
Conductivity in a symmetry-broken phase: Spinless fermions with 1/d corrections
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The dynamic conductivitys(v) of strongly correlated electrons in a symmetry-broken phase is investigated
in the present work. The model considered consists of spinless fermions with repulsive interaction on a simple
cubic lattice. The investigated symmetry-broken phase is the charge density wave~CDW! with wave vector
Q5(p,p,p)† which occurs at half-filling. The calculations are based on the high dimensional approach, i.e.,
an expansion in the inverse dimension 1/d is used. The finite dimensionality is accounted for by the inclusion
of linear terms in 1/d and the true finite dimensional DOS. Special care is paid to the setup of a conserving
approximation in the sense of Baym/Kadanoff without inconsistencies. The resulting Bethe-Salpeter equation
is solved for the dynamic conductivity in the nonsymmetry-broken and in the symmetry-broken phase~AB-
CDW!. The dc-conductivity is reduced drastically in the CDW. Yet it does not vanish in the limitT→0 due to
a subtle cancellation of diverging mobility and vanishing DOS. In the dynamic conductivitys(v) the energy
gap induced by the symmetry breaking is clearly discernible. In addition, the vertex corrections of order 1/d
lead to an excitonic resonance lying within the gap.@S0163-1829~96!07140-8#

I. INTRODUCTION

The investigation of the transport properties of highly cor-
related fermionic systems has attracted much attention in re-
cent years. A thorough understanding of the conductivity in
particular is essential for the technical application of materi-
als such as metallic oxides in electronic devices. The devel-
opment of a new analytic approach, the limit of infinite di-
mension for fermionic systems,1,2 allowed the numerical
description of the metal-insulator occurring in the half-filled
Hubbard model ind5` for higher values of the interaction
U assuming a homogeneous phase.3,4 The latter assumption
means that one deliberately ignores the possible occurrence
of symmetry breaking for the sake of simplicity. It is argued
that on frustrated lattices symmetry breaking is suppressed
so that the metal-insulator transition occurs at higher tem-
peratures than those at which symmetry breaking sets in.

With this background in mind, it is the aim of this work to
extend and to complement the results known so far into two
directions. First, the finite dimensionality of realistic sys-
tems, i.e., mostlyd53, shall be included at least to lowest
nontrivial order in an expansion in 1/d. Much care is used in
including these corrections without physical and/or analytic
inconsistencies. It is shown that it isnot sufficient to use a
conserving, F-derivable approximation in the sense of
Baym/Kadanoff. Furthermore, the true three-dimensional
DOS will be used. Second, the influence of symmetry break-
ing on the conductivity, especially the question of possible
metal-insulator transitions induced by symmetry breaking,
shall be investigated.

To this end, the model of spinless fermions with repulsive
interaction for particles on adjacent sites is considered on a
generic bipartite lattice, namely the simple cubic lattice. Its
Hamiltonian at half-fillingn51/2 reads

Ĥ52
t

AZ (
^ i , j &

ĉi
1ĉ j1

U

2Z(^ i , j &
n̂i n̂ j2

U

2(
i
n̂i , ~1!

where ĉi
1( ĉi) creates~annihilates! a fermion at sitei . The

sum(^ i , j & runs over all sitesi and j which are nearest neigh-
bors. The coordination numberZ52d56 appears for the
proper scaling of the kinetic energy1 and for the proper scal-
ing of the potential energy.5 The interaction constant isU.

In this model the symmetry is broken yielding an AB-
CDW at half-filling6 for infinitesimal values of the interac-
tion atT50 and for sufficiently large interaction at all finite
temperatures. The AB-CDW consists of alternating sites
with a particle density above~below! average. The order
parameterb is the absolute deviation of the particle density
from its average.6 As far as the occurrence of a symmetry-
broken phase is concerned, the model of spinless fermions at
half-filling is similar to the Hubbard model at half-filling
which displays antiferromagnetic behavior. The main differ-
ences are that the broken symmetry for spinless fermions is
discrete whereas it is continuous in the Hubbard model, and
the fact that a local interaction like the one in the Hubbard
model does not favor a spatial order by itself. The latter fact
leads to a value ofTc}1/U for largeU in the Hubbard model
whereas one hasTc}U in the spinless fermions model.

The paper is organized as follows. Succeeding this Intro-
duction it is discussed how a thermodynamically and analyti-
cally consistent extension of the limitZ→` can be per-
formed. Next the basic equations for the extension to linear
order 1/Z are derived and their numerical evaluation is
sketched. This third section contains also results for the DOS
and the corresponding proper self-energy. In Sec. IV the
Bethe-Salpeter equation is set up and solved for the conduc-
tivity s(v). The preservation of thef -sum rule is discussed.
Numerical results for the dc and the ac conductivity are pre-
sented in Sec. V. The findings are summarized and discussed
in the final section.

All energies~temperatures, respectively! throughout this
paper will be given in units of the root-mean-square of the
‘‘free,’’ i.e., noninteracting, density-of-states of the lattice
model concerned. All conductivities will be given in units of
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e2/(\ad22), wherea is the lattice constant. The constants
a, \, andkB ~Boltzmann’s constant! are set to unity.

II. PROPER SELF-CONSISTENT EXTENSION OF Z5`

In the caseZ5`, the evaluation of diagrams and the
treatment of quantities like the DOS are conceptually simple.
It is always the leading contribution in 1/Z and only this
which must be kept. There is no dependence on the sequence
in which certain quantities and the equations relating them
are considered. All sum rules which hold in any dimension
also hold atZ5`, continuity provided for the limitZ→`.
This simplicity is lost as soon as corrections in 1/Z are to be
included. For concreteness, let us consider the linear correc-
tions 1/Z; the problems are illustrated for the free DOS, the
Dyson equation, and the free energyF as a function of the
order parameterb.

The DOS is a non-negative function of which the zeroth
moment is unity. This holds in any dimension, hence in
Z5`. On including the linear corrections5 one realizes that
the approximate expression becomes negative at large values
of v. This is a disadvantage of the otherwise systematic ex-
pansion. Another inconvenience catches the eye in Fig. 1.
The expanded DOS does not improve considerably the
agreement with the true finite dimensional DOS~here
d53). A finite expansion in 1/Z cannot produce the van-
Hove singularities.

To circumvent the problem of the DOS expansion, we
decide to use the exact finite dimensional DOS, i.e., the
d53 DOS. This procedure provides often even ind51 a
remarkable agreement.6,7 In d53, this approximation yields
qualitative agreement for the local DOS as compared to finite
dimensional perturbation results.8 Presently, the approach of
using a finite dimensional DOS in an otherwise infinite di-
mensional calculation as approximation for the finite dimen-
sional problem is employed as so-called ‘‘dynamical mean-
field theory’’4 or ‘‘local impurity self-consistent
approximation.’’3

Next the problem of a systematic 1/Z expansion is dis-
cussed for the Dyson equation. It is stated in a simple case

when the self-energy is strictly local in real space, i.e., con-
stant in momentum space,

g~v!5g0„v2S~v!…. ~2!

This case is realized, for instance, in the Hubbard model in
d5`.5,9 No lattice site or spin index appears since the phase
is assumed to be homogeneous and nonmagnetic. The quan-
tity g(v) stands for the full local Green functionGi ,i(v) and
g0(v) stands for the free Green functionG0;i ,i(v). The ex-
pansion of the Green function corresponds to the expansion
of the thermodynamic potential since they depend linearly on
each other.10 An expansion of the self-energy, however,
yields adifferentexpression forg(v) sinceg0(v) is not a
linear function. The expansion of the self-energy seems more
promising since it preserves the Dyson equation by construc-
tion. Moreover, it is able to describe the shift of singularities,
e.g., the shifts of the band edges.~Note that we discuss here
finite expansions of the quantities considered.!

In spite of the choice to expand the self-energy some am-
biguity persists. In Fig. 2, this problem is illustrated. It arises
in the description of spontaneous symmetry breaking. Two
results for the dependence of the conjugated field on the
order parameter are opposed. The data refer to the AB-CDW
occurring in the spinless fermion problem at half-filling. The
dotted curve results from a fully self-consistent calculation
whereas the dashed curve results from a systematic expan-
sion of the self-energy. Note that the self-consistent approach
generates higher order contributions.

