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Conductivity in a symmetry-broken phase: Spinless fermions with 1d corrections
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The dynamic conductivityr(w) of strongly correlated electrons in a symmetry-broken phase is investigated
in the present work. The model considered consists of spinless fermions with repulsive interaction on a simple
cubic lattice. The investigated symmetry-broken phase is the charge density @2V with wave vector
Q= (m,,7)" which occurs at half-filling. The calculations are based on the high dimensional approach, i.e.,
an expansion in the inverse dimensiod ig used. The finite dimensionality is accounted for by the inclusion
of linear terms in 1d and the true finite dimensional DOS. Special care is paid to the setup of a conserving
approximation in the sense of Baym/Kadanoff without inconsistencies. The resulting Bethe-Salpeter equation
is solved for the dynamic conductivity in the nonsymmetry-broken and in the symmetry-broken(piBase
CDW). The dc-conductivity is reduced drastically in the CDW. Yet it does not vanish in theTimi® due to
a subtle cancellation of diverging mobility and vanishing DOS. In the dynamic conductiyity the energy
gap induced by the symmetry breaking is clearly discernible. In addition, the vertex corrections of drder 1/
lead to an excitonic resonance lying within the gg®0163-182626)07140-§

. INTRODUCTION where¢; (¢;) creates(annihilate$ a fermion at sitei. The
sumz; ;y runs over all sites andj which are nearest neigh-
The investigation of the transport properties of highly cor-pors. The coordination numbé&=2d=6 appears for the
related fermionic systems has attracted much attention in rq;roper Sca”ng of the kinetic ener’g&nd for the proper scal-
cent years. A thorough understanding of the conductivity iqng of the potential energyThe interaction constant 1.

particular is essential for the technical application of materi- | this model the symmetry is broken yielding an AB-
als such as metallic oxides in electronic devices. The developyy at half-filling? for infinitesimal values of the interac-

opment of a new analytic approach, the limit of infinite di-
mension for fermionic systents, allowed the numerical
description of the metal-insulator occurring in the half-filled
Hubbard model ird=« for higher values of the interaction ) - . .
U assuming a homogeneous phatThe latter assumption parametenb is t%e absolute deviation of the particle density
means that one deliberately ignores the possible occurren{)re0 m its averag -As far as the occurrence (.)f a symmgtry—
of symmetry breaking for the sake of simplicity. It is argued rokgq phe_tse IS goncerned, the model of spinless ferm!ons at
that on frustrated lattices symmetry breaking is suppresse@@!-filling is similar to the Hubbard model at half-filling
so that the metal-insulator transition occurs at higher temWhich displays antiferromagnetic behavior. The main differ-
peratures than those at which symmetry breaking sets in. €nces are that the broken symmetry for spinless fermions is
With this background in mind, it is the aim of this work to discrete whereas it is continuous in the Hubbard model, and
extend and to complement the results known so far into twdhe fact that a local interaction like the one in the Hubbard
directions. First, the finite dimensionality of realistic sys- model does not favor a spatial order by itself. The latter fact
tems, i.e., mostlyd=3, shall be included at least to lowest leads to a value of .« 1/U for largeU in the Hubbard model
nontrivial order in an expansion ind./Much care is used in whereas one hab.xU in the spinless fermions model.
including these corrections without physical and/or analytic The paper is organized as follows. Succeeding this Intro-
inconsistencies. It is shown that it i®t sufficient to use a  duction it is discussed how a thermodynamically and analyti-
conserving, ®-derivable approximation in the sense of cally consistent extension of the limE—~ can be per-
Baym/Kadanoff. Furthermore, the true three-dimensionaformed. Next the basic equations for the extension to linear
DOS will be used. Second, the influence of symmetry breakerder 17 are derived and their numerical evaluation is
ing on the conductivity, especially the question of possiblesketched. This third section contains also results for the DOS
metal-insulator transitions induced by symmetry breakingand the corresponding proper self-energy. In Sec. IV the
shall be investigated. Bethe-Salpeter equation is set up and solved for the conduc-
To this end, the model of spinless fermions with repulsivetivity o(w). The preservation of the-sum rule is discussed.
interaction for particles on adjacent sites is considered on Blumerical results for the dc and the ac conductivity are pre-
generic bipartite lattice, namely the simple cubic lattice. Itssented in Sec. V. The findings are summarized and discussed
Hamiltonian at half-filingn=1/2 reads in the final section.
All energies(temperatures, respectivelyhroughout this
paper will be given in units of the root-mean-square of the
>h, (1 “free,” i.e., noninteracting, density-of-states of the lattice
i model concerned. All conductivities will be given in units of

tion at T=0 and for sufficiently large interaction at all finite
temperatures. The AB-CDW consists of alternating sites
with a particle density abovébelow) average. The order

~ t
H=—- —
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FIG. 1. Noninteracting DOS imi=« (short-dashed curygin ) ' .
d=3 (solid curve, and the DOS expanded indlievaluated in FIG. 2. Externally applied flgldhEXT as a function of the order
d=3 (long-dashed curye These densities of states are symmetric pare_lmetetb for U=9 ar_ldT:O in d=3. The short-dashed curve
about they axis depicts the ™ self-consistent result, the long-dashed curve the re-
' sult of a systematic expansion of the self-energy. The zeros of the

2 d—2 . . curves correspond to thermodynamic equilibrium. But only zeros
e’/(ha” <), wherea is the lattice constant. The constants with positive slope are locally stablé0.48).

a, i, andkg (Boltzmann’s constaiptare set to unity.
when the self-energy is strictly local in real space, i.e., con-
Il. PROPER SELF-CONSISTENT EXTENSION OF Z=x stant in momentum space,

In the caseZ=c_>0_, th_e evaluation of diagrams and_ the 9(w)=go(0—3(w)). )
treatment of quantities like the DOS are conceptually simple.
It is always the leading contribution in Z/and only this  This case is realized, for instance, in the Hubbard model in
which must be kept. There is no dependence on the sequende- «.>° No lattice site or spin index appears since the phase
in which certain quantities and the equations relating thenis assumed to be homogeneous and nonmagnetic. The quan-
are considered. All sum rules which hold in any dimensiontity g(w) stands for the full local Green functi@® ;(») and
also hold atZ=o, continuity provided for the limiZ—c«.  gy(w) stands for the free Green functi@y; ;(»). The ex-
This simplicity is lost as soon as corrections i@ Hre to be  pansion of the Green function corresponds to the expansion
included. For concreteness, let us consider the linear correof the thermodynamic potential since they depend linearly on
tions 1Z; the problems are illustrated for the free DOS, theeach othef® An expansion of the self-energy, however,
Dyson equation, and the free energyas a function of the vyields adifferentexpression foig(w) sincegy(w) is not a
order parameteb. linear function. The expansion of the self-energy seems more
The DOS is a non-negative function of which the zerothpromising since it preserves the Dyson equation by construc-
moment is unity. This holds in any dimension, hence intion. Moreover, it is able to describe the shift of singularities,
Z=%. On including the linear correctionsne realizes that e.g., the shifts of the band edgéhlote that we discuss here
the approximate expression becomes negative at large valufisite expansions of the quantities consideyed.
of w. This is a disadvantage of the otherwise systematic ex- In spite of the choice to expand the self-energy some am-
pansion. Another inconvenience catches the eye in Fig. liguity persists. In Fig. 2, this problem is illustrated. It arises
The expanded DOS does not improve considerably thén the description of spontaneous symmetry breaking. Two
agreement with the true finite dimensional DQBere results for the dependence of the conjugated field on the
d=3). A finite expansion in Z cannot produce the van- order parameter are opposed. The data refer to the AB-CDW
Hove singularities. occurring in the spinless fermion problem at half-filling. The
To circumvent the problem of the DOS expansion, wedotted curve results from a fully self-consistent calculation
decide to use the exact finite dimensional DOS, i.e., thevhereas the dashed curve results from a systematic expan-
d=3 DOS. This procedure provides often evendis1l a  sion of the self-energy. Note that the self-consistent approach
remarkable agreemefif.In d=3, this approximation yields generates higher order contributions.
qualitative agreement for the local DOS as compared to finite The argument results now from the strange behavior of
dimensional perturbation resuft®resently, the approach of the dashed curve in the vicinity of the origin. The free energy
using a finite dimensional DOS in an otherwise infinite di- belonging to the dotted curve can be found by integration; it
mensional calculation as approximation for the finite dimen-has an unstable maximundl{gxy/9b<0) atb=0 and two
sional problem is employed as so-called “dynamical meanstable minima §hgxr/db>0) atb~ +0.48. But there is no
field theory™ or “local impurity self-consistent free energy belonging to the dashed curve since it would
approximation.’ have three maxima in sequence arolns0 which is math-
Next the problem of a systematicZlexpansion is dis- ematically impossible(theorem of Rollg¢ This is a very
cussed for the Dyson equation. It is stated in a simple casgtrong argument in favor of a self-consistent calculation.
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FIG. 5. The self-energy diagrams derived from Fig. 3 by taking

