conventional band
calculations,19 and that electron-electron correlation energy
must be included to explain the presence of a gap below
;450 K. The true nature of the phase transition is still not
well understood, although attempts to model it have been
made involving lattice energy, and electron-electron correla-
tion energy.20,21
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Figures 1~a! and 1~b!, respectively, show the corundum
structure of Ti2O3 and the nature of the low frequencyA1g
mode. Figure 2 presents the behavior of lattice parameters
and resistivity through the soft transition. Although the prop-
erties of Ti2O3 have been extensively studied experimen-
tally, many details of the band structure have not been well
established quantitatively. The energy gap at 300 K has been
reasonably well determined at;0.15 eV,14,22 with the gap
going to zero at;450 K. X-ray studies have given accurate
determinations of thea- andc-lattice parameters of the ma-
terial through the transition, as well as changes in titanium
and oxygen positions.11 However, many different estimates
of the hole and electron masses have been given,15,22some of
them contradictory, and there is even uncertainty in the hole
and electron number densities as a function of temperature.22

In this paper we present a study of DECP in Ti2O3 as the
temperature of the sample is increased from 300 K through
the soft phase transition and up to 567 K. From a fit of the
data at each temperature to an empirical description of the
DECP process developed in Ref. 2 we obtain values of the
parameters of the model. In particular, we obtain values of
1/tel[b and 1/tph[g ~respectively, effective electron and
phonon relaxation rates! as a function of the sample tempera-
ture ~see Sec. II!.

It is found that 1/tel follows qualitatively a temperature
dependence similar to the sample conductivity, increasing by
about a factor of 3 as the sample temperature is raised

through the soft transition. Although other explanations and
interpretations of this behavior may be possible, we find that
it can be understood in terms of the energy relaxation rate of
excited carriers, which increases because of increasing inter-
band components due to an increase of available states for
scattering as the bands cross.

1/tph shows no clear correlation with the resistivity as the
temperature is raised through the transition. However, there
is considerable scatter in the data points. The temperature
dependence can be understood as due to a combination of
two-phonon decay of theA1g coherent phonon, along with a
possible hot electron decay process, as well as dephasing.

We also study a thermodynamic model of Ti2O3 which
relates the equilibrium value of the low frequencyA1g coor-
dinateq to the number of electrons in excited bands. The
model is based on a balance between the increase in core free
energy due to an increase inq and a decrease in deformation
potential free energy of conduction electrons when carriers
are transferred between bands. It is shown that the model can
be interpreted as also including a contribution due to carrier
charge redistribution if the model parameters are interpreted
as effective parameters. When applied to equilibrium x-ray
measurements of ion coordinates as a function of lattice tem-
perature, the model yields a measurement of conduction and
valence band overlap as a function of temperature. The re-

FIG. 1. ~a! The corundum structure. The large and small circles,
respectively, represent oxygen and titanium atoms. Note that the
positions of the Ti atoms are not entirely determined by the struc-
ture itself.~b! A schematic picture of the motion of Ti and O atoms
in the low frequencyA1g vibration. FIG. 2. Plots of lattice parameters and resistivity vs temperature

observed in Ti2O3 ~after Ref. 10!.
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sults are also applied to a description of the DECP process.
In Sec. II of this paper, we summarize the DECP model

results obtained in Ref. 2. The experimental results are given
in Sec. III. Section IV presents the derivation of the thermo-
dynamic relationship. Sections V and VI, respectively, dis-
cuss theoretical descriptions of the electron and phonon re-
laxation rates, and in Sec. VII we consider further
implication of the DECP process.

II. THEORY OF DECP

We will summarize briefly the results obtained in Refs. 1
and 2 for the theory of DECP that are relevant to the study of
Ti 2O3 described in this paper. The idea is that when a pump
pulse of short duration (;60 fs! arrives at the surface of a
conductor or semiconductor, the electronic system is dis-
turbed, but comes to equilibrium in a time short compared to
the response time of the nuclei. Now, if the lattice allows
displacements ofA1 or A1g symmetry, then such displace-
ments preserve the symmetry of the unit cell. At equilibrium
before the arrival of the pump pulse, theA1 nuclear displace-
ments within the unit cell are determined by the minimiza-
tion of free energy. When the system is suddenly excited by
the pump pulse, new equilibriumA1 nuclear displacements
result. The nuclear system, attempting to return to equilib-
rium, is therefore set into coherentA1 oscillation about the
new equilibriumA1 positions. If the lattice has more than

oneA1 mode of oscillation, then each mode will be driven to
the extent that it is represented in the new equilibrium dis-
placement of the lattice. Except in very unusual circum-
stances, or with very intense pump pulses, modes of symme-
try other thanA1 or A1g will not be excited, since their
excitation would require equilibrium displacements which
would change the lattice symmetry.

The electronic excitation which causes the change in the
equilibriumA1 coordinates can be described in terms of the
number of electrons per unit volume,n(t), which are left in
an excited band, or the change in electron temperature,
DT el(t), or some other measure of electronic excitation. The
electronic excitations decay exponentially with time. With
the hypothesis that the change inA1 equilibrium displace-
ment is proportional to some measuren!(t) of electronic
excitation, the classical equations of motion of theA1 modes
can be solved. Both the direct effect of the electronic exci-
tation and the secondary effect due to the coherentA1 mode
oscillation produced by the electronic excitation lead to a
modulation of the dielectric response of the medium, and
hence oscillations in the reflectivity are observed.

The measured reflectivity signal as a function of time is
the true reflectivity change convolved with the pump-probe
autocorrelation function. The result obtained for the frac-
tional change in reflectivity measured from the arrival of the
peak of the pump pulse is2

DR~ t !
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G(t) is the pump-probe autocorrelation function. The first
term on the right-hand side represents the direct effect of the
electronic excitation, and the second term the indirect effect
due to theA1 equilibrium displacement produced by the
electronic excitation. The third term contains a parameterC
meant to represent the effect of the sample heating or the
trapping of electrons in an excited band, both of which can
shift the baseline of the spectrum.g is an effective decay
constant for the coherentA1 phonon of angular frequency
v0 that is excited.b represents a decay constant for the
electronic excitation, and the angular frequencyV and the
effective decay constantb8 are defined as

V5Av0
22g2 ~2!

and

b85b2g. ~3!

The phase shiftF is given by the relation tanF5b8/V.
The coefficientsA andB in Eq. ~1! can be written as

A5
1

R S ]R

]n* D r«pump, ~4!

B5
1

R S ]R

]q Dkr«pump, ~5!

where the reflectivityR is a function of the complex dielec-
tric constant«5«11 i«2 . Heren

! denotes some measure of
electronic excitation; andq is theA1g coordinate. In Eqs.~4!
and ~5!, «pump is the integrated energy per unit area in the
pump pulse,r is a measure of the excitation produced at the
surface due to the pump, andk is the proportionality con-
stantDq/n! produced by the electronic excitation. If there is
more than oneA1 mode, there is a differentk for each mode
excited by the electronic disturbance. The values of the pa-
rametersA and B for Ti 2O3 , at room temperature are
A52.631022, B525.731022.

We will see in Sec. III that the experimental data over the
entire temperature range through the soft transition in
Ti 2O3 are well represented by Eq.~1! ~except perhaps for
long time delays, see Sec. IV! with decay constantsb and
g which vary with the Ti2O3 temperatureTL before the
arrival of the pump pulse. Furthermore, the change inb with
changingTL through the transition is strongly correlated with
the collapsing energy gapeg . An excellent fit of the ob-
served spectra in Ti2O3 for times up to a few picoseconds
and at all temperatures was obtained using Eq.~1!.
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III. EXPERIMENTAL STUDIES OF DECP

All experiments were carried out with a dispersion-
compensated colliding pulse mode-locked laser source23

~CPM! in a standard two-pulse pump-probe configuration.24

The CPM laser generates transform-limited pulses which are
60 fs in duration, 2 eV in photon energy, total energy per
pulse of 10 pJ, and 80 MHz in repetition rate. In the pump-
probe experiment, the CPM output is split into pump pulses,
which optically excite the sample, and weaker variably de-
layed probe pulses, which measure the pump-induced
changes in the optical properties of the sample. All of the
data shown in this paper monitor the transient reflectivity
behavior of single-crystal Ti2O3 oriented with thec axis
parallel to the direction of light propagation. Temperature
dependent pump-probe data were obtained by mounting the
Ti 2O3 crystal on a feedback-controlled resistive heating el-
ement. A thermocouple was used to monitor the temperature
of the copper block on which the sample was mounted over
the temperature range 300–570 K with an estimated error of
620 K.

Figure 3 shows the temperature dependent pump-probe
reflectivity data for Ti2O3 . In each case, we find that the
pump initially causes a sharp decrease in the sample reflec-
tivity followed by a sub-picosecond time scale recovery. Su-
perimposed on this recovery is a strong oscillatory feature
which corresponds to the pump-induced coherent phonon
modulating the index of refraction. We note that we only
observe coherent phonons ofA1g symmetry as is expected
from the DECP model.

The pump-probe data have been least-squares fitted to the
DECP model@Eq. ~1!# at each temperature to give the pa-
rameters 1/tel[b, 1/tph[g, andnph5v0 /2p. Because the
coherent phonon oscillations occur at a frequency not much
greater than the excitation pulse bandwidth, all fits had to be
obtained by convolving the autocorrelation function of the
pump pulse with the DECP impulse response. Without the
convolution fit, the magnitude of the coherent phonon ampli-
tude would be severely underestimated due to the finite
bandwidth of the pump and probe.