The argument results now from the strange behavior of
the dashed curve in the vicinity of the origin. The free energy
belonging to the dotted curve can be found by integration; it
has an unstable maximum (]hEXT /]b,0) at b50 and two
stable minima (]hEXT /]b.0) atb'60.48. But there is no
free energy belonging to the dashed curve since it would
have three maxima in sequence aroundb50 which is math-
ematically impossible~theorem of Rolle!. This is a very
strong argument in favor of a self-consistent calculation.

FIG. 1. Noninteracting DOS ind5` ~short-dashed curve!, in
d53 ~solid curve!, and the DOS expanded in 1/d evaluated in
d53 ~long-dashed curve!. These densities of states are symmetric
about they axis.

FIG. 2. Externally applied fieldhEXT as a function of the order
parameterb for U59 andT50 in d53. The short-dashed curve
depicts the 1/d self-consistent result, the long-dashed curve the re-
sult of a systematic expansion of the self-energy. The zeros of the
curves correspond to thermodynamic equilibrium. But only zeros
with positive slope are locally stable (b'0.48).

54 10 437CONDUCTIVITY IN A SYMMETRY-BROKEN PHASE: . . .



For completeness, it shall be mentioned that one may ar-
gue that in the vicinity of the physical solutions, i.e., the
minima, the difference of both approaches is negligible.
There are also cases known where the systematic, non-self-
consistent approach yields better results.11 But there is still
another advantage of the self-consistent treatment which will
be crucial for what follows. In the sense of
Baym/Kadanoff12,13 it covers also the calculations of two-
particle properties and ensures the preservation of sum rules.
So, Schweitzer and Czycholl resorted in their calulation of
resistance and thermopower for the periodic Anderson model
to the self-consistent treatment14 although their results for the
local DOS did not necessarily favor this approach.11

As a result of the above discussion the starting point for
the inclusion of 1/Z corrections is the generating functional
F according to Baym/Kadanoff.12,13 This is the quantity
which is expanded in a 1/Z series. Then the truncation of this
series yields an approximation to the corresponding order.
The power counting for the diagrams ofF has been ex-
plained previously.6,15Here it shall just be stated that the first
diagram in Fig. 3 is of orderO(1) and the two other dia-
grams in Fig. 3 produce the linear correctionsO(1/Z)
whereas the diagrams in Fig. 4 are examples forO(1/Z2)
contributions. Thus Fig. 3 visualizes the approximateFA
potential which will be used in this work.

By functional derivation the self-energy shown in Fig. 5 is
obtained. Note that the Fock diagram is seemingly of another
order, namelyO(1/Z3/2), than the third diagram,O(1/Z),
which is called the local correlation diagram henceforth.
What matters, however, is the order relative to the free Green
function which isO(1/Z1/2) for adjacent sites. It is another
advantage of the Baym/Kadanoff formalism that one does
not need to bother about these questions once the approxi-
mateF potential is chosen.

Now a point shall be highlighted which has not been men-
tioned before to our knowledge. In spite of the many argu-

ments in favor of the Baym/Kadanoff formalism, its naive
application does not guarantee the absence of unphysical re-
sults. A counter example serves as an illustration. Consider
an approximateF consisting only of the diagram in Fig.
4~a!, summed over all sitesi , j ,i 8, j 8, such thati and j ( i 8
and j 8, respectively! are adjacent to one another and fulfill
jÞ j 8 and iÞ i 8. The resulting nearest-neighbor self-energy
S i , j5t(v)5t8(v)1 i t 9(v) has a finite imaginary part
t9(v). Using the Dyson equation, one obtains in the homo-
geneous phase

Gk,k~v10i !5
1

v10i2@11t~v10i !#«~k!

5
v2~11t8!«~k!1 i t 9«~k!

@v10i2~11t8!«~k!#21„t9«~k!…2
.

By choosing an appropriate wave vectork at fixedv one can
have the sign of«(k) such that the imaginary part of
Gk,k(v10i ) is positive.16 This is a contradiction to the exact
result.10 Note that the details oft(v) are not essential as long
as the imaginary part is finite.

The counterexample above is not only of academic inter-
est. Schweitzer and Czycholl observed as well that the inclu-
sion of a nearest-neighbor self-energy leads to wrong signs
of the imaginary parts. They considered the 1/d expansion of
a U2 perturbation theory around Hartree-Fock for the Hub-
bard model and the periodic Anderson model.8,17 They
reached consistency by including higher 1/d corrections~for
d51 up to 50 terms!.8 Problems with the analyticity
~uniqueness! of the solution occurred also in the first inves-
tigations of 1/d corrections in the Hubbard model3 ~Falicov-
Kimball model18!.

To the author’s knowledge there is no necessary or suffi-
cient theory so far, which predicts under which circum-
stances such problems have to be expected or can be ex-
cluded. A sufficient argument excluding wrong signs of the
imaginary part of the approximate self-energy is given by the
following theorem.

If the approximation considered can be interpreted as an
expansion of the self-energy in a parameterl>0 and ifm is
the leading order, in which the imaginary part of the self-
energy doesnot vanish, then the self-energy approximated in
themth order has the right sign.

The proof relies on the continuity of limits if the expan-
sion exists. According to the precondition, it holds that

0>ImSl~v,k!5lmImS~m!~v,k!1O~l~m11!!, ~3!

which is equivalent to

FIG. 5. The self-energy diagrams derived from Fig. 3 by taking
out one propagator line. The diagrams shown contribute in order
1/Z.

FIG. 3. Diagrams contained inFA@G#. The first generates the
Hartree term, the second the Fock term, and the third the local
correlation term. The solid lines represent dressed propagators, the
wavy lines the interactions. The sum runs over the lattice sites
i , j .

FIG. 4. Two examples of diagrams in higher order~here: qua-
dratic! in 1/Z. The sitesi and j are adjacent as are the sitesi 8 and
j 8. Additionally, iÞ i 8 and jÞ j 8 holds.
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0> lim
l→01

l2mImSl~v,k!5ImS~m!~v,k!. ~4!

The indexk is the wave vector in a homogeneous, transla-
tionally invariant phase. The derivation for general phases,
for instance the AB-CDW, is given in Appendix A.

The derivation in Eq.~3! and in Eq.~4! holds strictly only
for the non-self-consistent treatment. In the generic situation,
however, the leading order of the self-energy with nonvan-
ishing imaginary part results from a certain diagram class
and the analytic properties do not depend on the specific
form of the Green function entering. If this is the case, the
statement of the theorem extends also to the self-consistent
treatment where the quantitative form of the Green functions
are not knowna priori.

The theorem helps one to understand the observations
made by Schweitzer and Czycholl. In the 1/d expansion of
the d-dimensional Hubbard model and of the periodic
Anderson model one hasl51/d andm50 since the self-
energy is imaginary already in the first order. For the pertur-
bation theory inU one hasl5U andm52 since the self-
energy stays real in Hartree-Fock. Applying the rationale of
the theorem twice one understands that the self-energy in
U2 of the infinite dimensional model has the right analytic
behavior. If further 1/d corrections are included this does not
need to be true. The result of Schweitzer and Czycholl, that
the linear 1/d correction leads to wrong signs, proves that the
theorem is sharp: If the precondition fails, the implication
fails, too. The second obervation, that the inclusion ofvery
many1/d correction terms remedies the failure, can also be
understood easily. In this case the calculations approximate
theU2 perturbation theory of thefinite dimensional models
very well. According to the theorem, this perturbation theory
displays the right sign, too.

The above observations indicate that also the analyticity
problems encountered for 1/d corrections in the Hubbard
model3 are not due to the approximations used to solve the
effective impurity problems. Rather, each time that the theo-
rem does not apply one has to expect that analyticity prob-
lems arise for certain parameters. Considering Eq.~6a! in
Ref. 18 or equivalently Eq.~370! in Ref. 3 one realizes that
the spectral density of the local self-energy might change
sign. This cannot be excluded obviously from the way in
which the impurity self-energies are computed.

Turning to the 1/d expansion of the present model of
spinless fermions (l51/d), one notes that the theorem ap-
plies with m51. Therefore, the equations including linear
1/d corrections display the right analyticity. These equation
will be set up in the following.