FIG. 3. Diagrams contained i o[ G]. The first generates the oyt one propagator line. The diagrams shown contribute in order
Hartree term, the second the Fock term, and the third the loca{;7.

correlation term. The solid lines represent dressed propagators, the
wavy lines the interactions. The sum runs over the lattice site

i nents in favor of the Baym/Kadanoff formalism, its naive
" application does not guarantee the absence of unphysical re-
sults. A counter example serves as an illustration. Consider
For completeness, it shall be mentioned that one may alsn approximate® consisting only of the diagram in Fig.
gue that in the vicinity of the physical solutions, i.e., the4(a), summed over all site|,i’,j’, such that andj (i’

minima, the difference of both approaches is negligiblegngj’, respectively are adjacent to one another and fulfill
There are also cases known where the systematic, non—se]fgﬁjr andi=i’. The resulting nearest-neighbor self-energy

consistent approach yields better resttt&ut there is still S, =t(w)=t'(0)+it"(w) has a finite imaginary part

Emother aQ\I/an']Eage Ofr:h,? S$If|—|c0n5|st?nt trtehatment which \:cw n(‘w)_ Using the Dyson equation, one obtains in the homo-
e crucia 2r13 Wwhat  follows. In e sense Of ganaous phase

Baym/Kadanoff>*® it covers also the calculations of two-

particle properties and ensures the preservation of sum rules.

So, Schweitzer and Czycholl resorted in their calulation of G, | (w+0i)= i 1 :
resistance and thermopower for the periodic Anderson model ’ 0+0i—[1+t(w+0i)]e(k)
to the self-consistent treatméhalthough their results for the w—(1+1")e(k) +it"e(k)

local DOS did not necessarily favor this approath.

As a result of the above discussion the starting point for
the inclusion of 1Z corrections is the generating functional
® according to Baym/Kadanotf:!® This is the quantity _ ALTIxe
which is expanded in a Z/series. Then the truncation of this nave the sign ofe(k) such that the imaginary part of
series yields an approximation to the corresponding ordeer,k(“l’oJ“O') is positive.” This is a contradiction to the exact
The power counting for the diagrams df has been ex- result:” Note that the details df w) are not essential as long

plained previously:® Here it shall just be stated that the first 25 the imaginary part is finite. "

diagram in Fig. 3 is of orde®)(1) and the two other dia- The counterexample above is not only of academic inter-

grams in Fig. 3 produce the linear correctiod¥1/7) est. Schweitzer and Czycholl observed as well that the inclu-

whereas the diagrams in Fig. 4 are examples@i/zZ2) sion of a nearest-neighbor self-energy leads to wrong signs

contributions. Thus Fig. 3 visualizes the approximetg of the imaginary parts. They considered thé &xpansion of

potential which will be used in this work. a U? perturbation theory around Hartree-Fock for the Hub-
By functional derivation the self-energy shown in Fig. 5 is bard model and the periodic Anderson moti¥l. They

obtained. Note that the Fock diagram is seemingly of anothefeached consistency by including highed Torrections(for
order, namely®(1/z%?), than the third diagram®(1/z), d=_1 up to 50 term)s' Problems with .the ar'1alyf[|0|ty
which is called the local correlation diagram henceforth.(Uniquenessof the solution occurred also in the first inves-
What matters, however, is the order relative to the free Greefigations of 14 corrections in the Hubbard modefFalicov-
function which isO(1/z*?) for adjacent sites. It is another Kimball modeilg)., . .
advantage of the Baym/Kadanoff formalism that one does 1° the author's knowledge there is no necessary or suffi-

not need to bother about these questions once the appro§ient theory so far, which predicts under which circum-
mated potential is chosen. stances such problems have to be expected or can be ex-

Now a point shall be highlighted which has not been men_cluded. A sufficient argument excluding wrong signs of the

tioned before to our knowledge. In spite of the many argu{Maginary part of the approximate self-energy is given by the
following theorem.

If the approximation considered can be interpreted as an
expansion of the self-energy in a parameter0 and ifm is
the leading order, in which the imaginary part of the self-
energy doesot vanish, then the self-energy approximated in
the mth order has the right sign.

The proof relies on the continuity of limits if the expan-
sion exists. According to the precondition, it holds that

Tlot+0i—(1+t)e(k) ]2+ e (k)2

By choosing an appropriate wave veckoat fixedw one can

FIG. 4. Two examples of diagrams in higher ordkere: qua- 0=Im3, (0,k)=A"IMm=M(w,k)+ O\ ™), (3)
dratig in 1/Z. The sites andj are adjacent as are the siiésand
j’. Additionally,i#i’ andj#j’ holds. which is equivalent to
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0= lim A™™m3, (w,k)=Im=™(w k). (4 and the self-energy are distinguished according to the sublat-
A—0+ tice to which they belong. In the present work, sum and
. . . difference of the quantities on the two sublattices will be
The mdgxk IS the wave vector In a homogeneous, tr"’ms‘l"jl'used. The local quantities on sitebelonging to sublattice
tionally invariant phase. The derivation for general phases

for instance the AB-CDW, is given in Appendix A. re{AB} are

The derivation in Eq(3) and in Eq.(4) holds strictly only 9. =G, (w), (53
for the non-self-consistent treatment. In the generic situation, 7 '
however, the leading order of the self-energy with nonvan- S (0):=3"(0)+3C(w), (5b)

ishing imaginary part results from a certain diagram class

and the analytic properties do not depend on the specifihereG; j() is the full local Green function andl is the
form of the Green function entering. If this is the case, thelocal self-energy. The Fock part will be treated subsequently.
statement of the theorem extends also to the self-consistefifie indexH stands for the Hartree ter(first diagram in Fig.
treatment where the quantitative form of the Green function$); the indexC stands for the local correlatidihird diagram

are not knowra priori. in Fig. 5. Let us define
The theorem helps one to understand the observations
made by Schweitzer and Czycholl. In thed Ixpansion of gs(w):=[ga(w)+gp(w)]/2, (6a)
the d-dimensional Hubbard model and of the periodic
Anderson model one has=1/d andm=0 since the self- Io(@):=[ga(®) —g(®)]/2, (6b)

energy is imaginary already in the first order. For the pertur-
bation theory inU one has\=U andm=2 since the self-
energy stays real in Hartree-Fock. Applying the rationale of L
the theorem twice one understands that the self-energy in A(w):=[Za(w)—Zg(w)]/2. (6d)