The most striking features of the data are the temperature

dependent behavior of the coherent phonon frequencies
(nph), the effective coherent phonon relaxation rate (1/tph),
and the effective electron relaxation rate (1/tel) shown re-
spectively in Figs. 4, 5, and 6. The coherent phonon frequen-
cies agree excellently with phonon frequencies at the lattice
temperatureTL measured by conventional Raman scattering.
The frequency of the coherentA1g mode decreases with in-
creasingTL by;10% through the semiconductor-metal tran-
sition and at higher temperatures theA1g frequency increases
again. The effective electron relaxation rate increases from
;331012 s21 to ;1031012 s21 as the material turns semi-
metallic. To demonstrate the correlation of (1/tel) with the
collapse of the energy gap, the inset in Fig. 6 shows a plot of
eg vs TL deduced from x-ray data~see Sec. IV!.

IV. THERMODYNAMIC RELATIONSHIPS

In this section we discuss the origin of the shift in equi-
librium value of q for the low frequencyA1g mode in
Ti 2O3 ~hereafter referred to as theA1gl mode! as a function
of lattice temperature and electronic excitation. In general,
two possible sources of this shift seem to be likely candi-
dates. The first is the redistribution of charge inkW space due
to excitation of carriers, leading to a corresponding spatial
redistribution of charge in the crystal, and a shift in the equi-
librium value ofq. This charge redistribution effect should,
in first approximation, be proportional to the number of ex-
cited carriers, but also should be affected by their distribu-
tion in excited bands. A preliminary calculation of the effect
of charge distribution onA1g equilibrium displacement for
the case of Sb was performed in collaboration with Gonze’s
group at the University of Louvain.25 This work was based
on first principles pseudopotential calculations of Gonze
et al.26

The second mechanism for a shift in equilibrium value of
q which we consider is based on the thermodynamic balance
between the free energy rise due to core electrons whenq is
increased from its equilibrium value, and the deformation
potential decrease of the free energy when valence electrons
are transferred to an excited band.

FIG. 3. Plots ofDR/R vs time measured in a
DECP experiment in Ti2O3 at temperatures rang-
ing from 300 K to 570 K.
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We find that the application of these two mechanisms to a
description of the change in equilibrium Ti-Ti pair distance
as a function of temperatureTL as measured in x-ray diffrac-
tion experiments allows a determination ofeg vs TL through
the band crossing. We also find that the model allows a mea-
surement of the change inq produced in pump-probe experi-
ments, and provides a description of the DECP experiments.

The model of Ti2O3 that we use is based on the band
crossing model of Goodenough,18 and the band structure cal-
culations of Ashkenazi and Weger.19 A schematic picture of
the relevant bands is shown in Fig. 7. At room temperature,
the valence band~2! is partly filled, and the conduction band
~1!, which is separated from band~2! by an indirect gapeg of
about 0.15 eV, is partly empty. According to the calculation
of Ref. 19, bands~1! and~2! would overlap if it were not for
the electron-electron interaction. We assume that the value of
gap at a given temperatureTL depends on all thermodynamic

variables, including the normal mode coordinates of the ma-
terial. Thus, we will argue that the static, equilibrium value
of eg at a given temperature, is determined by the minimiza-
tion of the free energy with respect to all thermodynamic
variables including coordinatesq(a), wherea labels the dif-
ferent modes. But, as theA1gl coordinateq alone varies
during DECP, the energy gap is modulated according to an
optical mode deformation potential associated with this
A1gl mode. The motion of the titanium and oxygen atoms in
theA1gl mode is shown in Fig. 1~b!. We take the distance
between the Ti atoms in this mode displacement as a mea-
sure ofq.

According to the band structure calculations there is no
single transition dominating the dielectric behavior of
Ti 2O3 at 2 eV. Furthermore, both real and imaginary parts
of the dielectric constant27 of Ti 2O3 at 2 eV are small, and
show maxima at;1 eV and;4 eV. We therefore expect

FIG. 5. Plot of 1/tph vs temperature measured
in a DECP experiment in Ti2O3 . The dashed line
shows the result calculated for two-phonon decay
alone. Black circles represent the fit to Eq.~ 77!
~see text, Sec. VI!.

FIG. 4. Plot of theA1gl mode frequency vs
temperature measured in a DECP experiment in
Ti 2O3 . Open squares and triangles represent two
DECP runs. Black squares show Raman scatter-
ing results~after Ref. 13!.
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that only a fraction of the excited carriers come from the
vicinity of the valence band~2!; and, indeed, the pump-probe
spectrum observed in Ti2O3 at room temperature shows a
fast component up to about a few ps after the pump pulse,
and much later a relatively small slow component. The
change in relaxation rate of the initial, fast component
roughly follows the temperature dependence of the energy
gap in Ti2O3 indicated by other experiments,14 so we as-
sume that this portion of the spectrum relates to the relax-
ation of the carriers associated with the fraction of the ex-
cited carriers in bands~1! and ~2!. In the following
discussion we take the Ti2O3 samples to be nearly intrinsic,
so that, at least at thermal equilibrium, the number of holes
in band~2! equals the number of electrons in band~1!.

We denote the lattice coordinate of theA1gl mode asq
~essentially characterized by the Ti-Ti pair separation asso-
ciated with theA1gl mode!; and all other modes, both optical
and acoustic, by the designationq(a). It will be convenient to
consider first the effect of the thermodynamic balance on the
shift in equilibrium value ofq. During the DECP process, all
the acoustic modes of the system will be constrained, and

only the displacementq of theA1gl mode will be important.
We therefore write the free energy per unit volume of the
system at temperatureTL due to the displacementq, and
excluding the contribution of the carriers in bands~1! and
~2!, as

FL~q!5n0aL~q2qeq
0 !22n0bL~q2qeq

o !31•••. ~6!

Here,qeq
0 is the equilibrium value of theA1gl coordinate at

the temperatureTL from FL alone; n0 is the number of
Ti 2O3 molecules per unit volume; andaL represents a force
constant for theA1gl mode. The term proportional tobL is
due to anharmonicity. We assume for simplicity thataL ,
bL , andqeq

0 have only a weak dependence onTL .
We must now consider the dependence on theA1gl coor-

dinate of the free energy per unit volume due to carriers in
bands~1! and ~2!. These bands are not well characterized,
either theoretically or experimentally. A variety of masses
ranging from (m* /m);2 to 5 and larger have been reported
in the literature.15,22 A1gl deformation potentials for the
bands are not known, but we will assume that bands~1! and

FIG. 7. A schematic picture of the relevant
conduction and valence bands of Ti2O3 before
and after band crossing.

FIG. 6. Plot of 1/tel vs temperature measured
in DECP experiments in Ti2O3 . Open circles are
the data. The black circles are the results of cal-
culations based on Eq.~56!. The black circle at
TL;430 K is the point at which the contribution
due to interband scattering vanishes~see text,
Sec. V!. The inset showseg vs TL determined
from x-ray data, using the parameter value
(N1 /N2)(m1

!/m2
!)3/252 ~see text, Sec. IV!.
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~2! can be characterized by deformation potentialsD1 and
D2 , respectively. The signs and magnitudes ofD1 andD2
are not known, but we will shortly see that it is reasonable to
assume that a deformation potential 2D̄5D12D2 , which
describes the modulation ofeg , is negative. This means that
an increase inq produces a decrease ineg . The deformation
potentials will be taken as nearly constant through the entire
lattice temperature range from 300 K, where Ti2O3 has an
indirect band gap of;0.15 eV, to;600 K, where the bands
have crossed. TheA1gl optical mode deformation potentials
D, in analogy with the usual definition of acoustic mode
deformation potentials, will be defined by the relation

De5D
Dq

q0
, ~7!

whereDe is the change in energy of the band edge,Dq is the
change in Ti-Ti pair separation associated withA1gl , and
q0 is taken for convenience as the pair separation at room
temperature,;2.6 Å .

The free energy of the carriers in bands~1! and~2! will be
described by a statistical distribution characterized by a tem-
peratureTL before the arrival of a pump pulse. Although
there is experimental evidence28 that excited electrons in
pump-probe experiments cannot always be described in
terms of an electron temperature, we make the simplifying
assumption that after the arrival of the pump pulse the carri-
ers are characterized by an effective temperatureTel . The
electron free energy expression we will use is therefore
based on the usual thermodynamic relation

F52~kBT!(
i
ln@11e2b~e i2eF!#1NeF , ~8!

whereN is the number of electrons,b51/kBT, eF is the
Fermi energy, ande i is the energy of thei th electron state.
Applying this expression to bands~1! and~2!, the electronic
free energy per unit volume at any temperature can then be
written ~see Fig. 7!

Fel52~kBT!N1E
0

`

r1~e!ln@11e2b~e1e12eF!#de

2~kBT!N2E
0

`

r2~e!ln@11e2b~e2e21eF!#de

2N2E
0

`

r2~e!@e2e2#de. ~9!