A. Resulting equations and one-particle results

This section is kept very concise since it contains material
which is partly published elsewhere.6 For two reasons, how-
ever, it cannot be omitted. First, a different notation using
different intermediate quantities shall be introduced. Second,
the one-particle results are necessary requisites to understand
the conductivity results in the subsequent section.

The treatment of a self-energy of the type depicted in Fig.
5 is commonly known~see, e.g., Refs. 11, 19, and 20!. Deal-
ing with the symmetry-broken phase, however, requires
some extension. In a previous work6 the local Green function

and the self-energy are distinguished according to the sublat-
tice to which they belong. In the present work, sum and
difference of the quantities on the two sublattices will be
used. The local quantities on sitei belonging to sublattice
tP$A,B% are

gt :5Gi ,i~v!, ~5a!

St~v!:5S i ,i
H ~v!1S i ,i

C ~v!, ~5b!

whereGi ,i(v) is the full local Green function andS is the
local self-energy. The Fock part will be treated subsequently.
The indexH stands for the Hartree term~first diagram in Fig.
5!; the indexC stands for the local correlation~third diagram
in Fig. 5!. Let us define

gS~v!:5@gA~v!1gB~v!#/2, ~6a!

gD~v!:5@gA~v!2gB~v!#/2, ~6b!

S~v!:5@SA~v!1SB~v!#/2, ~6c!

D~v!:5@SA~v!2SB~v!#/2. ~6d!

The spectral functions of the Green function are calledNS
and ND , respectively; the spectral functions of the self-
energyS andD are calledNS andND , respectively. The
nonlocal Fock term isSF:5S i , j , wherei and j are adjacent
sites. It turns out thatSF is negative~for repulsive interac-
tion!, real, and that it does not depend on whether the ferm-
ion hops fromA to B or vice versa. Hence, it renormalizes
the hopping

t→gt with g:512AZSF/t. ~7!

Note that for attractive interactiong could become 0, which
would lead to a breakdown of the theory. Such a singularity
is absent in the repulsive case.

In the AB-CDW, the modes atk couple to those at
k1Q. Hence one has

S Gk,k Gk,k1Q

Gk1Q,k Gk1Q,k1Q
D

5S v2S~v!2g« 2D~v!

2D~v! v2S~v!1g«
D 21

. ~8!

From this equation one obtains

gS~v!5
w

gAw22D2~v!
g0„Aw22D2~v!/g…

5E
2`

` w

w22~g«!22D2N0~«!d«, ~9a!

gD~v!5
D~v!

gAw22D2~v!
g0„Aw22D2~v!/g…

5E
2`

` D

w22~g«!22D2N0~«!d«, ~9b!

wherew is shorthand forv2S(v).
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The averaged Hartree termU(nA1nB)/2 renormalizes the
chemical potential.15 The Hartree contribution toD is Ub,
where b:5(nB2nA)/2 is the order parameter, i.e., the
particle density difference. It is given by
b52*2`

` ND(v) f F(v)dv, where f F(v) is the Fermi func-
tion.

The Fock term can be calculated from the nearest-
neighbor Green functionGj1a, j ,

SF5
U

pZE2`

`

Im„Gj1a, j~v10i !…f F~v!dv, ~10!

which is given by

Gj1a, j~v!52
1

AZ
E
BZ

«~k!Gk,k

dkd

~2p!d

52
1

gAZ
@~v2S!gS~v!2DgD~v!#d«.

~11!

The Fock term is related to the kinetic energy
SF5(U/Z3/2)^T̂&. Thus, Eq.~10! can be evaluated using
Eqs.~11! and ~9!.

The local correlation term is given in terms of the Mat-
subara frequenciesvl ~fermionic! andv l ~bosonic! by

St
C~ ivn!52

U2T2

Z (
l ,l

g t̄ ~ ivl1 iv l !g t̄ ~ ivl!gt~ iv l1 ivn!.

~12!

Here, the indext̄ stands for theothersublattice, i.e., forA if
t5B and vice versa. By performing the Matsubara sum one
obtains the convolution

NSt
~v!5

U2

Z E
2`

` E
2`

`

N t̄ ~v9!N t̄ ~v92v8!

3Nt~v2v8!•@ f F~v82v! f F~2v9! f F~v92v8!

1 f F~v2v8! f F~v9! f F~v82v9!#dv8dv9 ~13!

for the spectral functionNSt
(v) belonging toSt

C(v). The
convolution can be expressed most conveniently in the Fou-
rier transforms

Ñ6~ t !:5E
2`

`

exp~2 ivt !N~6v! f F~2v!, ~14a!

Ñ~ t !:5E
2`

`

exp~2 ivt !N~v!. ~14b!

Equation ~13! becomes as simple as ÑSt
(t)

5U2/Z@Ñ t̄
1Ñt

1Ñ t̄
2u t1Ñ t̄

2Ñt
2Ñ t̄

1u2t#. In sums and differ-
ences one obtains

ÑS~ t !5
U2

Z
@$~ÑS

1!22~ÑD
1!2%ÑS

2u t

1$~ÑS
1!22~ÑD

1!2%ÑS
1u2t# ~15a!

ÑD~ t !52
U2

Z
@$~ÑS

1!22~ÑD
1!2%ÑD

2u t

1$~ÑS
1!22~ÑD

1!2ÑD
1u2t. ~15b!

The complete self-energyS andD are given by the follow-
ing inverse Fourier transforms:

S~v10i !52 i E
0

`

exp~ ivt20t !ÑS~ t !dt, ~16a!

D~v10i !5Ub2 i E
0

`

exp~ ivt20t !ÑD~ t !dt. ~16b!

In Eq. ~16b! the Hartree part has been added.
So far, no assumptions concerning the DOS entered. The

formulas hold for all fillings. At the particular value of half-
filling the additional symmetries NS(v)5NS(2v),
ND(v)52ND(2v), NS(v)5NS(2v), and ND(v)
52ND(2v) can be exploited. The fact that the spectral
densities are real tells us thatÑ(2t) is the complex conju-
gate~c.c.! of Ñ(t). Thus Eq.~15! simplifies at half-filling to

ÑS~ t !5
U2

Z
@$~ÑS

1!22~ÑD
1!2%ÑS

1u t1 c.c.#, ~17a!

ÑD~ t !5
U2

Z
@$~ÑS

1!22~ÑD
1!2%ÑD

1u t2 c.c.#. ~17b!

This terminates the setup of the equations which have to be
solved self-consistently on the one-particle level.

For those who intend to implement these equations or
similar ones some remarks on the numerical realization are
in order. As usual, the self-consistent set of equations is
solved by iteration. AtT50 it is favorable to use a relaxed
iteration. This means that the self-energyS andD from the
nth and from then11 iteration are averaged and used for
the subsequent calculation instead of using only then11
iteration. This procedure damps oscillatory deviations from
the fixed point more rapidly. It is even more advantageous to
let the programme decide whether relaxed or nonrelaxed it-
eration converges faster.

The Fourier transformation is the most time consuming
step. The best algorithm for this task is the so-called fast
Fourier transformation~FFT!. The extremely large number
of points, which can be used with the FFT, overcompensates
the disadvantage of an equidistant mesh which cannot be
adapted to regions where the DOS changes rapidly.6 In the
AB-CDW 219 points were used. The vectorization on an
IBM3090 still permitted us to do one iteration step compris-
ing four FFT in 19 sec. A very good precision could be
achieved. The sum rules

E
0

`

NS~v!dv5
U2

Z

1

2 S 142b2D , ~18a!

E
0

`

ND~v!dv5
U2

Z
bS 142b2D , ~18b!

are preserved up to 1026. Note that Eq.~18b! holds only at
T50 whereas Eq.~18a! holds for all temperatures.
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In order to achieve the high precision also atT50, it is
necessary to discretize the DOS carefully. At the gap edges
the DOS displays inverse square root divergences
a/Av2vD. The parametersa and vD are determined di-
rectly from the self-energy using Eq.~9!. The diverging part
of the DOS is discretized by using the average value in the
interval @v i2dv/2,v i1dv/2# instead of the DOS value at
v i .