U? of the infinite dimensional model has the right analytic The spectral functions of the Green function are caMeg
behavior. If further 1d corrections are included this does not and N, respectively; the spectral functions of the self-
need to be true. The result of Schweitzer and Czycholl, thagnergy> and A are calledNs and N, , respectively. The
the linear 1d correction leads to wrong signs, proves that thenonlocal Fock term i€ F: =3, wherei andj are adjacent
theorem is sharp: If the precondition fails, the implicationsites. It turns out thak" is negative(for repulsive interac-
fails, too. The second obervation, that the inclusiorvefy  tion), real, and that it does not depend on whether the ferm-
many1/d correction terms remedies the failure, can also béon hops fromA to B or vice versa. Hence, it renormalizes
understood easily. In this case the calculations approximatgie hopping

the U? perturbation theory of théinite dimensional models

very well. According to the theorem, this perturbation theory t—yt with y:=1- VZSFIt. @)
displays the right sign, too.

S(w):=[2alw)+2g(w)]/2, (60)

... Note that for attractive interactiop could become 0, which

problems encountered for dl/corrections in the Hubbard )(NOUId lead to a breakdown of the theory. Such a singularity

modef are not due to the approximations used to solve thé® absent in the repulsive case.

effective impurity problems. Rather, each time that the theoiﬁ_lg tr|j|een€eB-c§:nDer:asthe modes ak couple to those at
rem does not apply one has to expect that analyticity prob- '

lems arise for certain parameters. Considering @@ in G G

Ref. 18 or equivalently Eq370) in Ref. 3 one realizes that e( ok kk+Q )
the spectral density of the local self-energy might chang

sign. This cannot be excluded obviously from the way in

Gr+ok Ok+ok+0o

which the impurity self-energies are computed. (o~ 2(w)—ye —A(w) -t g
Turning to the 1d expansion of the present model of —A(w) w—3(w)+ye (8)
spinless fermionsN=1/d), one notes that the theorem ap- . . )
plies with m=1. Therefore, the equations including linear From this equation one obtains
1/d corrections display the right analyticity. These equation
will be set up in the following. W 77—
W)= F——— '\ _A w /
gS( ) y\/mgo( ( ) 7)
A. Resulting equations and one-particle results
% w
This section is kept very concise since it contains material = j mNO(E)dS’ (99
which is partly published elsewhetdsor two reasons, how- - ve
ever, it cannot be omitted. First, a different notation using
different intermediate quantities shall be introduced. Second, B Aw) o
the one-particle results are necessary requisites to understand 9o(w)= y /—Wz_Az(w) Go(VW = A%(w)/y)
the conductivity results in the subsequent section.
The treatment of a self-energy of the type depicted in Fig. o
5 is commonly knowr(see, e.g., Refs. 11, 19, and)2Deal- - _mwz_(yg)z_AzNO(s)ds’ (9b)

ing with the symmetry-broken phase, however, requires
some extension. In a previous wbitke local Green function wherew is shorthand forw — 3 ().
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The averaged Hartree teftd(n,+ ng)/2 renormalizes the

chemical potential® The Hartree contribution ta is Ub, Na(t)=— 7[{(N§)2—(N5)2}N5|t

where b:=(ng—n,)/2 is the order parameter, i.e., the

particle  density difference. It is given by +{(N$)2— (NS)ZNS |y (150
b=—J"_ Np(w)fe(w)dw, wheref(w) is the Fermi func-

The complete self-energy andA are given by the follow-

tion. L .
ting inverse Fourier transforms:

The Fock term can be calculated from the neares
neighbor Green functio®;  , ;,

U 2(w+0i)=—if:exmwt—Ot)NE(t)dt, (163
EFzﬁf_m'm(ej+a,j(w+Oi))fp(w)dw. (10)

which is given by A(w+0i)=Ub—i fo expliwt—Ot)N(t)dt. (16b)

dKkd In Eq. (16b) the Hartree part has been added.

Gjiaj(w)= f e(k)Gy, k—d So far, no assumptions concerning the DOS entered. The
\/_ 2m) formulas hold for all fillings. At the particular value of half-
1 filing the additional symmetries Ng(w)=Ng(—w),
T [(0-3)g(w)-A de. Np(©)=—Np(~©), Ns(0)=Ns(~w), and N(o)
NZ[(“’ 8s(@)~ Agp(w)1de =—Na(—w) can be exploited. The fact that the spectral

(11) densities are real tells us thii(—t) is the complex conju-

gate(c.c) of N(t). Thus Eq.(15) simplifies at half-filling to

The Fock term is related to the kinetic energy
2

SF=(U/Z%?(T). Thus, Eq.(10) can be evaluated usin ~ us ~ o~

ECIS.((ll) an221<(9;. | J Nx(t)=—-[{(Ns)*~(Np)*}Ng|i+ cc], (173
The local correlation term is given in terms of the Mat-

subara frequencies, (fermionic) and w, (bosonig by ~ u?

Na(t)=—T{(Ng)*~ (N5 Np|i— c.cl.  (17b)
272

3iw,)=-

% grioyTiw)grtio))g(ioi+iw,).  This terminates the setup of the equations which have to be
(12)  solved self-consistently on the one-particle level.

_ For those who intend to implement these equations or

Here, the index- stands for thethersublattice, i.e., foA if  similar ones some remarks on the numerical realization are

=B and vice versa. By performing the Matsubara sum ongn order. As usual, the self-consistent set of equations is

obtains the convolution solved by iteration. AT=0 it is favorable to use a relaxed
U2 iteration. This means that the self-enefyandA from the
N _- N-fw \N-fo"— o' nth and from then+ 1 iteration are averaged and used for
5 (@) J:oofw AN~ w’) the subsequent calculation instead of using only riRel

) , ; , , iteration. This procedure damps oscillatory deviations from
XNA(w=o0")[frlo’—w)fp(- o) (0" - o) the fixed point more rapidly. It is even more advantageous to
+ (-0 ) (0" (o — o) ]do’de”  (13) let the programme decide whether relaxed or nonrelaxed it-

eration converges faster.

for the spectral functioNs (w) belonging to3%(w). The The Fourier transformation is the most time consuming
convolution can be expressed most conveniently in the FousteP- The best algorithm for this task is the so-called fast
rier transforms Fourier transformatiolFFT). The extremely large number

of points, which can be used with the FFT, overcompensates
~ % the disadvantage of an equidistant mesh which cannot be
Nt(t)1=f exp—iot)N(xw)fe(-w), (149  adapted to regions where the DOS changes rafitiythe
o AB-CDW 2*° points were used. The vectorization on an
IBM3090 still permitted us to do one iteration step compris-

N(t)__JOc exp(—iwt)N(w). (14p  ing four FFT in 19 sec. A very good precision could be
— achieved. The sum rules
Equation (13) becomes as simple as NET(t) % Uu21/1 R
=UZZ[NININZ+N-N;NH_,]. In sums and differ- fo NE(de:?E(Z—b ) (1839
ences one obtains
u? wa (w)d Uzb L b2) (18b)
~ ~ ~ ~_ AMw)dw=—=-D| +-— ,
Ns(t) == [{(Ns)*= (N$)*Ns|, 0 £\

TV are preserved up to 16. Note that Eq(18b) holds only at
+{(Ng)*—=(Np)*INg| ] (158 T=0 whereas Eq(18a holds for all temperatures.