In Eq. ~9!, the first term on the right is the free energy of
electrons in band~1!, and the second term is the free energy
of the holes in band~2!. N1 andN2 are, respectively, the
number of conduction and valence bands. Both bands are
characterized by density of states factorsr(e), but in the first
integrale is measured up from the bottom of the band, while
in the second and third integralse is measured down from
the top of the band.e1 ande2 are respectively the energies of
the conduction and valence band edges.eg is taken positive
when the bands are not crossed. The third term on the right
in Eq. ~9! is the contribution of the filled band~2! to the
electronic free energy of the system, introduced when the
free energy of holes in band~2! was separated off. Since this

term does not vary with temperature, we can assume that it
has been included in the elastic free energy, Eq.~6!. It con-
tributes a temperature independent shift toqeq

0 . Equation~9!
does not include correlation energy, which is believed to be
responsible for the presence of an energy gap below 450 K.19

In addition to theq dependence of the electronic free
energy of the system, theq dependence of the phonon free
energy should be included in considering the equilibrium
value of theq coordinate. This free energy can be written

Fph5(
l

~kBT!E
0

`

r l ~\v!ln@12e2b\~v0l 1v!#d~\v!.

~10!

In Eq. ~10!, the sum overl represents a sum over branches
of the phonon spectrum, andv0l is the lowest frequency
point in the l th branch. The phonon branches do show a
softening of about 10–15 % through the transition, but as we
shall see, this could be mainly due to the anharmonic term in
the elastic free energy of Eq.~6!.

The equilibrium condition for the system free energy with
respect to changes in theA1gl mode coordinateq is

S dFdqD5S dFLdq D1S dFeldq D1S dFphdq D50. ~11!

We first treat the case where the entire system is at equilib-
rium at temperatureTL . Using partial integration of some
terms, the derivative ofFel with respect toq can be written

S dFeldq D5E
0

`Fr1~e!
de1
dq

2
dN1~e!

dq G f 1~e!de

1E
0

`F2r2~e!
de2
dq

2
dN2~e!

dq G f 2~e!de, ~12!

where

f 1~e! @11eb~e1e12eF!#21,

f 2~e! @11eb~e2e22eF!#21. ~13!

In Eq. ~12!, N(e) is the integrated density of states up to
energy e. If the changes ine1 and e2 with q are given,
respectively, by the deformation potentialsD1 andD2 , then
Eq. ~12! can be rewritten,

S dFeldq D5nSD1

q0
D @11he1

#2nSD2

q0
D @11hh2

#. ~14!

In Eq. ~14!, the additional factorshe1
andhh2

come from the

contributions ofdN1(e)/dq anddN2(e)/dq in Eq. ~12!, re-
spectively. Although the contributions ofr1(e) andr2(e) in
Eq. ~12! are proportional ton, and therefore independent of
the actual distribution of carriers, theh terms in Eq.~14! are
dependent on the statistical distribution of carriers as well as
carrier number. Near indirect band edges, where bands move
almost rigidly with q, we expectdN(e)/dq to be small.
Hence, theh8s should be small at equilibrium for small band
overlap.

It is difficult to evaluate how large an effect theq depen-
dence of the phonon free energy, Eq.~10!, has on the equi-
librium shift of q with temperature. The decrease observed in

54 111FEMTOSECOND STUDIES OF THE PHASE TRANSITION IN Ti2O3



Raman frequencies through the soft phase transition is 10–
15 %, and, as we will see, this could be due to the change in
n through the transition. In any case, the change seems to be
at least roughly proportional ton, and so we will assume
that, if not negligible, it can be lumped into Eq.~14! in the
form of possible corrections to the deformation potentials
D1 andD2 . From Eq.~14!, we then have the equilibrium
condition,

2n0aL~q2qeq
0 !23n0bL~q2qeq

0 !21nSD1

q0
D @11he1

#

2nSD2

q0
D @11hh2

#50. ~15!

Neglecting first the anharmonic term in Eq.~15!, the result-
ing shift in equilibrium value ofq is

Dqeq>
1

2aL
F2S n

n0
D S 2D̄

q0
D 2S ne1

n0
D SD1

q0
Dhe1

1S nh2
n0

D SD2

q0
Dhh2

G , ~16!

wheren5ne15nh2, and 2D̄[D12D2 .

aL can be eliminated from Eq.~16! if we write the equa-
tion of motion for theA1gl mode in terms of the reduced
massm,

mn0q̈52
]F

]q
.22aLn0~q2qeq

0 !. ~17!

The angular frequencyv0 of theA1gl mode is then given by
the relation

v0
2m>2aL . ~18!

Substitution in Eq.~16! yields

Dqeq>
1

v0
2m

F2S n
n0

D S 2D̄
q0

D 2S ne1
n0

D SD1

q0
Dhe1

1S nh2
n0

D SD2

q0
Dhh2

G . ~19!

We can now rewrite the total free energy,F5FL1Fel , in
terms of the new equilibrium position

qeq8 [qeq
0 1Dqeq

by replacing (q2qeq
0 ) in the free energy by

(q2qeq8 1Dq eq) and expanding in powers ofDqeq, keeping
terms up to second order in (q2qeq8 ). We find

F5n0aLF12
3bL
aL

$Dqeq
n 1Dqeq

n8%G~q2qeq8 !2, ~20!

where

Dqeq
n 52

1

v0
2m

S 2D̄q0 D S nn0D , ~21!

Dqeq
n85

1

v0
2m

F2SD1

q0
D S ne1

n0
Dhe1

1SD2

q0
D S nh2

n0
Dhh2

G .
~22!

Equation~21! is a term proportional to the number of elec-
trons transferred from band~2! to band ~1!, and Eq.~22!
represents a correction due to the distribution of carriers in
these bands. These two terms produce a shift in Raman fre-
quency through the presence of anharmonicity, as well as a
shift in equilibrium value ofq.

We now consider the effect of charge redistribution on the
shift in equilibrium value of theA1gl coordinateq. As noted
earlier, in the first approximation we expect the shift to be
proportional to the number of carriers transferred, but also to
depend somewhat on how the carriers are distributed in the
bands. But these effects can be included by interpreting the
parametersD1 , D2 , andhe1

, hh2
in Dqeq given in Eq.~16!

aseffectiveparameters. In that case, Eqs.~19!–~22! can be
interpreted as describing the effect of both charge redistribu-
tion and thermodynamic balance.

Equation~20! could explain the decrease in Raman fre-
quency of;10% observed in all modes of Ti2O3 in the
vicinity of 450 K. As the temperature is raised through the

soft transition,Dqeq
n andDq eq

n8 increase in magnitude in pro-
portion to the change in number of carriers at equilibrium.
Consequently, through anharmonicity all the Raman modes
show a decrease in frequency near the transition which ap-
proximately mirrors the change in carrier concentration.

During the course of theA1gl vibration, the energy gap
will be modulated according to the deformation potential
2D̄. Before band crossing, the electron distribution between
bands~1! and ~2! is not likely to adjust to the time-varying
equilibrium requirements, since the relaxation time for
equilibration between bands~1! and~2! should be long com-
pared to a vibration period. However, at a temperatureTL
greater than 450 K, when the bands have crossed, it is pos-
sible that the interband relaxation timet I could become
comparable to or shorter than a vibration period. This would
imply a spatial redistribution of charge, corresponding to the
charge redistribution inkW space, at terahertz frequencies. In
DECP, the large amplitude oscillating charge produced could
generate radiation in a material with anA1 mode, which does
not have a center of inversion symmetry.

The attempt of the population of band carriers to follow
the modulation of the energy gap can produce both an
A1gl frequency shift and a contribution toA1gl damping.
This problem has been considered by Cerdeira and
Cardona.29 If t I ~referred to astR by Cerdeira and Cardona!
is the carrier number relaxation time for interband transi-
tions, then the result is a correction to the frequency given by

Dv

v0
>
1

2

1

@11~v0t I !
2#

S 1

n0v0
2m

D S 2D̄q0 D 2S dndeg
D
q
eq8

~23!

and a contribution to theA1gl phonon damping in the form
of a relaxation rate

1

v0tph
52

1

2

v0t I
@11~v0t I !

2#
S 1

n0v0
2m

D S 2D̄q0 D 2S dndeg
D
q
eq8
.

~24!
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In Eqs.~23! and ~24! we have introduced

S dndqD
q
eq8

5S 2D̄q0 D S dndeg
D
q
eq8
. ~25!

It is important to note that the result in Eq.~23! is always
negative, and in Eq.~24! is always positive, sinceD̄ appears
squared, and (dn/deg)q

eq8
is negative.

The value oft I as a function of temperature is not known
in Ti 2O3 . However, in studies of the magneto-electro-
acoustic effect in Bi,t I , which was shown to be dominated
by phonon-assisted hole-electron interband scattering,
dropped sharply as the temperature of the sample was raised,
decreasing to;10212 s at;100 K.30,31This suggests that in
Ti 2O3 above 450 K, where the bands have crossed, the re-
laxation ratet I could be short enough so that Eqs.~23! and
~24! could give non-negligible contributions. However, a re-
lationship we derive in Sec. V between (1/t I) and an inter-
band contribution to (1/tel) after band crossing suggests that
v0t I in Ti 2O3 is ;4–6, making the contributions of Eqs.
~23! and ~24! small.