Once the Fourier transforms are essentially linear one has
to avoid a nonlinear time loss in the calculation of the com-
plex free Green functiong0(z). Therefore, the integration
from the Hilbert representation must be avoided. This is
done by using the approximate expression

N3~«!'
1

p F H 1303329088
1

8675

174528
«2J A62«22H 41676464

1
459

6464A6
«1

729

12928
«2JA2/32~«22A2/3!2

2H 41676464
2

459

6464A6
«

1
729

12928
«2JA2/32~«12A2/3!2G , ~19!

for the three-dimensional DOSN3(«). The identities
h(z;a):5(1/p)*2Aa

Aa Aa2«2/(z2«)d«5z6Az22a and
(1/p)*2Aa

Aa «Aa2«2/(z2«)d«52(a/2)1zh(z;a) permit us
to computeg0(z) for anyz quickly. The right-hand side~rhs!
of Eq. ~19! is chosen such that the van-Hove singularities are
at the right places and such that the first moments~including
the eighth! are reproduced exactly. The relative accuracy
achieved is 431024 for N3(0) and 10

25 for the 10th and the
12th moment.

The calculations of the Hartree and of the Fock parts are
linear in the number of discretization points. Concluding the
remarks on the numerical realization we state that all parts of
an iteration step are essentially linear in the number of points
used. This allows a reliable and efficient computation.

In Fig. 6, results for the DOS and the spectral density of
the self-energy in the homogeneous phase are shown. The
spontaneous symmetry breaking is deliberately suppressed.
Only positive frequencies are displayed since the functions
are even. AtT50, one notes that the imaginary part of the
self-energy tends quadratically to zero forv→0. From Eq.
~13! this follows for all free DOS with finite nonsingular
value at the Fermi edge. Thus the homogeneous low tem-
perature phase of interacting spinless fermions is a Fermi
liquid. But this phase is thermodynamically unstable~see
below!. The DOS still bears signs of the van-Hove singulari-
ties which are smeared out only a little due to the interaction.
Note that the width is increased by the Fock term. In the free
case the half-width isA6'2.45. High temperatures smear
out the minimum ofNS at v50 completely. The solution
depicted is stable since atT52 no AB-CDW is possible.

In Fig. 7, stable solutions withb.0 are shown. Note the
square root divergence in the DOS~left column! in the vi-
cinity of the gap. AtT50 the gap is at 2vD'0.6, whereas

the spectral density of the self-energy becomes finite at about
1.8'6vD . This results from the two convolutions involved.6

They cause the gap in the density of the self-energy to be
exactly three times the gap in the DOS. Put differently, the
finite spectral density of the self-energy corresponds to the
inelastic scattering of a particle or a hole involving an addi-
tional particle-hole pair. Thus, the necessary minimum en-
ergy is three times the elementary gap. The physically im-
portant implication is the existence of quasiparticles with
energies betweenvD and 3vD with infinite lifetime. Follow-
ing the arguments of Luttinger21 by which he shows that the
density of the self-energy generically goes likev2 at the
Fermi edge one comes to the conclusion that this factor 3 is
not an artifact of the approximation but valid to all orders.
Therefore, if the conditions are such that the homogeneous
phase is a Fermi liquid, i.e., Luttinger’s argument holds, a
gapped, spontaneously symmetry-broken phase has a factor
3 between the gap in the DOS and the gap in the self-energy.
This implies also the existence of undamped quasiparticles
which have interesting consequences on the transport prop-
erties ~see below!. The exponent of the power law with
which the imaginary parts of the self-energy rise at
v53vD is 3/2.

At finite temperatures the energy gap is smaller since the
order parameter has decreased. This effect is visible already

FIG. 6. Density of states and spectral function of the self-energy
in the homogeneous phase atU52 andT50 andT52 in d53.
For definitions see Eqs.~6!.
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in the Hartree treatment. In addition, the energy gap is
smeared out: thermal fluctuations represented by the local
correlation termSC induce a certain spectral weight within
the ‘‘gap’’ which no longer exists in the rigorous sense. The
occurrence of two maxima inNS and inND should be noted.

In Fig. 8, the generic results for large values of the inter-
action are shown. AtT50 the factor 3 between the gap in
the DOS and the gap of the spectral densities of the self-
energies is even more easily discernible. At the finite tem-
perature (T'1.5), all the structures are smeared out; the or-
der parameter is considerably smaller than atT50:
b50.260 at finiteT to b50.479 atT50. The comparison of
the spectral weights of the self-energy at zero and at finite
temperature illustrates an important effect. The correlation
term is suppressed by the symmetry breaking. The largerb
the smaller is the area under the curves in Figs. 8~b! and 8~d!.
The effect can be understood quantitatively with the help of
the equations~18! which imply that the area under the curves
vanishes forb→1/2. This leads to the counterintuitive effect
that the significance of the correlation term decreases on in-
creasing interaction atT50 albeit it is quadratic in the in-
teraction

In Fig. 8, hardly discernible satellite bands exist at
v'12. They are engendered by the finite imaginary part of
the self-energy at these energies@see Figs. 8~b! and 8~d!#. To
demonstrate that there are in fact infinitely many satellite
bands with exponentially decreasing weights, the densities
NS andNS are plotted logarithmically in Fig. 9. The princi-
pal band of the DOS consists of quasiparticles with infinite
life-time atvD'4. The satellite bands correspond to peaks
in the spectral density of the self-energy. The satellite bands

are located at (2m11)vD wherem is an integer. The peaks
in the spectral density of the self-energy are located at
(2m11)vD wherem is an integer butnot 0 or 21. This
phenomenon is generic for the self-consistent solution of a
system of equation comprising convolutions of strongly
peaked functions. It appears only at large values ofU be-
cause it is necessary thatvD'U/2 is larger than the band
width in order to resolve the peaks. Note that according to
~9!, a large value ofD induces band narrowing. Whereas the
principal band isA6 wide atU50, its width is shrunk to
about unity in Fig. 8~a!.

For detailed numerical results on the order parameter as
function of interaction and of temperature as well as on the
critical temperature the reader is referred to Ref. 6. The as-
ymptotic behavior at smallU is discussed analytically by van
Dongen.22,23 In a nutshell, the correlation term renormalizes
the Hartree results forb andTc by a constant factor of order
unity which tends to unity ford→`.

III. CONDUCTIVITY: FOUNDATIONS

Due to the point symmetry group of the hypercubic lat-
tices the conductivitys(v) can be treated as a scalar. Pre-
vious one-particle results showed that the treatment on the
level of linear 1/d corrections should yield reasonable
results6 in d53.

The conductivity is calculated from a two-particle corre-
lation function. This will be done here from the current-
current correlation functionxJJ. The conductivity comprises
two contributionss(v)5s1(v)1s2(v). The first term de-
pends on the occupation of the momentum states^n̂k&

FIG. 7. Density of states and
spectral function of the self-
energy in the AB charge density
wave at U52 and T50
(b50.311 005), T50.225 658
(b50.250 000) ind53. For defi-
nitions see Eqs.~6!. The sum
quantities in~a! and ~b! are even
functions of frequency; the differ-
ence quantities in~c! and ~d! are
odd functions.
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whereas the second term is proportional toxJJ(v),24

s1~v!5
i

vEBZ
]2«~k!

]k1
2 ^n̂k&

dkd

~2p!d
, ~20a!

s2~v!5
i

v
xJJ~v!. ~20b!

The current-currrent correlation function will be computed
including 1/d corrections with the help of the Baym/
Kadanoff formalism.12,13 Specific correlation functions are
determined from the general two-particle correlation func-
tion L(12,1828) via

xAB5E A~1,18!L~12,1828!B~2,28!d118228. ~21!

The numbers stand for composite space and time coordinates
~or momentum and frequency coordinates!. The measure
d118228 tells which coordinates are integrated. The quanti-
tiesA andB represent the operators for which the correlation
function is computed. The Bethe-Salpeter equation deter-
mines L(12,1828) implicitly using the kernel~or effective
two-particle interaction! J(35,46) and the Green function
G(1,2),

L~12,1828!5G~1,28!G~2,18!

1E G~1,3!G~18,4!J~35,46!L~62,528!d3456.

~22!

Like the kernel of the Dyson equation, namely, the self-
energy, the kernelJ(35,46) of the Bethe-Salpeter equation
is given as a functional derivative with respect to the Green
function,

J~35,46!5
]S~3,4!