54 CONDUCTIVITY IN A SYMMETRY-BROKEN PHASE: ... 10 441

In order to achieve the high precision alsoTat 0, it is BT T T T T T T T T T T T T T T
necessary to discretize the DOS carefully. At the gap edges B .
the DOS displays inverse square root divergences R e T=0 E
a/l\w—w,. The parametera and w, are determined di- 4 S T=2 7
rectly from the self-energy using E¢P). The diverging part - .
of the DOS is discretized by using the average value in the 3 7—::"\‘ .
interval [ w; — dw/2,w; + dw/2] instead of the DOS value at o F .
wj . r \‘\ .

Once the Fourier transforms are essentially linear one has 2r "’-&,}\ :
to avoid a nonlinear time loss in the calculation of the com- B Ay .
plex free Green functiomy(z). Therefore, the integration iF \ -
from the Hilbert representation must be avoided. This is L AN :
done by using the approximate expression E L .J L ]

% 2 4 6 8
1]| 13033 8675 4167 (a) o
~ — _ — 2 2
N(#) 77{29088 1745288]V6 [6464 T
, 459 | -
646ajc. | 12928 | VI3~ (e—22/3) 03 B :
4167 459 CY .
D N AN
6464 64646 z e SN ]
12928 ]\/2/3 (8+2\/ 3) (19) .01 :_ \\\ _:
for the three-dimensional DONj3(e). The identities :( | l\‘\ \:““~~-£.,._ ]
/a P L1 TR M 2S00 B, wotst SR
h(z;a):_=(1/77)]‘_\55\/a—82/(z—s)ds=zt z°—a and 0 2 4 6 8
(1/7r)fiaﬁs Ja—&?l(z—&)de = —(al2)+zh(z;a) permit us (b) o

to computegy(z) for anyz quickly. The right-hand sidéhs)

of Eq. (19) is chosen such that the van-Hove singularities are FIG. 6. Density of states and spectral function of the self-energy
at the right places and such that the first moméimisiuding ~ in the homogeneous phaseldt=2 andT=0 andT=2 in d=3.

the eighth are reproduced exactly. The relative accuracyFor definitions see Eq$6).

achieved is & 10~ “ for N3(0) and 10 ° for the 10th and the

12th moment. the spectral density of the self-energy becomes finite at about
The calculations of the Hartree and of the Fock parts are.8~6w, . This results from the two convolutions involvéd.
linear in the number of discretization points. Concluding theThey cause the gap in the density of the self-energy to be
remarks on the numerical realization we state that all parts aéxactly three times the gap in the DOS. Put differently, the
an iteration step are essentially linear in the number of pointfinite spectral density of the self-energy corresponds to the
used. This allows a reliable and efficient computation. inelastic scattering of a particle or a hole involving an addi-
In Fig. 6, results for the DOS and the spectral density oftional particle-hole pair. Thus, the necessary minimum en-
the self-energy in the homogeneous phase are shown. Thegy is three times the elementary gap. The physically im-
spontaneous symmetry breaking is deliberately suppressegortant implication is the existence of quasiparticles with
Only positive frequencies are displayed since the functiongnergies betweea, and 3w, with infinite lifetime. Follow-
are even. AfT=0, one notes that the imaginary part of the ing the arguments of Lutting€rby which he shows that the
self-energy tends quadratically to zero 0r0. From Eq. density of the self-energy generically goes liké at the
(13) this follows for all free DOS with finite nonsingular Fermi edge one comes to the conclusion that this factor 3 is
value at the Fermi edge. Thus the homogeneous low temmot an artifact of the approximation but valid to all orders.
perature phase of interacting spinless fermions is a Fermfherefore, if the conditions are such that the homogeneous
liquid. But this phase is thermodynamically unstalé®e phase is a Fermi liquid, i.e., Luttinger's argument holds, a
below. The DOS still bears signs of the van-Hove singulari-gapped, spontaneously symmetry-broken phase has a factor
ties which are smeared out only a little due to the interaction3 between the gap in the DOS and the gap in the self-energy.
Note that the width is increased by the Fock term. In the fre€This implies also the existence of undamped quasiparticles
case the half-width is/6~2.45. High temperatures smear which have interesting consequences on the transport prop-
out the minimum ofNs at w=0 completely. The solution erties (see below The exponent of the power law with

depicted is stable since at=2 no AB-CDW is possible. which the imaginary parts of the self-energy rise at
In Fig. 7, stable solutions witb>0 are shown. Note the w=3w, is 3/2.
square root divergence in the D@®eft column in the vi- At finite temperatures the energy gap is smaller since the

cinity of the gap. AtT=0 the gap is at @,~0.6, whereas order parameter has decreased. This effect is visible already
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FIG. 7. Density of states and
spectral function of the self-
e P energy in the AB charge density
wave at U=2 and T=0
o (b=0.311005), T=0.225658

(b=0.250 000) ind=3. For defi-
LR B e LI A B nitions see Egs.(6). The sum
quantities in(a) and (b) are even
functions of frequency; the differ-
ence quantities irfc) and (d) are
odd functions.
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in the Hartree treatment. In addition, the energy gap isare located at (&+1)w, wherem is an integer. The peaks
smeared out: thermal fluctuations represented by the locéh the spectral density of the self-energy are located at
correlation term € induce a certain spectral weight within (2m+1)w, wherem is an integer bunot 0 or —1. This

the “gap” which no longer exists in the rigorous sense. Thephenomenon is generic for the self-consistent solution of a
occurrence of two maxima iNy and inN, should be noted. system of equation comprising convolutions of strongly

In Fig. 8, the generic results for large values of the inter-peaked functions. It appears only at large valuedJobe-

action are shown. AT=0 the factor 3 between the gap in cause it is necessary thaty,~U/2 is larger than the band
the DOS and the gap of the spectral densities of the selfwidth in order to resolve the peaks. Note that according to
energies is even more easily discernible. At the finite tem{9), a large value oA induces band narrowing. Whereas the
perature T~1.5), all the structures are smeared out; the orprincipal band is\/6 wide atU=0, its width is shrunk to
der parameter is considerably smaller than B&0: about unity in Fig. 8.

b=0.260 at finiteT to b=0.479 atT=0. The comparison of For detailed numerical results on the order parameter as
the spectral weights of the self-energy at zero and at finitéunction of interaction and of temperature as well as on the
temperature illustrates an important effect. The correlatiortritical temperature the reader is referred to Ref. 6. The as-
term is suppressed by the symmetry breaking. The laoger ymptotic behavior at small is discussed analytically by van
the smaller is the area under the curves in Figs) 81d 8d).  Dongen???3In a nutshell, the correlation term renormalizes
The effect can be understood quantitatively with the help othe Hartree results fds and T, by a constant factor of order
the equation$18) which imply that the area under the curves unity which tends to unity fod—oe.
vanishes fob— 1/2. This leads to the counterintuitive effect
that tr_le sjgnificance of the corrglgtipn term de.cr.eases on in- lIl. CONDUCTIVITY: FOUNDATIONS
creasing interaction at=0 albeit it is quadratic in the in-

teraction Due to the point symmetry group of the hypercubic lat-
In Fig. 8, hardly discernible satellite bands exist attices the conductivityr(w) can be treated as a scalar. Pre-

w~12. They are engendered by the finite imaginary part otious one-particle results showed that the treatment on the
the self-energy at these energjiese Figs. &) and &d)]. To  level of linear 1d corrections should yield reasonable
demonstrate that there are in fact infinitely many satelliteresultS in d=3.