Even though the exact mechanism of phase transition in
Ti 2O3 is not established, the condition for equilibrium, Eq.
~11!, should still hold true. Therefore, neglecting the small
corrections due to theh ’s, the relation betweenDqeq andn
in Eq. ~19! can be treated as an empirical one. An empirical
estimate ofDqeq for theA1gl mode as a function ofTL can
be obtained for Ti2O3 from the changes observed in Ti-Ti
pair distance as the temperatureTL is raised. This distance
has been carefully measured in x-ray diffraction studies
through the transition.11 The measurements indicate that the
Ti-Ti pair coordinates and the surrounding oxygen coordi-
nates change in a manner qualitatively consistent with the
behavior expected of theA1gl coordinateq @see Fig. 1~b!#.
An approximate decomposition of the changes in coordinates
through the transition can be made intoc-axis strain and
displacementq by comparing the fractional change in
c-axis coordinate to the fractional change in Ti-Ti pair spac-
ing. The latter change is about twice the former, suggesting
that half the Ti-Ti displacement is due to the change in
A1gl coordinateq.

To compare the measuredDqeq as a function ofTL with
Eq. ~19!, values of 2D̄ and ofn as a function ofTL must be
obtained. Unfortunately, the value of 2D̄5D12D2 is not
known, although we obtain a value ofuD2u>2.0 eV from
comparison of a theoretical calculation of 1/tel at room tem-
perature with the measured value~see Sec. V!. Furthermore,
values ofn are found experimentally to be roughly in the
range of;3.9 to 5.931019 cm23 at 300 K,17 but values
have not been reported at all at higher temperatures. To cal-
culaten from a band model, the effective spherical constant
energy surface band masses (m1

!/m0) and (m2
!/m0) of the

conduction and valence bands must be known, as well as
eg at each temperatureTL . A measurement of the effective
mass for the valence band, (m2

!/m0)>5, has been obtained
from early measurements of thermoelectric power,15 and in
fact this mass is used in Sec. V in determining the value of
uD2u.

To test Eq.~19!, we must first obtain results for (n/n0) as
a function of temperature. If values of (m1

!) and (m2
!) for the

conduction and valence bands andTL are given, and the
value of eg is known, thenn can be calculated from the
condition that at equilibrium, the number of electrons in in-
trinsic Ti2O3 equals the number of holes. This condition is

n5N1E
0

`

r1~e!
de

eb~e1e12eF!11

5N2E
0

`

r2~e!
de

eb~e2e21eF!11
. ~26!

In Eq. ~26!, eg5e12e2 , whileN1 andN2 are the number of
conduction and valence band edges, respectively, in the Bril-
louin zone. Band structure calculations indicate thatN153
and N252.19 The density of state factors in the effective
mass approximation are given by

r~e!5Ce1/2, ~27!

where

C5
8pA2
h3

~m!!3/2. ~28!

When Eq.~26! is applied to the valence band of Ti2O3 , we
can write the expression forn, the number of holes per unit
volume in the valence band as

n52.8431019 cm233Sm2
!

m0
D 3/2S TLTRT

D 3/2
3N2E

0

` x1/2dx

e~x2h2!11
, ~29!

where h25eF2 /kBTL , x5e/kBTL , and eF2 is the Fermi
level measured down from the top of the valence band~see
Fig. 7!. Equation ~26! for given values ofTL , eg , and
(N1 /N2)(m1

!/m2
!)3/2 allow a determination of botheF and

n.
To make use of the x-ray data in testing Eq.~19!, we

evaluate the quantities

~Dqeq!TL[@~q eq!TL2~qeq!300 K# ~30!

at the temperatures at which the x-ray data were taken.11 As
discussed above, we identify (qeq)TL as approximately half

of the Ti-Ti pair spacing from x-ray measurements atTL .
Assuming the effects ofhe1

andhh2
are small at equilibrium,

we then obtain from Eq.~19!,

~Dqeq!TL52
1

v0
2m

S 2D̄q0 D ~Dn!TL
n0

, ~31!

where (Dn)TL[@(n)TL2(n)300 K#. While D̄ may change by

;15% or so as the temperature rises through the soft transi-
tion, as do elastic constants,n will change by over an order
of magnitude. For simplicity, we will then treatD̄ as a con-
stant.

The strategy for testing the reasonableness of Eq.~19! is
to take (m2* /m0) as 5 ~the value used in Sec. V to obtain
uD2u), N252, N153, and then to choose a value ofr3/2

defined as
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r3/2[~N1 /N2!~m1* /m2* !3/2. ~32!

With these choices,n can be obtained atTL5300 K ~where
eg50.15 eV! and atTL5450 K ~where eg>0). Applying
Eq. ~31! for TL5450 K, with the valuesv05233 cm21 in
wave number units,m;24 ~the Ti2O3 reduced mass in mo-
lecular weight units!, q052.6 Å , and 1/n0551.8 Å 3, we
then obtain a value for 2D̄. Next, applying Eq.~31! to the
x-ray data at other temperaturesTL , we can calculate
(Dn)TL from the ratio

~Dn!TL
~Dn!450 K

5
~Dq eq!TL

~Dqeq!450 K
. ~33!

Finally, eg at the temperatureTL is determined from
(Dn)TL.

This procedure was followed for a number of values of
r3/2 using tables of Fermi integrals.32 The results obtained
for (2D̄), and forn andeg at a number of temperaturesTL
are shown in Table I. Negative values ofeg refer to values of
band crossing. We see that reasonable results are obtained
for (n)(300 K) and for (2D̄) for values ofr

3/2 of ;1.5–3. The
choice of (m2* /m0)55 was made somewhat arbitrarily in
order to have only one variable to consider. This mass is no
better established than other parameters in Ti2O3 . Transport
measurements and band structure calculations suggest that
(m1* /m2* ) should be greater than 1. It should be noted that
changing (m2* /m0) changesn and 2D̄, which scale, respec-
tively, as (m2* /m0)

3/2 and (m2* /m0)
23/2. But the choice of

(m2* /m0) does not affecteg values, which depend only on
r3/2. Remarkably, the values ofeg at different temperatures
vary only slightly with r3/2 in the range studied, and all of
these values lead to an overlap of the valence and conduction
band after the soft transition of about 0.06 eV. A rough value
of the position of the Fermi level in the valence band at
TL5621 K for r3/2;2 is eF2;0.06 eV. The values ofeg at
several temperatures obtained by this method for
(m2* /m0)55 andr3/252 are plotted vsTL as an inset in Fig.
6.

As pointed out earlier, we have extended the interpreta-
tion of Eqs.~19!–~22! to include both the effects of charge
redistribution and thermodynamic balance between core en-
ergy and deformation potential energy. It should be noted
that, although some contribution of charge redistribution

might be included in explaining the experimental results of
Dqeq with TL , the value of 2D̄ obtained in Table I forr3/2

about equal to 2 is quite reasonably interpreted as a defor-
mation potential.

Having considered the case of equilibrium at a tempera-
tureTL ~that is, for both lattice and electron system at tem-
peratureTL), we now consider the changes introduced by the
incidence of the pump pulse. Assuming most of the DECP
signal observed is due to transfer of electrons out of the
valence band~2! and into some excited bands labeled by
( i ), we write from Eq.~19! the change indqeq produced by
the pump,

dqeq>
1

v0
2m F S dn

n0
D SD22Di

q0
D2S dn

n0
D SDi

q0
Dhei

1S n1dn

n0
D SD2

q0
DDhh2

1S dn

n0
D SD2

q0
Dhh

2
~0!G ,

~34!

where dn is the number of electrons transferred,Di is an
effective deformation potential for the excited bands (i ),
hei

represents the correction due to the distribution of elec-

trons in the bands (i ), hh
2
(0) is the value ofhh2

before the

pump pulse, andDhh2
[(hh2

2hh
2
(0)) is the change produced

by the pump pulse. Before band overlap (TL,450 K), the
only rapidly varying quantities~on a time scale of;1 ps!
arehei

andDhh2
. These two parameters can change rapidly

due to the cooling of the excited electron distribution through
the mechanism of the electron-phonon interaction~see Sec.
V!. dn will change much more slowly by interband recom-
bination processes. In addition, the effectiveDi may change
slowly as the electrons transfer between higher-lying bands.
After band crossing (TL.450 K), there will be a rapidly
changing interband contribution todqeq produced by the de-
cay of dn due to interband recombination~see Sec. V!.