]G~6,5!
5

]2F

]G~4,3!]G~6,5!
. ~23!

FIG. 9. Density of statesNS ~short-dashed curve! and spectral
functionNS ~long-dashed curve! in the AB-CDW atU58 in loga-
rithmic scale. The difference quantities are not shown since their
values lie only slightly under those of the sum quantities.

FIG. 8. Density of states and
spectral function of the self-
energy in the AB charge density
wave at U58 and T50
(b50.479 312), T51.509 384
(b50.260 004) ind53. For defi-
nitions see Eqs.~6!. At v'12.0
hardly visible satellite bands are
present inNS and ND for T50.
They result from the imaginary
parts of the self-energy around
this frequency.
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Diagrammatically, the functional derivation is the omission
of a propagator line. Applying these steps to the approximate
generating functionalFA in Fig. 3 yields the diagrammatic
representation of the Bethe-Salpeter equation~22! in Fig. 10.
The first diagram with a wavy interaction line in the upper
row stems from the Hartree diagram, the last diagram in the
upper row results from the Fock diagram. The diagrams in
the lower row in Fig. 10 are generated by the different pos-
sibilities to take out two propagator lines from the correlation
diagram.

Fortunately, the summation in Fig. 10 simplifies consid-
erably for the evaluation of the current-current correlation
functionxJJ. Figure 11 displays Eq.~21!. The squares repre-
sent the current vertices

J~1,18!5d~k12k18!d~v12v182v!
]«

]k1,1
. ~24!

Due to symmetry it does not matter for which spatial direc-
tion J(1,18) is calculated;k1,1 is one arbitrarily chosen com-
ponent. The crucial property of the current vertex is its odd-
ness as a function ofk1,1. All interaction terms which are
even in k1,1 do not contribute. This is the case for all the
diagrams resulting from the local correlation in the lower
row and for the diagram coming from the Hartree term since
only onesite appears on either side. Hence, only the geomet-
ric series depicted in Fig. 12 caused by the nonlocal Fock
term is left. For comparison: in the infinite dimensional Hub-
bard model the simplifications are even more drastic. All
vertex corrections drop out and the current-current correla-
tion function is just the convolution of two Green
functions.25

Let us call the value of the first diagram in Fig. 12 the
‘‘free’’ current-current correlation function and let us use the
symbolx0

JJfor it. In the homogeneous phase one obtains with
the help of Eqs.~21! and ~24! and of the propagator ink
space@v2S(v)2g«(k)#21

x0
JJ~ ivm! 5

4T

Z (
vn2vl5vm

E
BZ

sin2~k1!

@wn2g«~k!#@wl2g«~k!#

3
dkd

~2p!d
, ~25!

wherewn/l :5 ivn/l2S( ivn/l).
We focus now on the segments between two wavy lines in

Fig. 12. The conservation of energy and of momentum
makes it possible to carry out the sum over all momenta and

energies by considering independent momenta and energies
circulating in each segment. Then the momentumin a wavy
line is the difference of two adjacent wave vectorsk and
k8. A second time, the evenness and the oddness in the com-
ponents of the wave vector are used to write for the factor of
an interaction line

2
U

d (
i51

d

cos~ki2ki8!52
2U

Z (
i51

d

@sin~ki !sin~ki8!

1cos~ki !cos~ki8!#

→2
2U

Z
sin~k1!sin~k18!. ~26!

The argument is obvious for one of the border segments and
follows for those in the middle by induction.

At the end one realizes that each segment corresponds to
a factor of2(U/2)x0

JJwhich justifies calling the right side of
Fig. 12 a geometric series which takes the value

xJJ~v10i !5
x0
JJ~v10i !

11Ux0
JJ~v10i !/2

~27!

after analytic continuation. The derivation of a similar for-
mula in the AB-CDW is given in Appendix B. The results
are cited below.

The momentum integration in Eq.~25! requires a modi-
fied DOS, to be called the conductivity DOS henceforth,

Nc,0~v!:5E
BZ
sin2~k1!d„v2«~k!…

dkd

~2p!d
, ~28!

from which we define also the conductivity Green function
gc,0(z):5*2`

` Nc,0(v)/(z2v)dv. The conductivity DOS
can be simply derived once the DOS is known. These two
functions are related via

N0~v!52
2

v

]Nc,0

]v
~v!. ~29!

This relation stems from the fact that one has to replace one
of the d factors (1/p)1/At22v2 in the convolution for the
DOS by (1/p)At22v2 in order to calculate the conductivity
DOS. The derivation uses the representation of convolutions
as products in Fourier space.

FIG. 11. Diagrammatic representation of Eq.~21! for the
current-currrent correlation function.

FIG. 12. Current-currrent correlation function with 1/d correc-
tions.

FIG. 10. Diagrammatic representation of the Bethe-Salpeter
equation resulting fromFA according to Baym/Kadanoff. The
wavy lines stand for interaction; the solid ones for fermionic propa-
gators. The direction of the lower propagators is opposite to the one
of the upper propagators.
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Using the definition of the conductivity Green function
and partial fraction expansion it is straightforward to rewrite
Eq. ~25! as

x0
JJ~ ivm! 5 2

4T

g Z (
vn2vl5vm

gc~ ivn /g!2gc~ ivl /g!

wn2wl
.

~30!

Analytic continuation of the latter gives the general formula
@Eq. ~14! in Ref. 26# for the current-current correlation func-
tion in the homogeneous phase.

In the AB-CDW, it is also possible to sum the series in
Fig. 12 as geometric series. The main difference is the fact
that 232 matrices instead of scalars are involved. The de-
tails are given in Appendix B; the results27 are

xJJ~ ivm!5
2

U
2

2

U

12A2

~12A1!~12A2!2A3
2 , ~31!

where the quantitiesA1 ,A2, andA3 are defined by

A1~ ivm!5
2UT

Z (
vn2vl5vm

F ~wl1wn!@gc,S~ ivn!2gc,S~ ivl!#2@D~ ivl!1D~ ivn!#@gc,D~ ivn!2gc,D~ ivl!#

wn
22wl

22@D2~ ivn!2D2~ ivl!# G ,
~32a!

A2~ ivm!5
2UT

Z (
vn2vl5vm

F ~wl2wn!@gc,S~ ivn!1gc,S~ ivl!#2@D~ ivl!2D~ ivn!#@gc,D~ ivn!1gc,D~ ivl!#

wn
22wl

22@D2~ ivn!2D2~ ivl!# G , ~32b!

A3~ ivm!5
2UT

Z (
vn2vl5vm

FD~ ivl!gc,S~ ivn!2wlgc,D~ ivn!1D~ ivn!gc,S~ ivl!2wngc,D~ ivl!

wn
22wl

22@D2~ ivn!2D2~ ivl!# G . ~32c!

In complete analogy to the usual Green functions, the con-
ductivity Green functions aregc,S :5(gc,A1gc,B)/2 and
gc,D :5(gc,A2gc,B)/2, hence

gc,S~v!5
v2S~v!

gA@v2S~v!#22D2~v!
gc,0„Aw22D2~v!/g…,

~33a!

gc,D~v!5
D~v!

gAw22D2~v!
gc,0„Aw22D2~v!/g…, ~33b!

which compares to Eq.~9! @w is shorthand forv2S(v)#.
Now a relation for the dc conductivity shall be derived. In

order that the limit limv→0s(v) exists,

xJJ~0!5E
BZ

]2«

]k1
2 ~k!^n̂k&

dkd

~2p!d
5

^T̂&
d

~34!

must hold according to Eq.~20!. The operatorT̂ stands for
the kinetic energy. Equation~34! implies also thef sum rule
*2`

` ( ixJJ/v)dv52p^T̂&/d. At the end of Appendix B, it is
shown explicitly that Eq.~34! is valid sinceA3 vanishes at
v50 andA152U^T̂&/(2gd)5121/g. For the dc conduc-
tivity one obtains

s~0!5 i
]xJJ

]v U
v50

52
2ig2

U

]A1

]v U
v50

. ~35!