bands with exponentially decreasing weights, the densities The conductivity is calculated from a two-particle corre-
Ns andNs are plotted logarithmically in Fig. 9. The princi- lation function. This will be done here from the current-
pal band of the DOS consists of quasiparticles with infinitecurrent correlation functiory™. The conductivity comprises
life-time at w,~4. The satellite bands correspond to peakstwo contributionso(w) = o1(w) + o5(w). The first term de-

in the spectral density of the self-energy. The satellite bandpends on the occupation of the momentum stateg
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Like the kernel of the Dyson equation, namely, the self-

whereas the second term is proportionajtd w),2*
energy, the kerneE (35,46) of the Bethe-Salpeter equation

i Pe(k) . dKd is given as a functional derivative with respect to the Green
o(w)= ° . akf (N (2m)% (208 function,
i 2
oa(0)= —xNw). (20D =(35,46 = 2(3.9 o (23)

9G(6,5 9G(4,3dG(6,5"
The current-currrent correlation function will be computed
including 14 corrections with the help of the Baym/
Kadanoff formalism>® Specific correlation functions are 100 T
determined from the general two-particle correlation func- - N .
tion L(12,12") via -

108 -

XAB=JA(l,l’)L(12,1’2’)B(2,2’)d11’22’. (22) i

N\ |

The numbers stand for composite space and time coordinates
(or momentum and frequency coordinate¥he measure
d11'22’ tells which coordinates are integrated. The quanti- r
tiesA andB represent the operators for which the correlation 109 -
function is computed. The Bethe-Salpeter equation deter- - _
minesL(12,12") implicitly using the kernel(or effective - j
two-particle interaction =(35,46) and the Green function 10712 L Lusin i
G(1,2), 0 5 20 25

NS and N):
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FIG. 9. Density of statedlg (short-dashed curyeand spectral
function Ny (long-dashed curyan the AB-CDW atU =8 in loga-
rithmic scale. The difference quantities are not shown since their
values lie only slightly under those of the sum quantities.

+ J G(1,3)G(1',4)E(35,46L(62,52)d3456.

(22)
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// // FIG. 11. Diagramm_atic representation of E@L for the
: m + (( )) current-currrent correlation function.

1
energies by considering independent momenta and energies
FIG. 10. Diagrammatic representation of the Bethe-Salpete€irculating in each segment. Then the momeniom wavy
equation resulting fromd®, according to Baym/Kadanoff. The line is the difference of two adjacent wave vectérsand
wavy lines stand for interaction; the solid ones for fermionic propa-k’. A second time, the evenness and the oddness in the com-
gators. The direction of the lower propagators is opposite to the onponents of the wave vector are used to write for the factor of

N
\
N
N\

NN
{
N
L}
-+

N
\
\\\\\

of the upper propagators. an interaction line
Diagrammatically, the functional derivation is the omission U Ul
of a propagator line. Applying these steps to the approximate g E cogki—k{)=— 72 [sin(k;)sin(k; )
generating functiona® , in Fig. 3 yields the diagrammatic =1 =1
representation of the Bethe-Salpeter equati®) in Fig. 10. +cogk))cogk/)]

(| |

The first diagram with a wavy interaction line in the upper
row stems from the Hartree diagram, the last diagram in the 2U _
upper row results from the Fock diagram. The diagrams in — = —sintkysin(ky).  (26)
the lower row in Fig. 10 are generated by the different pos-
sibilities to take out two propagator lines from the correlationThe argument is obvious for one of the border segments and
diagram. follows for those in the middle by induction.
Fortunately, the summation in Fig. 10 simplifies consid- At the end one realizes that each segment corresponds to
erably for the evaluation of the current-current correlationg factor of— (U/Z)X Jwhich justifies calling the right side of

function ™. Figure 11 displays Eq21). The squares repre- Fig. 12 a geometric series which takes the value
sent the current vertices

xolw+0i)

J S
X+ 00) 1+ Uy w+00)/2

I ) = 8Ky Ky ) S w1 — g — ) @7
9Ky 1

Due to symmetry it does not matter for which spatial direc-after analytic continuation. The derivation of a similar for-

tion J(1,1') is calculatedk ; is one arbitrarily chosen com- mula in the AB-CDW is given in Appendix B. The results

ponent. The crucial property of the current vertex is its odd-are cited below.

ness as a function d; ;. All interaction terms which are ~ The momentum integration in E¢25) requires a modi-

even ink, ; do not contribute. This is the case for all the fied DOS, to be called the conductivity DOS henceforth,

diagrams resulting from the local correlation in the lower

row and for the diagram coming from the Hartree term since ) .

only onesite appears on either side. Hence, only the geomet- Neolw):= JBZS'nZ(kl)g(w_ 8(k))(277)a ’

ric series depicted in Fig. 12 caused by the nonlocal Fock

term is left. For comparison: in the infinite dimensional Hub-from which we define also the conductivity Green function

bard model the simplifications are even more drastic. Allg. o(z):= 7. N¢o(®)/(z—w)dw. The conductivity DOS

vertex corrections drop out and the current-current correlacan be simply derived once the DOS is known. These two

tion function is just the convolution of two Green functions are related via

(29)

d
(28)

functions®®
Let us call the value of the first diagram in Fig. 12 the 2 IN¢o
“free” current current correlation function and let us use the No(w)=— P (o). (29

symboIX Jfor it. In the homogeneous phase one obtains with
the help of Eqs(21) and (24) and of the propagator ik This relation stems from the fact that one has to replace one
space w—3 ()~ ye(k)] ™ of the d factors (14r)1/\/t?— w? in the convolution for the

aT sirf2(ky) DOS by (1) \'/tz—. w? in order to calculate 'the conductivit_y
WHiog) == > ! DOS. The derivation uses the representation of convolutions
Z o, om0y JezlW,— ye(K)][wy—ye(k)] as products in Fourier space.

dk?

e S T Eh e

wherew,;, :=iw,—2(iw,;).

We focus now on the segments between two wavy lines in
Fig. 12. The conservation of energy and of momentum FIG. 12. Current-currrent correlation function withdl¢orrec-
makes it possible to carry out the sum over all momenta andons.
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Using the definition of the conductivity Green function In the AB-CDW, it is also possible to sum the series in
and partial fraction expansion it is straightforward to rewriteFig. 12 as geometric series. The main difference is the fact
Eqg. (25) as that 2X2 matrices instead of scalars are involved. The de-