We will estimate the size of the displacementdq of the
A1gl mode produced by the pump pulse in our DECP ex-
periments in Ti2O3 , by establishing a rough calibrating re-
lationship between measured values ofDR/R and the dis-
placements producing them. This can be done in an
approximate manner by comparing the change in reflectivity
in raising the sample temperatureTL from 300 K to 450 K, to
the corresponding change in equilibrium Ti-Ti pair spacing.8

TABLE I. Model band parameters deduced from x-ray data on Ti2O3 , using (m2
!/m0)55 and values ofr3/2[(N1 /N2)(m1

!/m2
!)3/2

shown. Values ofeg at T5300 and at 450 K are, respectively, taken aseg50.15 eV andeg50. Results forn~390 K!, n~490 K!, and
n~565 K! have also been calculated, but are not included for lack of space. Negative values ofeg correspond to overlapping bands.

r3/2 eg(390 K) eg(490 K) eg(565 K) eg(621 K) n(300 K) n(450 K) n(621 K) (2D̄) eF2~621 K!

eV eV eV eV 310219 cm23 310219 cm23 310219 cm23 eV eV

1 0.095 -0.034 -0.054 -0.061 2.76 79.06 199.8 -6.50 0.030
1.5 0.098 -0.034 -0.055 -0.062 3.36 144.60 363.4 -3.50 0.046
2 0.100 -0.035 -0.056 -0.063 3.90 221.21 563.1 -2.28 0.057
2.5 0.101 -0.035 -0.056 -0.064 4.42 305.98 788.0 -1.64 0.065
3 0.102 -0.036 -0.057 -0.065 4.76 398.69 1006.3 -1.26 0.073
4 0.104 -0.036 -0.058 -0.066 5.48 608.25 1567.2 -0.82 0.084
5 0.105 -0.037 -0.059 -0.067 6.24 828.02 2085.7 -0.60 0.093
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The reflectivity is found to decrease by;10% during this
increase in temperature, while the Ti-Ti pair spacing in-
creases by about 0.04 Å . Weassume that (DR/R), produced
by changes in Ti-Ti pair spacing, is roughly proportional to
those changes, whether produced by changes inc-axis strain
or by changes inA1gl coordinate. If this proportionality
holds approximately whether or not the pair spacing changes
have their equilibrium values, then we can establish our cali-
bration. The result is

dq>
0.04

~20.10! S DR

R DÅ >20.40S DR

R DÅ . ~35!

It should be noted that this calibration applies only to that
portion ofDR/R which is due to changes in displacement of
theA1gl coordinate, and thus does not apply to theA term in
Eq. ~1!.

To apply Eq.~35! to Ti 2O3 at room temperature, we note
that B, which is equal to25.731022, is the value of
DR/R due todqeq at t501. This yields

dqeq~ t501!>0.023 Å . ~36!

The total swing indq in the first cycle of vibration is thus
dq>0.046 Å . This is to be compared with the value of the
zero point r.m.s. amplitude of theA1gl phonon,

q̄5A \

2mv0
5

3.98

@m~MW!3l21~cm21!#1/2
Å , ~37!

in convenient units. Takingm;24 in molecular weight units,
and theA1gl mode frequency as 233 cm21, we find

q̄>0.053 Å . ~38!

V. ELECTRON RELAXATION

As shown in Fig. 6, the behavior of the effective relax-
ation rate 1/tel with sample temperature indicates a strong
correlation with the disappearance of the energy gap. While
there may be other ways of understanding this result, the
behavior strongly suggests that the background decay for
times less than a few ps is associated in some way with
carrier distributions in bands~1! and ~2!. Our model of the
pump excitation process in Ti2O3 will assume that the spec-
tra produced in the first few picoseconds after the arrival of
the pulse are due mainly to the excitation of carriers from the
valence band~2!, leaving the valence band electrons, after
rapid equilibration, at a temperatureTel . The pump pulse in

our present experiments removes electrons from the valence
band at a depth of a fraction of a volt, adding considerable
energy, but changing the number of carriers by only a small
amount. The decay of this excess energy is mainly due to
carrier scattering, with the emission or absorption of
phonons. Before band crossing, the relaxation rate 1/tel
would be mainly due to an intraband contribution

1

tel
5

1

tel intra
. ~39!

After band crossing, however, there would be an interband
contribution as well, so that,

1

tel
5

1

t el intra
1

1

tel inter
. ~40!

Both of these components would depend on the energy gap
eg ~which varies with lattice temperatureTL), as well as the
effective electron temperatureTel .

Questions have been raised28 concerning the correctness
of describing excited electron distributions in optical pump-
probe experiments in terms of an effective electron tempera-
tureTel . However, it is difficult to attempt any analysis on a
more general basis, and theoretical calculations based on this
model yield results which are reasonably consistent with the
observation of relaxation rates in Ti2O3 over a range of
lattice temperaturesTL .

Allen33 has presented a theoretical description of the cool-
ing of a heated electron gas raised to a temperatureTel by an
exciting optical pulse, and this theory has proven to be par-
ticularly useful in describing femtosecond pump-probe ex-
periments in metals. We will adapt his treatment to the more
general case of a material that does not have a sharply de-
fined Fermi surface, as in the case of Ti2O3 at room tem-
perature.

Allen’s discussion begins with an expression for the rate
of energy loss due to exchange of energy between two
groups of electrons, labeled bykW and kW8 which have been
heated by a pump pulse~see Fig. 8!. Allen’s original treat-
ment deals with these heated electrons in the same band, but
we will generalize the result to the case wherekW andkW8 may
not be in the same band. Transitions occur between these two
groups by phonon emission and absorption processes, with
the phonon population at equilibrium at a temperatureTL .

FIG. 8. A schematic picture of the electron
intraband and interband scattering diagram with
emission of phonons in Ti2O3 .
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For the set of electronskW andkW8 heated to a common tem-
peratureTel , the rate of energy loss can be written

]E

]t
5Sk,k8,QS 2p

\ D uMk,k8u
2~\vQ!@~ f k82 f k!nQ~TL!

2 f k~12 f k8!#d~ek2ek82\vQ!d~kW2k8W2QW !.

~41!

Here,k labels an initial electron state of energyek ; k8 labels
a final electron state of energyek8; Q labels a phonon of
wave vectorQW , and energy\vQ . Mk,k8 is a matrix element
for the scattering from the statek to k8 with the emission or
absorption of a phonon.f k and f k8 are the Fermi distribution
functions for excited electrons at temperatureTel ; and
nQ(TL) is the Bose distribution function for phonons at tem-
peratureTL ,

nQ~TL!5@e\vQ /kBTL21#21. ~42!

In general,Tel will decrease andTL will increase as a
function of time after the pump pulse. We assume that the
change inTL is small and can be neglected. Thed functions
in Eq. ~41! guarantee energy and wave vector conservation
in the phonon emission and absorption processes. It should
be noted that if there are several electronic bands involved in
the electron cooling, there may be intraband and interband
contributions to Eq.~41! from each band, and if a number of
phonon modes are involved, there will be a contribution
from each one.

Equation~41! can be simplified somewhat by using the
fact that the rate of loss of electron energy vanishes if the
phonon system is at the electron temperatureTel . Equation
~41! can then be written

]E

]t
52Sk,k8,QS 2p

\ D uMk,k8u
2~\vQ!~ f k82 f k!@nQ~Tel!

2nQ~TL!#d~ek2ek82\vQ!d~kW2k8W2QW !, ~43!

where nQ(TL) and nQ(Tel) are the phonon populations at
temperaturesTL andTel , respectively.

For simplicity, we next make the assumption that the rel-
evant values of\vQ in Eq. ~43! are less than the excited
electron energy.kBTel , so that it is reasonable to expand
f k8 as

f k8. f k1S ] f

]e D
k

~2\vQ!. ~44!

This is roughly the case for Ti2O3 even if the major phonon
involved is, as we will argue, theA1gl optical phonon at a
frequency of;233 cm21. Using Eq. ~44!, and changing
from summation to integration in Eq.~43!, we can write

]E

]t
52 1

2 V
2E E P~e,e8!S 2

] f

]e D r2~e8!de8r1~e!de,

~45!

where r2(e) and r1(e8) are, respectively, the densities of
states in energy on the constant energy surfaces containing
the stateskW andk8W ~see Fig. 8!. The factorV2 comes from the

proportionality of the density of states to the sample volume.
The factor of 1/2 in Eq.~45! comes from electron spin con-
servation during scattering.P(e,e8) represents an average
over the two constant energy surfaces of the energy loss rate,

P~e,e8!5 K S 2p

\ DSQuMk,k8u
2~\vQ!2@nQ~Tel!2nQ~TL!#

3d~ek2ek82\vQ!d~kW2k8W2QW !L
av

. ~46!

As we will see in a moment,r1(e8) in Eq. ~45! may refer
to a different band, implying interband scattering, but only if
the distributions in the two bands are characterized by a
commonT el . For the moment we consider intraband scat-
tering only. For energy loss byacousticphonons, not every
point on the surface with energye8 may be accessible to a
given point on the surface with energye by a phonon process
consistent with the two delta functions in Eq.~46!. For en-
ergy loss due toopticalphonons we can describe the phonon
by an average flat spectrum of angular frequencyv0 , inde-
pendent ofQW , so that all points on the energy surfacee8 at
energye1\v are accessible to the scattering process. For an
optical phonon, neglecting theQ dependence of the matrix
element, callingr2(e)5r(e), and replacingr1(e8) by
r(e1\v).r(e), the integration overe8 in Eq. ~45! can be
performed to yield

]E

]t
52 1

2 V
2S 2p

\ D uM u2~\v0!
2@n~Tel!2n~TL!#

3F E S 2
] f

]e D @r~e!#2deG
Tel

. ~47!

We have introduced the bracket@ #Tel as a reminder that the

integral in Eq.~47! is taken withf (e) evaluated atT5Tel .
From Eq.~47!, we can define approximately a relaxation

rate (1/tel intra), which describes the initial rate of decay of
energy of the excited electron gas after the pump pulse by
the relation

S 1

tel intra
D.2

1

DE

]E

]t
. ~48!

In using this definition of 1/tel , we are assuming that the
disturbance in carrier energyDE is the measure of the elec-
tronic excitationsn* in Eq. ~4!. Combining Eqs.~47! and
~48!, we have

S 1

tel intra
D5

1

2 S 2p

\ DVuM u intra
2 ~\v0!