For explicit evaluation it is useful to splitsdc(0) into a term
including retarded and advanced Green functionssdc1 and a
term including only retarded or advanced Green functions
sdc2 after analytic continuation. This yields

s dc15
g2

pZE2`

` ~12ReS!Nc,S2~ReD!Nc,D

~12ReS!NS1~ReD!ND
„2 f F8 ~v!…dv,

~36!

where f F8 (v) is the derivative of the Fermi distribution, and

sdc252
g2

pZE2`

` ~12S!]vgc,S2D]vgc,D
~12S!~]vS21!1D]vD U

v10i

3„2 f F8 ~v!…dv

5
1

pZ F12ReE
2`

`

@~v2S!gS2DgD#v10i

3„2 f F8 ~v!…dvG . ~37!

In the last expressions, all the Green functions are retarded.
In the homogeneous phase, the contribution~36! is more
important than the one in Eq.~37!. The former diverges for
T→0 andv→0, the latter does not. In the symmetry broken
AB-CDW, however, both terms turn out to be essential.

Equations~31!, ~32!, ~36!, and~37! are the foundation for
the calculation of the conductivity for zero and for nonzero
order parameter. The focus of the present work is on the
AB-CDW. The properties of the conductivity in the homo-
geneous phase~e.g., Fermi liquid behavior! are presented in
detail in Ref. 26, where also the influence of the truncation of
the 1/d expansion is discussed.

IV. CONDUCTIVITY: RESULTS

In this section we present and discuss results which fol-
low from the general equations derived in the preceding sec-
tion. All results are calculated at half-filling and ford53.
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In Fig. 13, the real part of the dynamic conductivity is
depicted in the nonsymmetry-broken phase for different tem-
peratures, i.e., the occurrence of a symmetry-broken phase at
low temperature is discarded deliberately for the moment.
They are compared with results of Pruschke, Cox, and
Jarrell28,29 for the half-filled Hubbard model ind5`, ob-
tained in the noncrossing approximation. In both cases the
interaction value isU54.243 ~in our units! which is just
below the value where the Mott-Hubbard transition occurs in
the Hubbard model.29 For spinless fermions the Drude peak
is absolutely dominant. Its weight is very large. Its width is
given by the imaginary part of the self-energy at the Fermi
levelNS(0) @see Eq.~32! with D50 or Eq.~14! in Ref. 26#,
i.e., the width is proportional toT2. The shape of the Drude
peak corresponds very well to a Lorentzian.

Only at low temperatures does a shoulder emerge. This
shoulder is the effect of interaction induced scattering. The
fluctuations are not particularly strong. It was already shown
previously26 that the average over theZ interaction partners
reduces the relative fluctuations. There is no Mott-Hubbard
transition without symmetry breaking in the spinless fermion
model because an increasing interaction enhances not only
the fluctuations but also the Fock term~absent in the Hub-
bard model! which stabilizes the Fermi liquid phase. These
features are particularly obvious in the comparison with the
Hubbard model data. In this model, the Drude peak is very
reduced at all displayed temperatures since much of the
weight is shifted to the peaks induced by the strong local
particle density fluctuations.

Besides the difference shoulder vs peak it is interesting to
note the difference in energy scales. In the Hubbard model, it
is more or lessU which sets the energy at which the peak
occurs. This can be understood as the energetic effect of
whether or not an electron with a different spin is present.
The typical energy for the shoulder is obviously much
smaller. This in turn can be understood in the same way as
before but it has to be taken into account that the number of

possible interaction partnersZ leads to a reduction of the
relative fluctuations of the order of 1/AZ. This yields an en-
ergy of roughly 1.7 in the particular example which is in
good agreement with the numerical result.

Due to the nesting at half-filling, the system of spinless
fermions undergoes a transition to a spontaneously broken
translation symmetry for all~positive! values of the interac-
tion on lowering the temperature. This spontaneously broken
discrete symmetry implies the occurrence of a gap which
grows exponentiallyvD}exp(2c/U) for low values of the
interaction atT50 ~see Ref. 6 and references therein!. It is
visible in the dynamic conductivity.27 In Fig. 14, its growth
on decreasing temperature is shown in four snapshots. In Fig.
14~a!, T is still above its critical value. No structure is visible
except for the dominant Drude peak already discussed in Fig.
13. In Figs. 14~b!–14~d! the gap is present and discernible.
Its value is approximately 2vD if vD is the value of the
energy gap in the DOS, see Figs. 7 and 8. But there is also
some weight within the gap forT.0 since the correlation
contribution blurred already the gap in the DOS. Note in
passing that thef sum rule can be verified numerically on the
results shown in Fig. 14 very accurately~to the fraction of a
percent atT50; to the fraction of a permille in the homoge-
neous phase!.

The Drude peak does not vanish immediately in the AB-
CDW. It becomes smaller and narrower on decreasing tem-
perature. Its maximum value does not vanish forT→0 ~see
below! but its weight does. In Fig. 15, two frequency inter-
vals are shown in detail for a fairly low temperature. Figure
15~a! displays the Drude peak again. The interesting feature
is its small width @compared with the width of the Drude
peaks in Figs. 14~b! and 14~c!#. It cannot be explained by a
factor of T2 but corresponds to an exponential shrinking
exp(2vD /T). As already observed in the one-particle prop-
erties, an increasing gap reduces the influence of the fluctua-
tions.

Figure 15~b! shows a very interesting feature below the
proper band edge atv'2vD . This resonance is also visible
in Fig. 14~c! whereas the resonance and the band edge are
not resolved at a higher temperature, Fig. 14~b!. The reso-
nance can be approximated very well by a Lorenztian. At
T50, it is also present as ad peak@not shown in Fig. 14~d!#.
It originates from a zero of the denominator in Eq.~31!. At
T.0, only the real part of the denominator vanishes and its
imaginary part leads to the observed broadening which de-
pends strongly, namely exponentially, on the temperature.

Physically the resonance can be interpreted as a bound
state, an exciton, between a particle in the upper band and a
hole in the lower band in the reduced Brillouin zone of the
AB-CDW. The energy difference between the position of the
exciton and the band edge is its binding energy. The type of
diagrams which yield the denominator in Eq.~31! corrobo-
rates the interpretation as an exciton. The vertical interaction
lines stand for the repeated interaction between particle and
hole in the two propagators involved in the calculation of
xJJ. It should be noted that, for instance, for the parameters
of Fig. 14~d! about 70% of the weight of the conductivity is
found in the excitonic resonance~one may not be misled by
the logarithmic scale!. This means that the excitonic effect is
not at all a small side effect.

Concluding the part on the dynamic conductivity, we dis-

FIG. 13. Scaled real part of the dynamic conductivity Res(v)
in the nonsymmetry broken phase atU54.243 forT50.393~solid
lines!, T50.196~dashed lines!, T50.049~dashed-dotted lines!, and
T50.025 ~dotted lines!. Main figure, spinless fermions ind53;
inset, Hubbard model in the noncrossing approximation~data from
Pruschke!.
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cuss Fig. 16, which shows results for a large interaction
valueU. Due to the induced large gap and due to the narrow
effective bandwidth, several frequency intervals of absorp-
tion are well separated. The peaks are caused by the convo-
lution of the satellite band presented for the one-particle
properties. Note, however, that the weight of these satellites
decreases rapidly by a factor of 100 from peak to peak.
These small amplitudes render an experimental verification
certainly extremely difficult if not impossible. Nevertheless,
it would be interesting to know whether such satellites exist.
Their existence would support the application of a self-
consistent approximation since the non-self-consistent calcu-
lation yields only two peaks besides thed peak which is not
shown.

Since the dc conductivity in the absence of symmetry
breaking has been extensively discussed in Ref. 26, we will
treat here exclusively the case with symmetry breaking. The
result of Eqs.~36! and ~37! is depicted in Fig. 17 for weak
and strong interaction.27 To the right of the cusp the system
is in the nonsymmetry-broken phase. The conductivity is es-
sentially proportional26 to T2. On entering the symmetry-
broken phase with gap, the conductivity falls drastically
since the energy gap reduces the DOS at the Fermi level.
Surprisingly, however, the conductivity doesnot vanish for
T→0 although the DOS vanishes in this limit. There is even
a very slight uprise ofsdc close toT50. This phenomenon
is again a manifestation of the suppression of correlation
effects by the energy gap. The DOS is reduced by a factor of
exp(2vD /T), but so is the imaginary part of the self-energy
in Eq. ~32! which is responsible for the quasiparticle lifetime.