tails are given in Appendix B; the resuffsare

. AT geliow,/y)—gcliwy/y)
liog = - o > SN TTINT
Y ®,— 0\=0n W, — W)
xHiom =5~ A—A)(1-Ay)-naZ' GV
Analytic continuation of the latter gives the general formula 1 2 E
[Eq. (14) in Ref. 24 for the current-current correlation func-
tion in the homogeneous phase. where the quantitie\; ,A,, andA; are defined by
|
o oaut (Wy+W,)[ G s(i0,) = G s(i @) ]~ [A( @) + Ai0,) [ gepli @,) = Gepli @))]
Al(lwm):T > 2 o ? TN A2 ’
Wy~ W) =0y WV W}\ [A (va) A (Iw)\)]
(323
oo 2uT (Wy\=W,)[desliw,) +dcsliwy)]-[A(iwy) —Aliw,)][de pliw,) + e p(iw))]
Aoliom)=—7 wv%}_wm[ W2 W2 A% ,) — AZ(1wy)] (32D
. _2UT A(iwy)ge sliw,) =W\ ge pliw,) +A(iw,)dc s(iwy) —W,gc pliwy)
As(lom) = z VwEﬁwm{ wo—wi—[A%(iw,)—A%(iwy)] ' (329
|
In complete analogy to the usual Green functions, the con- ¥? (= (1-Re%)N. s— (ReA)N¢ p
ductivity Green functions arey.s:=(gca+0cp)/2 and 0 g™ Eﬁ (1—Re2)|\|'2+(R%)NAY (—fi(w))do,
OcD- z(gc,A_ gc,B)/za hence (36)
o—3 (o) wherefr(w) is the derivative of the Fermi distribution, and
ge,s(@)= o (VW= AX(0) ),
7\/[w_z(w)] —A (0)) _ ’)/2 ® (1_2)0wgC,S_Aawgc,D
(339 "dcz‘_ﬁfx(l—z)(awz—l)wawA e
A(w) > X(—fi(w))dw
= VW2—A%(w)]y), 33b F
gC,D(w) ymgc,O( (w) 7) ( ) .
=—|1—-Re (w—3)ds— Adple=oi
which compares to Eq9) [w is shorthand fow — 2 (w)]. WZ[ ,x[ Os~Adolu-o
Now a relation for the dc conductivity shall be derived. In
order that the limit lim),_,qo(w) exists, X (—fL(w))do|. (37)
Pe dkd  (T) | ; ;
330 — oE A _\ n the last expressions, all the Green functions are retarded.
x10) fBzakf(k)<nk>(2w)a d B9 0 the homogeneous phase, the contributi86) is more

A important than the one in E§37). The former diverges for
must hold according to Eq20). The operatofT stands for T—0 andw—0, the latter does not. In the symmetry broken
the kinetic energy. Equatiof84) implies also thef sum rule ~ AB-CDW, however, both terms turn out to be essential.

JZ (ix¥w)dw=—m(T)/d. At the end of Appendix B, it is Equations(31), (32), (36), and(37) are the foundation for
shown explicitly that Eq(34) is valid sinceA; vanishes at the calculation of the conductivity for zero and for nonzero

_ __ _1_ _order parameter. The focus of the present work is on the
ri)vit)? Oanned'g\étainSUU)/Q?’d) 1=1/y. For the dc conduc AB-CDW. The properties of the conductivity in the homo-

geneous phase.g., Fermi liquid behavigrare presented in
detail in Ref. 26, where also the influence of the truncation of
o(0)=i— -7 = ] (35 the 18 expansion is discussed.

w=0 w=0

.. L . . IV. CONDUCTIVITY: RESULTS
For explicit evaluation it is useful to splity(0) into a term

including retarded and advanced Green functiopg and a In this section we present and discuss results which fol-
term including only retarded or advanced Green functiondow from the general equations derived in the preceding sec-
042 after analytic continuation. This yields tion. All results are calculated at half-filing and fde= 3.
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possible interaction partnei leads to a reduction of the
- relative fluctuations of the order of JZ. This yields an en-
11 ergy of roughly 1.7 in the particular example which is in
H good agreement with the numerical result.

Due to the nesting at half-filling, the system of spinless
fermions undergoes a transition to a spontaneously broken
translation symmetry for allpositive values of the interac-

17 tion on lowering the temperature. This spontaneously broken
H discrete symmetry implies the occurrence of a gap which
grows exponentiallyw,<exp(—c/U) for low values of the
interaction atfT =0 (see Ref. 6 and references thejei is
visible in the dynamic conductivity’. In Fig. 14, its growth
. on decreasing temperature is shown in four snapshots. In Fig.
L 14(a), T is still above its critical value. No structure is visible

8 except for the dominant Drude peak already discussed in Fig.
o 13. In Figs. 14b)—14(d) the gap is present and discernible.

Its value is approximately @, if w, is the value of the

FIG. 13. Scaled real part of the dynamic conductivityoiR@) energy g"f‘p in t.he. DOS, see Figs. 7 a}nd 8. But there ?S also
in the nonsymmetry broken phaselat4.243 forT=0.393(solid ~ SOme weight within the gap fof>0 since the correlation

lines), T=0.196(dashed lines T=0.049(dashed-dotted lingsand contr_ibution blurred already the gap in the DOS. Note in
T=0.025 (dotted lines. Main figure, spinless fermions id=3;  Passing that thé sum rule can be verified numerically on the

inset, Hubbard model in the noncrossing approximatiata from  results shown in Fig. 14 very accuratétp the fraction of a
Pruschkg percent aff =0; to the fraction of a permille in the homoge-
neous phase

In Fig. 13, the real part of the dynamic conductivity is  The Drude peak does not vanish immediately in the AB-
depicted in the nonsymmetry-broken phase for different temCDW. It becomes smaller and narrower on decreasing tem-
peratures, i.e., the occurrence of a symmetry-broken phase pgrature. Its maximum value does not vanishTer 0 (see
low temperature is discarded deliberately for the momentbelow) but its weight does. In Fig. 15, two frequency inter-
They are compared with results of Pruschke, Cox, andals are shown in detail for a fairly low temperature. Figure
Jarrel?®?® for the half-filled Hubbard model il=c, ob-  15a) displays the Drude peak again. The interesting feature
tained in the noncrossing approximation. In both cases thés its small width[compared with the width of the Drude
interaction value isU=4.243 (in our unit§ which is just peaks in Figs. 1d) and 14c)]. It cannot be explained by a
below the value where the Mott-Hubbard transition occurs irfactor of T2 but corresponds to an exponential shrinking
the Hubbard modéef® For spinless fermions the Drude peak exp(—w, /T). As already observed in the one-particle prop-
is absolutely dominant. Its weight is very large. Its width is erties, an increasing gap reduces the influence of the fluctua-
given by the imaginary part of the self-energy at the Fermiions.

Z Re o(0)

level N5 (0) [see Eq(32) with A=0 or Eq.(14) in Ref. 26, Figure 1%b) shows a very interesting feature below the
i.e., the width is proportional td2. The shape of the Drude proper band edge ai~2w, . This resonance is also visible
peak corresponds very well to a Lorentzian. in Fig. 14c) whereas the resonance and the band edge are

Only at low temperatures does a shoulder emerge. Thigot resolved at a higher temperature, Fig(td4The reso-
shoulder is the effect of interaction induced scattering. Thenance can be approximated very well by a Lorenztian. At
fluctuations are not particularly strong. It was already showrnT =0, it is also present as@&peak[not shown in Fig. 14)].
previously® that the average over ttinteraction partners It originates from a zero of the denominator in E§1). At
reduces the relative fluctuations. There is no Mott-Hubbardl >0, only the real part of the denominator vanishes and its
transition without symmetry breaking in the spinless fermionimaginary part leads to the observed broadening which de-
model because an increasing interaction enhances not onpends strongly, namely exponentially, on the temperature.
the fluctuations but also the Fock ter@mbsent in the Hub- Physically the resonance can be interpreted as a bound
bard model which stabilizes the Fermi liquid phase. Thesestate, an exciton, between a particle in the upper band and a
features are particularly obvious in the comparison with thehole in the lower band in the reduced Brillouin zone of the
Hubbard model data. In this model, the Drude peak is veryAB-CDW. The energy difference between the position of the
reduced at all displayed temperatures since much of thexciton and the band edge is its binding energy. The type of
weight is shifted to the peaks induced by the strong locatliagrams which yield the denominator in E81) corrobo-
particle density fluctuations. rates the interpretation as an exciton. The vertical interaction