2@n~Tel!2n~TL!#

3

F E S 2
] f

]e D @r~e!#2de G
Tel

F E e f ~e!r~e!de G
T el

2F E e f ~e!r~e!de G
TL

,

~49!

whereDE is V times the denominator in Eq.~49!.
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Because theA1gl mode in Ti2O3 appears to strongly
modulate the energy gap, and therefore appears to be
strongly coupled to the valence band~2! and conduction
band ~1!, we focus our attention on this mode as the one
dominating the relaxation in Eq.~47!. It should be kept in
mind that this is an approximation, and that some contribu-
tion from other vibrational modes could be significant.
Acoustic mode intraband scattering is likely to be small,
since acoustic mode scattering is proportional touQu2,34

which should be small for scattering near a band edge. On
the other hand, for interband scattering across the Brillouin
zone, both optical and acoustic modes have been found to be
important, depending on sample temperature.30,31 The appli-
cation of Eq.~47! to interband scattering would be appropri-
ate only if the carrier distribution in both initial and final
bands were characterized by a common temperatureTel .

Assuming that the matrix element describing the electron-
phonon coupling to theA1gl mode can be expressed in terms
of a deformation potential,uM u intra

2 can be written34

uM u intra
2 5S vucV D q̄2S ]u

]qD
2

. ~50!

In Eq. ~50!, (]u/]q) represents the modulation in energy of
the band edge withA1gl mode displacementq, vuc[1/n0 is
the volume of the unit cell, andq̄ is the zero-point root mean
square displacement of the phonon, given by Eq.~37!.

Equation ~50! can be written in terms of a deformation
potentialD as defined in Eq.~7!. We take@r(e)# as a spheri-
cal band density of states given by Eq.~27!. It is convenient
to write the integrals in Eq.~49! in dimensionless units, and
to regroup the terms.

We then have

S 1

tel intra
D 5F ~m0!

3/2

A2p\2~kBTRT!
1/2G

3FD2Sm*m0
D 3/2S vucq0

2 D 1mG3P3S, ~51!

where

P[S \v0

kBTel
Dn~Tel!F12

n~TL!

n~Tel!
G , ~52!

S[S TRTTel
D 1/2 @*0

` f dx#T el

F E
0

`

f x3/2dxG
Tel

2~TL /Tel!
5/2F E

0

`

f x3/2dxG
TL

,

~53!
and the Fermi functionf (x) is of the form

f ~x!5@e~x2eF /kT!11#21. ~54!

In Eq. ~51!, the first bracketed factor contains parameters
which are independent of temperature and material.kBTRT is
the value ofkBT at room temperature,TRT5300 K. The
second bracketed factor contains material-dependent but
temperature independent parameters. The termP is a dimen-
sionless phonon occupation factor which is usually of the
order of unity for (\v0 /kBTel)!1, since in that limit

n(Tel).(kBTel /\v0). The last, dimensionless, temperature-
dependent statistical factorS depends on the value of the
parameters eF(Tel)/kBTel and eF(TL)/kBTL . The term
@*0

` f dx#Tel in S was obtained by partial integration of

@*0
`(2] f /]x)xdx#Tel. Rewriting Eq.~51! in terms of param-

eters expressed in convenient units, we find

S 1

tel intra
D 50.45331012 s21

3FD2~eV2!Sm*m0
D 3/23S vuc~Å 3!

q0
2~Å 2! D 1

m~MW!G
3P3S. ~55!

In Eq. ~55!, the reduced massm is expressed in molecular
weight units. It should be noted that the dependence of
(1/t el intra) on the dominant optical phonon is represented
only in the values ofD, q0 , the appropriate value ofm, and
in the factorP. Equation~55! should apply to the case of
Ti 2O3 , at least in the temperature range from 300 K to
;450 K, where (1/tel inter) should be negligible.

To apply Eq.~55! to Ti 2O3 , we must then evaluate the
bracketed, temperature independent factor, along with the
factorsP and S, which depend onTel , TL , and the ratio
eF2 /kBT at these temperatures. We have evaluatedP and
S and their product for many combinations of parameters,
over a range of values ofTL from 300 K to;450 K, where
the band gap vanishes and for values ofTel2TL from 50 K
to several hundred K. Over this range of parameter value
combinations, the productPSwas nearly constant at a value
of ;0.5 6 15%. The reason for this constancy can be at
least partly understood by noting that thePSproduct is pro-
portional to ;(1/DE)3@n(Tel)2n(TL)#. An increase in
Tel thus increasesDE, but also produces a compensating
increase in@n(Tel)2n(TL)#. The constancy of the product
PS implies that 1/tel should be nearly constant with increas-
ing TL as the temperature approaches 450 K, where band
crossing begins. This prediction is consistent with observa-
tion.

We can apply Eq.~55! to the relaxation rate observed in
Ti 2O3 at 300 K, using the valuePS>0.5. The effective
massm of the vibrating atoms in theA1gl mode of Ti2O3 is
approximately the reduced mass of the vibrating Ti atom
pair, m>24; the unit cell volumevuc is 51.8 Å 3; andq0 ,
taken as the distance between Ti atoms in a vibrating pair, is
2.6 Å . The carrier effective mass ratio for the valence band
is not conclusively known, but one value quoted in the
literature15 is (m* /m0)55. The remaining unknown param-
eter isD2 for the valence band, but this can be determined by
equating the observed relaxation rate at room temperature
(1/tel53.331012 s21) to Eq. ~55!. The result is,uD2u>2.0
eV. It should be kept in mind that the value of
(m2

!/m0)55 is not well established. Thus, the value of
uD2u determined from our experiment will scale as
(m2

!/m0)
23/4.

We now turn our attention to the consideration of 1/tel
after the bands cross. Equation~55! can still be used to de-
scribe the electronintraband relaxation rate, after band
crossing, and we first ask what combination ofeF2 andTel is
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required in order to explain the measured value of relaxation
rate atTL>600 K on the basis of intraband relaxation alone.
We noted in Sec. IV that based on the thermodynamic model
considered, the equilibrium value ofuegu at TL5 621 K was
about 0.06 eV, and the value ofeF2 was roughly the same.
We find that values ofeF2 much larger than 0.06 eV~which
would have to be produced by the pump pulse! must be
assumed to give relaxation rates atTL5 600 K that are three
times those at 300 K. The number of carriersn required to
produce this large shift ineF2 is found to be over an order of
magnitude larger than the total value ofdn produced by the
pump pulse. Thus, an increase in intraband scattering after
the bands cross can only be a small part of the explanation
for the factor of 3 increase observed in (1/tel).

To compute theinterbandcontribution to 1/tel when the
bands have crossed, we return to Allen’s treatment of the two
sets of electrons labeled bykW andkW8, which are interacting
by the emission and absorption of phonons of angular fre-
quencyv0 . We will assume that the labelkW refers to elec-
trons in band~2! andkW8 to electrons in band~1!. We consider
two possibilities.

Case~a!: Carriers in both bands~2! and ~1! are raised to
temperature;Tel by the pump pulse.

Case~b!: Only the carriers in valence band~2! are heated
by the pump pulse to temperatureTel , while carriers in con-
duction band~1! remain at essentiallyTL .

For case~a!, Eq. ~43! applies, which means that the final
result for (1/tel inter)a is of the same form as Eq.~49!, except
that the integral in the numerator involves the joint density of
statesr1(e)r2(e) for the two bands, and the denominator
has a contribution toDE from both bands. However, the
result will be proportional to an interband matrix element
uM u inter

2 which should in general be different fromuM u intra
2 .

The density of states factor in the numerator of Eq.~49!
would increase, but this would be largely compensated by an
increase inDE. Therefore, except in the unlikely case that
uM u inter

2 @uM u intra
2 , (1/tel inter)a cannot explain the large in-

crease in (1/tel) after band crossing.
To evaluate the result for case~b!, we generalize Allen’s

expression33 for the rate of energy loss of two groups of

electrons labeled bykW andkW8and interacting by the emission

and absorption of phonons.kW labels the electrons in band~2!

at temperatureTel , while kW8 labels the electrons in band~1!
at temperatureTL . Since the electrons in the two bands are
not at the same temperature, we cannot apply Eq.~43! to this
case~see Fig. 9!. In the simplest situation, Fig. 9 corresponds
to cooling by exchanging hot electrons in band~2! for cooler
electrons in band~1! by scattering via phonon emission and
absorption. Of course, if the difference in temperature be-
tween the electrons in these two bands vanishes, then the
large contribution from case~b! vanishes, and we are left
with the smaller contribution from case~a!.

The general expression for (1/t el inter)b can be written

S 1

tel inter
D
b

5
1

2 S 2p

\ D uM u inter
2 ~kBTRT!

1/23
VN1N2C1C2I Tel ,TL

N2C2DE8
,

~56!

where

I Tel ,TL5S 1

kBTRT
D 3F E

0

eg1\v0
$n f2~e!@12 f 1~e2\v0!#2~n11! f 1~e2\v0!@12 f 2~e!#%3~e!e1/23~ uegu2e1\v0!

1/2de

1E
0

eg2\v0
$~n11! f 2~e!3@12 f 1~e1\v0!#2n f1~e1\v0!@12 f 2~e!#%3~e!e1/2~ uegu2e2\v0!

1/2deG , ~57!

and

DE85
DE

N2C2~kBTRT!
5/25S 1

kBTRTD 5/2F H E0`@12 f 2~e!#~e!e1/2deJ
T el

2H E0`@12 f 2~e!#~e!e1/2deJ
TL

G . ~58!