These two effects cancel exactly. Put differently, an expo-
nentially small number of quasiparticles of exponentially
large lifetime carries a constant current~but see Discussion
below!. It remains an algebraic dependence onT of the dc
conductivity. The constant term and the linear one can be
computed analytically and were used to complete the curves
in Fig. 17 for small values ofT where the numerical calcu-
lation is no longer precise enough due to extinction.

The limit value limT→0s(v50) is given in Fig. 18 as a
function ofU. As expected, it decreases rapidly forU→`.
Note the logarithmic scale.

What do the above findings forsdc imply for the exist-
ence of a metal-insulator transition? Seemingly, even spon-
taneous symmetry breaking does not suffice to render the
system insulating. But it must be noted that the ‘‘residual’’
conductivity limT→0s(v50) is infinitely fragile: any other
arbitrarily weak scattering mechanism which does not die
out onT→0, e.g., disorder or scattering at the borders of the
sample, will take over. The exponentially vanishing DOS
will yield an exponentially vanishing dc conductivity. This is
reflected in the exponentially decreasing width of the Drude
peak, which, at constant height, implies an exponentially de-
creasing weight.

Experimentally, very pure samples might allow us to see
the beginning of the plateaus in Fig. 17 before the above-
cited other scattering mechanism reduces the conductivity.
This behavior is in complete analogy to the one observed for
the shear viscosityh(T) of helium 3 in theB phase.30. In this
system, as in the system of spinless fermions in the AB-
CDW, one observes an exponentially diverging mean free

FIG. 14. Real part of the dy-
namic conductivity Res(v) in
d53 at U52.0 in logarithmic
scale. ~a! T50.300 000 and
b50; ~b! T50.225 658 and
b50.250 000; ~c! T50.155 286
and b50.299 801;~d! T50 and
b50.311 005. In~d! thed peak at
v51.133 12 is notshown, its
weight is 0.062 336.
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path since the collision between~quasi!particles is sup-
pressed by a gap. In the so-called ‘‘Knudsen regime’’ colli-
sions of quasiparticles with the wall of the container domi-
nate the collisionsbetweenthe quasiparticles. In helium 3,

one observes a sharp drop belowTc and then the beginning
of a plateau before finallyh(T) vanishes rapidly. The theo-
retical result for the infinite system predicts a gentle uprise
just like the one we predict in Fig. 17. In both cases, a factor
exp(2vD /T) in the DOS cancels with the same factor in the

FIG. 15. Enlargements of two frequency intervals for
T50.083 383 3 andb50.310 773.~a! shows details of the Drude
peak;~b! the excitonic resonance.

FIG. 16. Real part of the dynamic conductivity Res(v) in
d53 atU58.0 forT50 in logarithmic scale. Thed distribution is
not displayed.

FIG. 17. Temperature dependence of the dc conductivity at
U51.0 ~a! and atU58.0 ~b!. Below T50.026 in ~a! and below
T50.6 in ~b! a fit was used~see main text!.

FIG. 18. dc conductivitys(v50) in the limitT→0 in logarith-
mic scale.
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scattering rate.30 This interesting analogy underlines the va-
lidity of the results of our 1/d approach.

V. DISCUSSION

Two main questions are addressed in the present paper:~i!
How can an infinite dimensional result be improved by in-
cluding 1/d corrections in a systematic way?~ii ! Which in-
fluence does spontaneous symmetry breaking have on the
conductivity?

It turned out that it is highly nontrivial to construct sys-
tematic and reasonable approximations to arbitrary order.
This is true already on the conceptual level. It was argued in
detail that the self-consistent calculation has certain advan-
tages since it yields thermodynamically consistent and con-
serving approximations. The Baym/Kadanoff formalism,
however, isnot sufficient to guarantee an approximation
which is free from obvious contradictions. It was shown that
an inappropriate approximation may lead to the wrong ana-
lytic behavior of Green functions and self-energies even
though the approximation was derived from a generating
functional.

A general theorem was presented which allows us to
judge whether wrong analyticity may occur. If the conditions
of the theorem are fulfilled, the appearance of the wrong
analyticity is excluded. This theorem explains a couple of
observations that were made in recent years on the applica-
tion of perturbation expansions and/or 1/d expansions. It is
used to show that the self-consistent treatment of 1/d correc-
tions for spinless fermions is a good approximation: it pos-
sesses the necessary analytic behavior.

For 1/d corrections in the Hubbard model the presented
theorem makes no statement since the self-energy already
has an imaginary part ford5`. This does not imply that the
systematic inclusion of 1/d corrections for the Hubbard
model is impossible, but one may expect further difficulties.
As a matter of fact, analyticity problems have been encoun-
tered in the first calculations of 1/d corrections in the Hub-
bard model.3

It should be stated that the self-consistent treatment of
1/d corrections to any finite order in 1/d remains a mean-
field theory. As in thed5` treatment of the Hubbard
model,9 the mean field is dynamic, i.e., it retains a depen-
dence on frequency. But in the skeleton diagrams, which are
considered in any finite order in 1/d, only lattice sites of
finite distance occur. This means that critical fluctuations are
always cut off. Ind51, for instance, the inclusion of 1/d
corrections reduces the order parameter considerably6 but
does not destroy the order completely.

In the self-consistent 1/d treatment of spinless fermions,
two-particle properties can be reached, too. In this work, the
Bethe-Salpeter equation was set up in general and solved in
the particular case of the conductivitys(v). This was pos-
sible for the nonsymmetry-broken phase as well as for the
charge density wave. The equations were evaluated ind53
since the approximation should yield the best results for this
value of all experimentally accessible dimensions.6

A number of phenomena were described in the 1/d expan-
sion which can be compared with other theoretical predic-
tions or experiments.

~i! The dynamic conductivitys(v) in the homogeneous

phase has a Drude peak. Its width decreases quadratically in
T for small values ofT. The dc conductivity is always
finite.26

~ii ! The Drude peak persists in the CDW but its weight
vanishes exponentially}exp(2vD /T), wherevD is the gap
in the one-particle spectra. The height of the Drude peak,
however, doesnot vanish since the diverging quasiparticle
lifetime cancels the vanishing density of states.

~iii ! The real part ofs(v) displays a band edge at
'2vD . The singularity at the edge is a square root. Just
below the edge an excitonic resonance is situated which is
the bound state between a particle and a hole in the empty
and in the full band, respectively. These bands are created by
the spontaneous symmetry breaking.

~iv! For strong interactions the real part ofs(v) shows
exponentially decreasing peaks atv'2mvD ;m
P$1,2,3, . . .%, which reflect the peaks in the one-particle
DOS atv'(2m21)vD .

~v! Strictly speaking, there is no metal-insulator transi-
tion. But the Drude weight decays rapidly onT→0. Finally,
other scattering mechanisms will dominate over
quasiparticle-quasiparticle collisions.

In summary, we conclude that the self-consistent treat-
ment of 1/d corrections describes successfully a large variety
of phenomena since it includes the leading frequency depen-
dence of the self-energy. It is a generalized and improved
mean-field theory.
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APPENDIX A: GENERAL DERIVATION
OF THE THEOREM

Let us consider a general correlated fermion problem
without magnetic field. A one-particle basis$bi

1% (bi
1 fermi-

onic creation operator! can be chosen in which the free~one-
particle! Hamiltonian can be represented as a real matrix
h(0). The retarded self-energy and the retarded full~interact-
ing! Green function are matrices as well. They might be
complex. The argument runs at an arbitrary but fixed value
of v. According to the Dyson equation one has

G5~v10i2h~0!2S!21. ~A1!

The full Green function can be written asG5ReG1 i ImG,
where the real and the imaginary parts are real, symmetric
matrices. The same is true for the self-energy. Let us define
in particularB:52ImS.

The aim is to show~a! that the leading orderB(m) in l of
the matrixB is positive semidefinite and~b! that this implies
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that all spectral densities are non-negative. The main differ-
ence to the argument in the main part is that the matrices do
not commute in general.

All one-particle Green functions2^T$a(t)a1(0)%& have
positive spectral densities.10 HereT is the time-ordering op-
erator anda1 (a) is an arbitrary fermionic creation~annihi-
lation! operator. Hence, one has for the corresponding vector
v defined bya15:( iv ibi

1

0<v1~ ImG!v. ~A2!