Besides the difference shoulder vs peak it is interesting tdines stand for the repeated interaction between particle and
note the difference in energy scales. In the Hubbard model, tole in the two propagators involved in the calculation of
is more or lesdJ which sets the energy at which the peak x™. It should be noted that, for instance, for the parameters
occurs. This can be understood as the energetic effect aff Fig. 14d) about 70% of the weight of the conductivity is
whether or not an electron with a different spin is presentfound in the excitonic resonané¢ene may not be misled by
The typical energy for the shoulder is obviously muchthe logarithmic scale This means that the excitonic effect is
smaller. This in turn can be understood in the same way asot at all a small side effect.
before but it has to be taken into account that the number of Concluding the part on the dynamic conductivity, we dis-
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cuss Fig. 16, which shows results for a large interactioriThese two effects cancel exactly. Put differently, an expo-
valueU. Due to the induced large gap and due to the narrowentially small number of quasiparticles of exponentially
effective bandwidth, several frequency intervals of absorpiarge lifetime carries a constant currdbut see Discussion
tion are well separated. The peaks are caused by the convbelow). It remains an algebraic dependenceTonf the dc
lution of the satellite band presented for the one-particleconductivity. The constant term and the linear one can be
properties. Note, however, that the weight of these satellitesomputed analytically and were used to complete the curves
decreases rapidly by a factor of 100 from peak to peakin Fig. 17 for small values oT where the numerical calcu-
These small amplitudes render an experimental verificatiotation is no longer precise enough due to extinction.
certainly extremely difficult if not impossible. Nevertheless, The limit value limy_ oo (w=0) is given in Fig. 18 as a
it would be interesting to know whether such satellites existfunction of U. As expected, it decreases rapidly fdr— .
Their existence would support the application of a self-Note the logarithmic scale.
consistent approximation since the non-self-consistent calcu- What do the above findings far,. imply for the exist-
lation yields only two peaks besides thgeak which is not ence of a metal-insulator transition? Seemingly, even spon-
shown. taneous symmetry breaking does not suffice to render the
Since the dc conductivity in the absence of symmetrysystem insulating. But it must be noted that the “residual”
breaking has been extensively discussed in Ref. 26, we wikonductivity lim;_ yo(w=0) is infinitely fragile: any other
treat here exclusively the case with symmetry breaking. Tharbitrarily weak scattering mechanism which does not die
result of Egs.(36) and (37) is depicted in Fig. 17 for weak out onT—0, e.g., disorder or scattering at the borders of the
and strong interactioff. To the right of the cusp the system sample, will take over. The exponentially vanishing DOS
is in the nonsymmetry-broken phase. The conductivity is eswill yield an exponentially vanishing dc conductivity. This is
sentially proportionaP to T2. On entering the symmetry- reflected in the exponentially decreasing width of the Drude
broken phase with gap, the conductivity falls drasticallypeak, which, at constant height, implies an exponentially de-
since the energy gap reduces the DOS at the Fermi levetreasing weight.
Surprisingly, however, the conductivity doast vanish for Experimentally, very pure samples might allow us to see
T—0 although the DOS vanishes in this limit. There is eventhe beginning of the plateaus in Fig. 17 before the above-
a very slight uprise obry. close toT=0. This phenomenon cited other scattering mechanism reduces the conductivity.
is again a manifestation of the suppression of correlatioThis behavior is in complete analogy to the one observed for
effects by the energy gap. The DOS is reduced by a factor ahe shear viscosity(T) of helium 3 in theB phas€e®. In this
exp(—w, /T), but so is the imaginary part of the self-energy system, as in the system of spinless fermions in the AB-
in Eg. (32) which is responsible for the quasiparticle lifetime. CDW, one observes an exponentially diverging mean free
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T=0.6 in(b) a fit was usedsee main text

path since the collision betweefguasjparticles is sup- one observes a sharp drop beldwand then the beginning
pressed by a gap. In the so-called “Knudsen regime” colli-of a plateau before finally)(T) vanishes rapidly. The theo-
sions of quasiparticles with the wall of the container domi-retical result for the infinite system predicts a gentle uprise
nate the collisiondetweenthe quasiparticles. In helium 3, just like the one we predict in Fig. 17. In both cases, a factor
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exp(—w, /T) in the DOS cancels with the same factor in the
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FIG. 16. Real part of the dynamic conductivity &Rev) in
d=3 atU=8.0 forT=0 in logarithmic scale. Thé distribution is FIG. 18. dc conductivityr(w=0) in the limit T—O0 in logarith-

not displayed.

mic scale.
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scattering raté® This interesting analogy underlines the va- phase has a Drude peak. Its width decreases quadratically in
lidity of the results of our M approach. T forzﬁsmall values of T. The dc conductivity is always
finite.
(i) The Drude peak persists in the CDW but its weight
vanishes exponentiallyxexp(—w, /T), wherew, is the gap
Two main questions are addressed in the present paper: in the one-particle spectra. The height of the Drude peak,
How can an infinite dimensional result be improved by in-however, doesiot vanish since the diverging quasiparticle

V. DISCUSSION

cluding 14 corrections in a systematic wayi?) Which in-  lifetime cancels the vanishing density of states.
fluence does spontaneous symmetry breaking have on the (i) The real part ofo(w) displays a band edge at
conductivity? ~2w, . The singularity at the edge is a square root. Just

It turned out that it is highly nontrivial to construct sys- below the edge an excitonic resonance is situated which is
tematic and reasonable approximations to arbitrary ordetthe bound state between a particle and a hole in the empty
This is true already on the conceptual level. It was argued iand in the full band, respectively. These bands are created by
detail that the self-consistent calculation has certain advarthe spontaneous symmetry breaking.
tages since it yields thermodynamically consistent and con- (iv) For strong interactions the real part e{w) shows
serving approximations. The Baym/Kadanoff formalism,exponentially  decreasing peaks ato~2mw,;m
however, isnot sufficientto guarantee an approximation €{1,2,3, ...}, which reflect the peaks in the one-particle
which is free from obvious contradictions. It was shown thatDOS atw~(2m—1)w, .
an inappropriate approximation may lead to the wrong ana- (v) Strictly speaking, there is no metal-insulator transi-
lytic behavior of Green functions and self-energies evertion. But the Drude weight decays rapidly ®r-0. Finally,
though the approximation was derived from a generatingother scattering mechanisms will dominate over
functional. quasiparticle-quasiparticle collisions.

A general theorem was presented which allows us to In summary, we conclude that the self-consistent treat-
judge whether wrong analyticity may occur. If the conditionsment of 14 corrections describes successfully a large variety
of the theorem are fulfilled, the appearance of the wrongpf phenomena since it includes the leading frequency depen-
analyticity is excluded. This theorem explains a couple ofdence of the self-energy. It is a generalized and improved
observations that were made in recent years on the applicanean-field theory.
tion of perturbation expansions and/od léxpansions. It is
used to show that the self-consistent treatment dfcbtrec-
tions for spinless fermions is a good approximation: it pos-
sesses the necessary analytic behavior. The author is grateful to D. Vollhardt and E. Mer-

For 14 corrections in the Hubbard model the presentedHartmann for valuable hints and to Th. Pruschke for the data
theorem makes no statement since the self-energy alreadyiown in the inset of Fig. 13. The author would like to thank
has an imaginary part fat=cc. This does not imply that the H. J. Schulz, V. JanjsP. G. J. van Dongen, and R. Vlaming
systematic inclusion of @/ corrections for the Hubbard for helpful discussions and the Laboratoire de Physique des
model is impossible, but one may expect further difficulties.Solides for its hospitality. Furthermore, the author acknowl-
As a matter of fact, analyticity problems have been encounedges the financial support of the Deutsche Forschungsge-
tered in the first calculations of d/corrections in the Hub- meinschaftSFB 341 and individual grahtind of the Euro-
bard modef pean CommunityGrant ERBCHRXCT 940438