FIG. 9. A schematic diagram showing the electron populations
representing (1/tel inter)b ~to the left! and 1/t I in Ti 2O3 ~see text,
Sec. V!. The figures show Fermi distributions as a function of en-
ergy. For (1/t el inter)b the Fermi levels nearly coincide, but the tem-
peratureTel in band~2! is greater thanTL in band~1!. For 1/t I the
Fermi levels are shifted, and the temperaturesTL in both bands are
the same.
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In Eq. ~56!, C1 andC2 are, respectively, the density of states
factors given by Eq.~28! for the bands~1! and ~2!. I Tel ,TL
andDE8 are dimensionless quantities.n is the phonon popu-
lation factor at temperatureTL . The energy in the integrals is
measured down from the top of band~2!. The Fermi func-
tions in Eq.~57! are given by

f 2~e!5
1

e~2e1eF28
!/kTel11

, ~59!

f 1~e!5
1

e~2e1eF2
!/kTL11

, ~60!

whereeF2 is the Fermi level in both bands atTL , andeF28 is

the Fermi level in band~2! at electron temperatureTel . Al-
though the schematic in Fig. 9 does not show a difference,
the Fermi leveleF28 is not exactly the same aseF2; eF28 is

calculated at temperaturesTel by the condition that the num-
ber of carriers is approximately the same as at temperature
TL before the pulse. In Eqs.~58!, f 2(e) is given by Eq.~59!
in the first integral, and is the same asf 1(e), Eq. ~60! in the
second integral.

We will apply Eq. ~56! to the case of Ti2O3 after band
crossing. To do the calculation realistically, we keep the de-
pendence on\v0 , which means that there will be a contri-
bution to interband scattering with the absorption of a pho-
non even when a gapeg,\v0 exists between valence and
conduction band. We have performed the numerical integra-
tion of I Tel ,TL at temperaturesTL5565, 490, and 450 K using

values of the gap given in Table I for the caser3/252. With
the assumption that the energyDE given to the valence band
by the pump pulse is nearly constant at all temperatures, the
denominator in Eq.~56! is constant and all of the dependence
of (1/tel inter)b on TL is contained inI Tel ,TL. For a given

value ofTel atTL5565 K the values ofTel are determined at

other lattice temperatures by the condition thatDE is con-
stant. We have calculatedI Tel ,TL at the three lattice tempera-
tures assuming a value forTel at TL5565 K. Matching the
measured value of (1/tel) at 565 K to the expression

S 1telD5S 1

t el intra
D1KI Tel ,TL,

yields predicted values of (1/tel) at the temperatures
TL5490 and 450 K. Such calculations have been performed
for Tel5665 and 765 K atTL5565 K, giving values of
DE851.68 and DE853.40, respectively. For the case
DE851.68, we obtain@ I Tel ,TL#565 K50.558, @ I T el ,TL

#490 K
50.323, and@ I Tel ,TL#450 K50.052. ForDE853.40, we find

@ I T el ,TL
#565 K51.03, @ I Tel ,TL#490 K50.564, and

@ I Tel ,TL#450 K50.081. These calculations yield the points

shown in Fig. 6. The results for the two choices ofTel are
only slightly different, and match the observed data reason-
ably well.

From Ref. 2, we can calculate the total energy per unit
volume delivered by the pump pulse at the sample surface
for 2 eV photons with the relation,

DEtot~eV cm23!52.031020n2~12R! cm2332 eV,
~61!

wheren2 is the imaginary part of the index of refraction and
R is the material reflectivity, both evaluated at the pump
frequency. For Ti2O3 at room temperature,n2>2 and
R>0.1.27 This yieldsDEtot>7.231020 eV cm23. Compar-
ing the energyDEtot delivered to the sample by the pump
pulse with DE corresponding toTel5665 and 765 K at
TL5565 K, we findDE is, respectively, 3.7% and 7.5% of
DEtot for the two cases.

We will compare (1/tel inter)b at 565 K given by Eq.~56!,
with (1/tel intra) at 300 K from Eq.~49!. From the definitions
of P andS in Eqs.~52! and~53!, we can rewrite Eq.~49! as

S 1

tel intra
D 5

1

2 S 2p

\ D uM u intra
2 V3

C2~\v0!

~kBTRT!
1/23PS. ~62!

SincePS;0.5 at 300 K, we find

@~1/tel inter!b#565 K
@~1/tel intra!#300 K

5
uM u inter

2

uM u intra
2 N2SN1

N2
D Sm1

!

m2
!D 3/2

3
~kBTRT!

~\v0!0.5

I Tel ,TL
DE8

. ~63!

If we attribute the difference between 1/tel at 565 and 300 K
to (1/tel inter)b , then the ratio in Eq.~63! must be;2 and we
find for both the caseTel5665 and 765 K atTL5565 K,
uM u intra

2 /uM u inter
2 ;1. While this result is probably fortuitously

close to 1, since approximations have been made in obtain-
ing Eq. ~63!, these calculations suggest thatuM u intra

2 and
uM u inter

2 are roughly the same.
The energy relaxation rate of Eq.~56! for band~2! is due

to transfer of energy between the valence band~2! at tem-
peratureTel and conduction band~1! at temperatureTL . This
kind of increase in effective relaxation rate with band cross-
ing is consistent with the observations of Schoenleinet al.,35

in their study of the effect of overlapping bands in the GaAs-
GaAlAs alloys. The difference is that in their experiments
electrons pumped into the conduction band transfer into a
subsidiary band which is empty.
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In recent high power DECP experiments in Sb,36 it has
been observed that (1/tel) probably increases with pump-
pulse power, although this interpretation of the data is com-
plicated by the observation that (1/tph) also appears to in-
crease with power. One contribution to the increase of
(1/tel) with pump power could be an increase ineF2 at high
powers due to pumping of electrons out of band~2! ~see Fig.
9!, leading to more hole states available in band~2! for scat-
tering of cool electrons from band~1!, and resulting in a
faster relaxation rate.

It is also interesting to consider the result obtained for
(1/tel inter)b in the limiting case of sharply defined Fermi
levels in bands~1! and ~2!, and to compare this with the
expression for (1/t I) obtained in Refs. 30 and 31. For this
calculation, we will assume that\v0!kTL ,kTel . The as-
sumption of sharply defined Fermi surfaces means thateF1
andeF2 are both large compared tokBTel andkBTL . We also
assume that the number of electrons removed from band~2!
by the pump pulse is small compared to the number of holes
present before the pulse, so that the Fermi level is not shifted
appreciably. Both the numerator and denominator in Eq.~56!
must be evaluated by expansion about the Fermi energy, as
both consist of the difference between nearly equal large
terms, and the residual differences come mainly from contri-
butions near the Fermi energy~see Fig. 9!. If we assume that
\v0 /kTel and\v0 /kTL are both small compared to 1, then
\v0 can be neglected in Eq.~57!. Expanding the energy and
density of states factors in Eq.~56! about the Fermi energy
eF2 in the valence band, and using the condition, Eq.~26!,
that the number of holes in band~2! equals the number of
electrons in band~1! leads to the relation

N1m1
!3/2eF1

3/25N2m2
!3/2eF2

3/2, ~64!

and Eq.~56! becomes

S 1

tel inter
D
b

5
1

2 S 2p

\ D uM u inter
2 V3N1C1~eF1!

1/2

3@12 1
3 r#@2n~TL!11#, ~65!

where

r5SN1

N2
D 2/3Sm1

!

m2
!D 5S eF2

eF1
D . ~66!

Equation~65! can be compared with the interband number
relaxation rate 1/t I ~discussed in Sec. IV!, when the valence
and conduction bands are both at temperatureTL , but the
Fermi levels between carriers in the two bands have been
displaced by a deformation of the lattice occurring during a
lattice vibration~see Fig. 9!. This case has been considered
by Lopez31 and Lopez and Koenig30 in their discussion of the
acoustoelectric effect in Bi. They calculate 1/tR ~equivalent
to our 1/t I) for the case of sharply defined Fermi levels in
both conduction and valence bands, but they do not make the
simplifying assumption that\v0 is much less thankBT.
They obtain an excellent fit to their measurements of 1/tR
over the entire temperature range from;4 K to ;100 K.
The fit they obtain requires the presence of both acoustic and
optical mode contributions, but the optical mode contribution

dominates at temperatures of;100 K and higher. For high
temperatures, at which it is appropriate to treat\v0 as small
compared tokBT, their result can be written, in our notation,
in the form

1

t I
5
1

2 S 2p

\ D uM u inter
2 V3N1C1~eF1!

1/23@11r21#

3@2n~TL!11#. ~67!

The ratio of 1/t I to (1/tel inter)b is thus

1/t I
~1/tel inter!b

5
@11r21#

@12 1
3 r#

, ~68!

and Eq.~66! can be used to replacer by (eF2 /eF1).
Equation ~68! holds for the case of overlapping bands

with sharply defined Fermi levelseF1 andeF2 in both bands,
and with kBTel and kBTL greater than\v0 . It should be
noted that Eq.~68! is the result if the heated carriers are in
the valence band~2!. If heated carriers are instead electrons
in band ~1!, then the labels~1! and ~2! in Eq. ~67! are re-
versed. If the relation Eq.~68! holds roughly for Ti2O3 after
band crossing, and we taker3/2; 2 to 3 as suggested by
Table I in Sec. IV, then we find the ratio in Eq.~68! to be

1/t I
~1/tel inter!b

>3.5 to 5. ~69!