Since the above equation holds for anyv, it implies that the
imaginary part ofG is negative semidefinite. Expanding Eq.
~38! in powers ofB and resumming the imaginary part yields

ImG52A21BA21~11BA21BA21!, ~A3!

whereA:5v2h(0)2ReS. In leading order inl this be-
comes

ImG52lm~v2h~0!!B~m!~v2h~0!!1O~l~m11!!. ~A4!

The negative semidefiniteness of the lhs of Eq.~A4! implies
the positive semidefiniteness ofB for values ofv which are
no eigenvalues ofh(0). Assuming continuity31 for B(m)(v)
the positive semidefiniteness extends to all frequencies.

Addressing the sign of the imaginary part of the full
Green function we state thatB>0 implies that there is a
matrix AB which is real and symmetric as well. Defining
D:5ABA21AB allows Eq.~A3! to be written as

ImG52A21AB~11D2!21ABA21. ~A5!

The expression in parentheses is manifestly positive
semidefinite, thus its inverse as well. SinceA21AB and
ABA21 are transposed, the rhs in Eq.~A5! is negative
semidefinite as a whole. This concludes the argument.

APPENDIX B: CONDUCTIVITY IN THE AB-CDW

In this appendix the geometric series of Fig. 12 is derived
in the case of finite order parameter. Furthermore the deriva-
tion of Eq. ~34! is given.

In the AB-CDW the propagators are not diagonal ink
space. There is the possibility of a transitionk→k1Q. The
matrix element for this process is the off-diagonal element in
Eq. ~8!. If the wave vector remains unchanged the diagonal
matrix elements have to be used. Let us classify the segments
between two adjacent wavy lines in a diagram in Fig. 12. A
generic segment is shown in Fig. 19. Note that the momen-
tum of the upper propagator cancels the momentum in the
lower propagator up to multiples ofQ5(p,p,p)†, since we
are interested in the average conductivity. At the end-vertices
no momentum is added or subtracted. The case
k5k85q5q8 can be combined with the case
k5q5k81Q5q81Q. In both cases the momentum through
the whole segment is zero. Using the elements from Eq.~8!
one obtains

A152
2UT

Z (
vn2vl5vm

E
2`

` wnwl1~g«!22D~ ivn!D~ ivl!

@wn
22~g«!22D2~ ivn!#@wl

22~g«!22D2~ ivl!#
Nc,0~«!d«, ~B1!

where the shorthandwn/l :5 ivn/l2S( ivn/l) is employed again. A similar expression is obtained in the combined cases
k5k85q1Q5q81Q andk5q1Q5k81Q5q8 for which the momentum through the segment isQ,

A252
2UT

Z (
vn2vl5vm

E
2`

` wnwl2~g«!22D~ ivn!D~ ivl!

@wn
22~g«!22D2~ ivn!#@wl

22~g«!22D2~ ivl!#
Nc,0~«!d«. ~B2!

The segments whichchange the momentum are very important. The casesk5k85q1Q5q8 and k5q1Q5k8
1Q5q81Q yield together

A352
2UT

Z (
vn2vl5vm

E
2`

` wnD~ ivl!2wlD~ ivn!

@wn
22~g«!22D2~ ivn!#@wl

22~g«!22D2~ ivl!#
Nc,0~«!d«. ~B3!

FIG. 19. Diagrammatic basis element of the terms in the sum in
Fig. 12
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The possible combinations of these cases are naturally
generated by powers of the matrix

A:5SA1 A3

A3 A2
D . ~B4!

The sum of all these powers is a geometric series yielding
finally

x 52
2

U
„~12A!21)

„1,1) . ~B5!

Taking the~1,1! element ensures that the average current-
current correlation function is calculated. The prefactor com-
pensates for the fact that the end-vertices do not have the
factor2U/2 which is incorporated inA. Equation~31! is a
direct consequence of Eq.~B5!. The representation~32! fol-
lows from Eqs.~B1!, ~B2!, and ~B3! by partial fraction de-
composition and integration over the conductivity spectral
density using the conductivity Green functions.

Now we turn to Eq.~34!. For xJJ(0) we need onlyA1 at
ivm50 sinceA3 vanishes ativm50 and the factor 12A2
then drops out. ForA1 one obtains

A152
2UT

Z (
n
E

2`

` ~wn1g«!22D2~ ivn!

@wn
22~g«!22D2~ ivn!#2

Nc,0~«!d«

~B6a!

52
2UT

Z (
n
E

2`

` wn
22~g«!22D2~ ivn!12~g«!2

@wn
22~g«!22D2~ ivn!#2

3Nc,0~«!d« ~B6b!

52
2UT

Z (
n
E

2`

` Nc,0~«!2]„«Nc,0~«!…/]«

wn
22~g«!22D2~ ivn!

d« ~B6c!

52
UT

Z (
n
E

2`

` «2

wn
22~g«!22D2~ ivn!

N0~«!d« ~B6d!

5
UT

pZE2`

`

f F~v!ImE
2`

` «2N0~«!d«dv

@v2S~v!#22~g«!22D2~v!
.

~B6e!

The step to Eq.~B6b! follows from the fact thatNc,0(«) is
even. Partial integration of the last term of the numerator
leads to Eq.~B6c!. Equation ~B6d! is obtained using Eq.
~29!, which emphasizes the importance of this relation be-
tween DOS and conductivity spectral density. In the end one
obtains

A152
AZSF

g
~B7a!

52
U^T̂&
gZ

~B7b!

52~1/g21!. ~B7c!

One obtains Eq.~34! by substituting Eq.~B7c! in the de-
nominator of Eq.~31! and comparing the resulting expres-
sion with Eq.~B7b!. This completes the analytic derivation
of the f sum rule in the self-consistent 1/d approximation,
which is considered here.
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9V. Janišand D. Vollhardt, Int. J. Mod. Phys.6, 731 ~1992!.
10G. Rickayzen,Green’s Functions and Condensed Matter~Aca-

demic Press, London, 1980!.
11H. Schweitzer and G. Czycholl, Z. Phys. B79, 377 ~1990!.
12G. Baym and L. P. Kadanoff, Phys. Rev.124, 287 ~1961!.
13G. Baym, Phys. Rev.127, 1391~1962!.
14H. Schweitzer and G. Czycholl, Phys. Rev. Lett.67, 3724~1991!.
15G. S. Uhrig and R. Vlaming, Ann. Phys.4, 778 ~1995!.
16The imaginary part is in fact antisymmetric inv so that one

obtains a contradiction by choosing an appropriate sign ofv,
too.

17H. Schweitzer and G. Czycholl, Solid State Commun.74, 735
~1990!.

18A. Schiller and K. Ingersent, Phys. Rev. Lett.75, 113 ~1995!.
19E. Müller-Hartmann, Z. Phys. B76, 211 ~1989!.
20B. Menge and E. Mu¨ller-Hartmann, Z. Phys. B82, 237 ~1991!.
21J. M. Luttinger, Phys. Rev.121, 942 ~1961!.
22P. G. J. van Dongen, Phys. Rev. Lett.67, 757 ~1991!.
23P. G. J. van Dongen, Phys. Rev. B50, 14 016~1994!.
24G. D. Mahan,Many-Particle Physics,2nd ed. ~Plenum Press,

New York, 1990!.
25A. Khurana, Phys. Rev. Lett.64, 1990~1990!.
26G. S. Uhrig and D. Vollhardt, Phys. Rev. B52, 5617~1995!.
27G. S. Uhrig, Physica B206/207, 698 ~1995!.
28Th. Pruschke, D. L. Cox, and M. Jarrell, Europhys. Lett.21, 593

~1993!.
29Th. Pruschke, D. L. Cox, and M. Jarrell, Phys. Rev. B47, 3553

~1993!.
30D. Vollhardt and P. Wo¨lfle, The Superfluid Phases of Helium 3

~Taylor and Francis, London, 1990!.
31The argument is applied first to finite systems for which the Hil-

bert space is finite dimensional and the spectra discrete. The
theorem’s statement extends to the thermodynamic limit if this
limit exists.

54 10 451CONDUCTIVITY IN A SYMMETRY-BROKEN PHASE: . . .