It should be stated that the self-consistent treatment of
1/d corrections to any finite order in d/remains a mean-
field theory. As in thed=o treatment of the Hubbard APPENDIX A: GENERAL DERIVATION
model® the mean field is dynamic, i.e., it retains a depen- OF THE THEOREM
dence on frequency. But in the skeleton diagrams, which are | et uys consider a general correlated fermion problem
considered in any finite order ind/ only lattice sites of \yithout magnetic field. A one-particle bagis;'} (b;" fermi-
finite distance occur. This means that crlthal flugtuatlons arnic creation operatpran be chosen in which the fréene-
always cut off. Ind=1, for instance, the inclusion of d/  hariclg Hamiltonian can be represented as a real matrix
corrections reduces the order parameter considérdhly h(©®). The retarded self-energy and the retarded (interact-
does not destroy the order completely. ing) Green function are matrices as well. They might be

In the self-consistent @/treatment of spinless fermions, compjex. The argument runs at an arbitrary but fixed value
two-particle properties can be reached, too. In this work, th%f . According to the Dyson equation one has
Bethe-Salpeter equation was set up in general and solved In

the particular case of the conductivity ). This was pos- )

sible for the nonsymmetry-broken phase as well as for the G=(w+0i—h®-3)"1 (A1)
charge density wave. The equations were evaluatet=B

since the approximation should yield the best results for thig'he full Green function can be written &=ReG+iImG,

ACKNOWLEDGMENTS

value of all experimentally accessible dimensifns. where the real and the imaginary parts are real, symmetric
A number of phenomena were described in tiikel{pan-  matrices. The same is true for the self-energy. Let us define

sion which can be compared with other theoretical predicin particularB: = —ImZX.

tions or experiments. The aim is to showa) that the leading ordeB(™ in \ of

(i) The dynamic conductivityr(w) in the homogeneous the matrixB is positive semidefinite ang) that this implies
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that all spectral densities are non-negative. The main differ-

ence to the argument in the main part is that the matrices do

not commute in general. q q
All one-particle Green functions-(Za(t)a™ (0)}) have

positive spectral densitiéS.Here T is the time-ordering op-

erator anda*t (a) is an arbitrary fermionic creatio@nnihi-

lation) operator. Hence, one has for the corresponding vector

v defined bya* = :EivibiJr k < Kk’

0=<v"(ImG)v. (A2)

Since the above equation holds for anyit implies that the FIG. 19. Diagrammatic basis element of the terms in the sum in
imaginary part ofG is negative semidefinite. Expanding Eq. F19- 12
(38) in powers ofB and resumming the imaginary part yields

APPENDIX B: CONDUCTIVITY IN THE AB-CDW

ImG=—A"'BA {(1+BA1BA™ 1), (A3)
where A:=w—h(®—ReX. In leading order in\ this be- In this appendix the geometric series of Fig. 12 is derived
comes in the case of finite order parameter. Furthermore the deriva-
tion of Eq. (34) is given.
IMG=—-\"(0—h©@)BM™(@—h@)+ O\ ™) (A4) In the AB-CDW the propagators are not diagonalkin

space. There is the possibility of a transition:k+ Q. The
matrix element for this process is the off-diagonal element in
no eigenvalues oh(®. Assuming continuit§/1 for BM(w) Eq. (8). If the wave vector remains unchange'd the diagonal
the positive semidefiniteness extends to all frequencies.  Matrix elements have to be used. Let us classify the segments
Addressing the sign of the imaginary part of the full between two adjacent wavy lines in a diagram in Fig. 12. A
Green function we state th&=0 implies that there is a 9€neric segment is shown in Fig. 19. Note that the momen-
matrix /B which is real and symmetric as well. Defining tum of the upper propagator cancels the momentum in the

The negative semidefiniteness of the Ihs of &) implies
the positive semidefiniteness Bffor values ofw which are

D:=/BA~ 1B allows Eq.(A3) to be written as lower propagator up to multiples @= (7,7, )", since we
are interested in the average conductivity. At the end-vertices
ImG= —A‘l\/§(1+ D) 1BA L (A5) no momentum is added or subtracted. The case

k=k'’=q=q’ can be combined with the case
Ef<=q=k’ +Q=q’ +Q. In both cases the momentum through
the whole segment is zero. Using the elements from(&x.
one obtains

The expression in parentheses is manifestly positiv
semidefinite, thus its inverse as well. Sinée*yB and
JBA~! are transposed, the rhs in EGA5) is negative
semidefinite as a whole. This concludes the argument.

2UT o w,W, + (ye)?—A(iw,)Ai wy)

Mg, 2

0—imop ) —o[Wo—(ye)?— A2(iw,) ][Wi—(ye)?—AZ(iw,)]

Nco(e)de, (B1

where the shorthand/,), :=iw,),—2(iw,,) is employed again. A similar expression is obtained in the combined cases
k=k'=q+Q=q'+Q andk=gq+Q=k’+Q=q’ for which the momentum through the segmenQis

2UT = w,w, — (ye)2—A(iw,)A(i w,)

hom= 7, 2

0, m=am )= [Wo— (y8)? = A%(iw,) ][ Wi~ (y&)? = A%(iw))]

Ncole)de. (B2)

The segments whichchange the momentum are very important. The cadesk’=qg+Q=q’ and k=qg+Q=k’
+Q=q’' +Q yield together

2UT - WA (i wy) —WA(i@,)

A==, 2

o)W ()= A1) W= (y2) = A2 ay)] o0

(e)de. (B3)
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The possible combinations of these cases are naturally 2UT » Neole)— d(eNg o)) de
generated by powers of the matrix =- TE B Wz—(ys)z—Az(iw ) de (B6o)
A: (Al A3) (B4) uT 2
.= . * &
A; A - —
2 o 22 | e may et @99
The sum of all these powers is a geometric series yielding
finally UTjoo (o) foc £°No(e)dedw
= — m .
2 . 7Z) . O o =3 (0) P (ve)? - A¥(w)
X=- U((l_A) w1 (BS) (B6€)

Taking the(1,1) element ensures that the average currentthe step to Eq(B6b) follows from the fact thalN o(¢) is
current correlation function is calculated. The prefactor com&Vven. Partial integration of the last term of the numerator
pensates for the fact that the end-vertices do not have tHgads to Eq.(B6). Equation(B6d) is obtained using Eq.
factor —U/2 which is incorporated ii\. Equation(31) is a (29), which emphasizes the importance of this relation be-

direct consequence of E4B5). The representatio(82) fol-  tween DOS and conductivity spectral density. In the end one

lows from Egs.(B1), (B2), and (B3) by partial fraction de- obtains

composition and integration over the conductivity spectral F

density using the conductivity Green functions. A= — VZ3 (B7a
Now we turn to Eq.(34). For x™{0) we need onlyA, at ! y

iwyn=0 sinceA; vanishes atw,,=0 and the factor + A,

then drops out. FoA; one obtains U('AI')
2 AZ( ) T 7 (B7b)
2UT » (W,+vye)—A%(iw,
Ax z 2,,: 7oc[w,2,—(78)2—A2(iw,,)]2Nc’0(8)d8 =—(1/y—1). (B70)
(B6a)

One obtains Eq(34) by substituting Eq.(B7c) in the de-
2UT o W,Z,—(ys)z—Az(iw,,)-l-Z(ys)z nominator of Eq.(31) and comparing the resulting expres-
== TEV: fﬁm W= (y6)°—A%(iw )2 sion with Eq.(B7b). This completes the analytic derivation

g ’ of the f sum rule in the self-consistentdLapproximation,

XN¢o(e)de (B6b)  which is considered here.
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