If we further assume that (1/tel inter)b is 2/3 the electron re-
laxation rate after band crossing then we findv0t I;4 to 6.
This would imply that the charge oscillating between bands
~1! and ~2! during anA1gl oscillation cycle is very small,
and the contribution to Eqs.~23! and ~24! is negligible.r3/2

would have to be as large as 4.68, forv0t I to be;1.

VI. PHONON RELAXATION

As for the case of spin resonance damping, the relaxation
rate for theA1gl mode excited by DECP consists of two
parts:

1

tph
5S 1

tph
D
1

1S 1

tph
D
2

, ~70!

wheretph1 is analogous to the spin energy relaxation time
T1 and tph2 is the analogue of the spin dephasing timeT2 .
One possible source of (1/tph)1 is the inelastic three-phonon
process in which the coherentQW 50 optical phonon of angu-
lar frequencyv0 excited in DECP loses energy by the emis-
sion of two acoustic phonons of angular frequencyv0/2 and
of equal and oppositeQW vectors. For a description of this
mechanism, the wave function of theA1gl coherent state
excited by the pump pulse can be written

c~q,t !5(
l

cl ~ t !c l ~q!exp@2 i ~ l 11/2!v0t#, ~71!

where l is a harmonic oscillator quantum number for the
A1g phonon mode andq is theA1g displacement coordinate.
The coefficientscl (0) immediately after the pump pulse are
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those of the well-known solution37 of the problem of the
displaced harmonic oscillator wave packet. The coefficients
cl (0) are given by37

cl ~0!5e2l2l lA2l

l !
, ~72!

where

l[
Dqeq

A2q̄
. ~73!

(Dqeq) is the displacement of the equilibrium value ofq
after the pump pulse, andq̄ is the root mean squared value of
the displacement in theA1gl mode ground state before the
arrival of the pump pulse, given by Eq.~37!.

The oscillations in amplitude of the reflectivity are pro-
duced by the oscillations in the displacement of the center of
the oscillator wave packet during DECP. The reflectivity is
modified by changes in dielectric behavior produced by band
edge motion due to theA1gl vibration through the mecha-
nism of the deformation potential. An expression for the de-
cay rate of the amplitude of oscillations of the wave packet
due to two-phonon emission, immediately after the arrival of
the pump pulse, can be obtained by the use of the equation of
motion of the wave packet density matrix in the relaxation
approximation. The result obtained is

^q̇&52
2p

\
uM u2rS \v0

2 D F H nQS v0

2 D11J H n2QS v0

2 D11J
2H nQS v0

2 D J H n2QS v0

2 D J G3
3

2
^q&. ~74!

In Eq. ~74!, ^q& is the mean amplitude of the displaced wave
packet, andr(\v0 /2) is the density of states in energy of
the phonon spectrum at frequencyv0 /2 available for scat-
tering. uM u2 is the matrix element squared for the two pho-
non decay process. The first term in brackets is a two-phonon
emission term for phonons at frequencyv0 /2 and wave vec-
tors QW and 2QW . The second term is due to two-phonon
absorption, andnQ(v0 /2)5n2Q(v0 /2) is the phonon
population factor at temperatureTL .

Equation~74! leads to an expression for the three-phonon
contribution to (1/tph)1 of the form

S 1

t3ph
D
1

5
3p

\
uM u2r~\v0 /2!@2n~v0 /2!11#. ~75!

If the change inr(\v0 /2) andn(v0 /2) due to the band
crossing is neglected, then all of the temperature dependence
of this contribution to (1/tph)1 is given by the change in
temperatureTL and its effect onn(v0 /2). Superposed on
the experimental data for 1/tph in Fig. 5 we show a dashed
line plot of the temperature dependence of Eq.~75!, scaled to
fit the experimental data at room temperature. We see that
the three-phonon contribution to (1/tph)1 is capable of ex-
plaining about 2/3 of the rise in (1/tph) observed between
TL5300 K andTL5600 K.

There is another possible source of damping of the coher-
ent phonon excited in DECP in which energy is taken from
the coherentA1gl ,QW 50 optical phonon state by an electron

which then scatters with the emission of an incoherent opti-
cal phonon ofQW Þ0 and nearly the same energy. Energy and
momentum would be conserved in the electron scattering.
Since this process is first order in the incoherent optical pho-
non, we expect the difference between the emission and re-
verse absorption process to be independent of the scattered
phonon population. On the other hand, the damping rate due
to this process should depend on the availability of electron
states for scattering, approximately in the same way as
(1/tel) depends on the availability of such states. We there-
fore expect this two-phonon contribution to (1/tph)1 to be of
the form

S 1

t2ph
D
1

>KS 1telD , ~76!

whereK is a constant and therefore to depend on lattice
temperatureTL . In Fig. 5 we show a plot of an attempt to fit
the data with an expression of the form

S 1

tph
D
1

5K3S 1

t 3ph
D
1

1KS 1

t el
D . ~77!

Although the fit of the data is better than that shown for
(1/t3ph), alone, the result is unconvincing, given the scatter
of the data points. In any case, the proportions in which two-
and three-phonon energy loss and dephasing contribute to
the effective phonon relaxation rate is not clear.

It should be noted that a contribution of the form of Eq.
~76! could contribute to an increase in (1/t ph) observed in
high power DECP experiments performed in Sb.36

VII. DISCUSSION

Equation~68! relating (1/t I) and (1/t el inter)b , although
only a rough approximation at 300 K, should apply to other
materials such as Bi and Sb, both of which have been studied
in optical pump-probe experiments.2 (1/t el) for Bi and Sb at
room temperature were found to be;0.131012 s21 and
0.631012 s21, respectively, although the former number
was not determined very accurately because the decay was
slow and the signal relatively weak.

(1/t I) has only been measured for Bi up toT;50 K.31

Extrapolating Lopez’s excellent theoretical fit of his data to
T5300 K yields (1/t I)>2.631012 s21 for Bi. From tabu-
lated values of (eFh/eFe) for Bi ~Ref. 38! we findr>0.42 or
r>2.4, depending, respectively, on whether valence band
carriers or conduction band carriers are heated by the pump
pulse@see discussion after Eq.~68!#. These values ofr, in-
serted into Eq.~68! and combined with the extrapolated val-
ues of (1/t I), lead to predicted rates (1/tel inter)b of
0.6631012 s21 or 0.3431012 s21, depending respectively
on whether valence band or conduction band carriers are
heated. These numbers are to be compared with the mea-
sured value of (1/tel)>0.131012 s21. Considering the un-
certainty in the experimental value as well as the calculated
result, the agreement is reasonable, and suggests that con-
duction band heating might be dominant in Bi.

The measured value of 0.631012 s21 for the value of
(1/tel) in Sb is much more accurate than the value obtained
for Bi. If we take ;2/3 of this value~as for the case of
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Ti 2O3) as a rough estimate for (1/tel inter)b , then we can use
tabulated band structure parameters for Sb to estimater, and
thus use Eq.~68! to predict (1/t I). We find r50.65 or
r51.53, respectively, for valence band or conduction band
carrier heating. Equation~68! then yields (1/t I)51.331012

s21 or 2.831012 s21, depending, respectively, on whether
valence band carriers or conduction band carriers were
heated in the optical pump-probe experiments on Sb. These
predicted values of (1/t I) for Sb seem to be in a reasonable
range, compared with the extrapolated experimental value
for Bi of (1/t I)>2.631012 s21 at T5300 K.

There is an interesting analogy between theA1 ‘‘displace-
ment field’’ in a solid, which lowers the symmetry of a crys-
tal, and the Higgs field which is associated with the symme-
try breaking of the vacuum. This analogy is particularly
striking in the case of the Bi structure, where theA1g dis-
placement lowers the symmetry from cubic to trigonal. In the
related Ge12xPbxTe structure, the phase transition from
trigonal back to cubic can be followed by increasing the
temperature. In both the crystal and vacuum cases, the final
equilibrium ‘‘displacement’’ is determined by the minimiza-
tion of the free energy at ambient temperature. In a DECP
experiment in a crystal, electronic excitation changes the
quasiequilibriumA1 displacement, tending to restore the
higher symmetry state. If the excitation occurs in a time short
compared to anA1 vibration period, the lattice is set into

A1 vibration about the new equilibrium displacement. Simi-
larly, excitation of the vacuum by the creation of a high
energy plasma of particles should shift the quasiequilibrium
Higgs field displacement toward the vacuum of unbroken
symmetry. If enough energy has been added to the vacuum
in a short enough time, it should, in principle, be possible to
excite coherent ‘‘phonons’’ associated with the Higgs field.
A heating of the vacuum back to a free quark-gluon plasma
state has been suggested as a possibility in high energy
heavy ion-ion collisions.39 However, the initial rise in exci-
tation in such collisions would have to be extraordinarily
rapid to produce a DECP-like excitation. If, for example, the
mass of the boson associated with the Higgs field were
greater than 41 GeV,40 the excitation of the vacuum would
have to take place in a timet&10225 s. For comparison, the
time for a relativistic particle to travel 10213 cm is
t;3310224 s.
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