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The vibrational normal frequencies of Nin , n52–14, 19, 20, and 55, clusters in their most stable structure
are classified using group theory and calculated by direct diagonalization of the dynamical matrix. A Gupta
n-body model potential was used to evaluate the second derivatives of the total energy with respect to the
cluster atomic coordinates. The symmetry of the lowest-energy structures generate vibrational spectra with
strong (n513, and 55!, medium (n54 and 6!, weak (n53, 5, 7, 8, 10, 12, 14, 19, and 20!, and null (n59 and
11! degeneracies. Calculated frequencies for all cluster sizes are lower than the dimer characteristic frequency.
The width of the modes distribution and the maximum frequency are independent of the cluster size for 2
,n <55. @S0163-1829~96!03739-3#

I. INTRODUCTION

The study of vibrational properties of atomic and molecu-
lar clusters is becomig an active field of research in cluster
science.1 This is motivated, in part, by recent developments
in experimental techniques that allow the measurement of
the vibrational frequency spectrum of size-selected atomic
clusters.2,3 A knowledge of the cluster normal modes spec-
trum is of crucial importance to discriminate the atomic
structure of the system, and to describe its dynamical and
thermodynamical behavior. Theoretical calculations of clus-
ter normal frequencies depend on the type of interactions
used to mimic the atom-atom bonding. Several studies have
been done in this direction using model potentials for van der
Waals4,5 and ionic6 clusters. Also, first-principles methods
have been used to calculate the vibrational spectra of
semiconductor7 and alkali-metal8 clusters.

In general, vibrational modes are difficult to obtain, espe-
cially for clusters with more than a few atoms. The cluster
structure associated with a global or local minimum of the
multidimensional surface potential should be known in ad-
vance. However, the number of minima increases very fast
with cluster size, making it a complicated task to determine
the global minimum corresponding to the lowest-energy
cluster structure. Once the cluster equilibrium configuration
is known, symmetry considerations are very useful for a
qualitative description of the normal frequencies. A classifi-
cation of such modes can be done using the irreducible rep-
resentation of the cluster symmetry group.9 To have a com-
plete ~quantitative! description of the cluster frequency
spectrum, a vibrational analysis using second-order deriva-
tives of the total energy with respect to the atomic coordi-
nates is necessary.

In this work, we present results of a vibrational analysis
for transition-metal clusters~Ni, in this case! with
n52–14, 19, 20, and 55 atoms. First, the normal modes are
characterized using cluster symmetry and group theory. Sec-

ond, cluster frequencies are calculated through a normal-
mode analysis by direct diagonalization of the dynamical
matrix, which is constructed from the second derivatives of
the potential energy with respect to the atomic coordinates.
A model n-body Gupta potential was used to describe the
metallic bonding in the cluster. In this way, the present study
continues a systematic characterization of structural, dynami-
cal, meltinglike,10–13 and evaporation14 behavior of
transition- and noble-metal clusters. The vibrational proper-
ties presented here15 are expected to motivate spectroscopic
measurements of the frequency spectrum for transition-metal
clusters. The details of the potential and cluster structures are
discussed in Sec. II. In Sec. III we use group theory tech-
niques to classify and give a qualitative description of the
cluster vibrational spectrum. The normal frequencies are ob-
tained in Sec. IV by diagonalizing the dynamical matrix. In
Sec. V, we conclude with a brief summary.

II. GUPTA POTENTIAL AND CLUSTER STRUCTURES

The metallic bonding of Nin clusters is described by an
n-body Gupta potential that is based on the Friedel’s tight-
binding model for the cohesive energy of transition
metals.16,17 Within this model, the attractive part of the in-
teraction is proportional to the square root of the second
moment of the electron density of states (d band!. The re-
pulsive part is a sum of pairwise Born-Mayer potentials.18,19

For n-atom clusters, the Gupta model potential is given as a
function of the interatomic distancesr i j by
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where the parametersp, q, andA depend on the material. In
this work we adopt the valuesp59 andq53, which have
been used for bulk transition metals.17 The value
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A50.101 036 was determined by minimizing the cohesive
energy of the fcc metal at the equilibrium value of its
nearest-neighbor distance.10 The remaining two parameters
Un and r 0n are not only material dependent but also cluster
size dependent, which is indicated by attaching the subscript
n to them. They can be fitted using experimental orab initio
data of the cluster binding energy and nearest-neighbor dis-
tance. Instead of performing a fitting procedure for each clus-
ter size, we work in reduced units:r i j*5r i j /r 0n ,
V*5V/Un .

10–13 This unit transformation allows the calcu-
lation of cluster properties of arbitrary size without the ex-
plicit knowledge ofUn andr 0n . To recover absolute units, a
fitting procedure of these parameters is necessary.

The Gupta potential given in Eq.~1! has been used to
study structural and thermodynamical properties of fcc
@Refs. 18 and 19# and hcp transition metals and alloys.19

Structural, dynamical, meltinglike,10–13 and fragmentation14

properties of metal clusters have been extensively studied
using the Guptan-body potential in molecular-dynamics
simulations. In this work, we extend the range of applica-
tions of this potential to describe vibrational properties of
Nin clusters.

Lowest-energy structures of the nickel clusters have been
obtained before,10,12,14 combining molecular-dynamics and
simulated quenching techniques. Figure 1 shows the cluster
most stable structures, their energies, and symmetry groups.
It is observed that Nin clusters grow following a close-
packing pattern in which the number of nearest-neighbor dis-
tances is maximum. Pentagonal symmetry starts atn57 ~ex-
cept for n58!. The 13-atom cluster has an icosahedral
lowest-energy structure, whereas then512 and 14 cluster
structures are obtained from the icosahedron by removing
one surface atom and adding one to a threefold symmetry
surface site, respectively. The two-overlapping icosahedra is
the most stable geometry forn519. The corresponding con-
figuration for n520 is the 19-atom structure with an addi-
tional atom placed over an edge of the central five-atom ring.
The two-shell icosahedron is the lowest-energy configuration
for n555.

Although the most stable cluster structures discussed
above are similar to those obtained with pairwise potentials

~Lennard-Jones or Morse!, other structural and dynamical
properties can be distinct, due ton-body interactions in-
cluded through the Gupta potential. Differences in the rela-
tive stability of cluster isomers13 and a more complex melt-
ing behavior10,12 ~premelting for n514 and 20!, are
examples of n-body effects present in the bonding of
transition- and noble-metal clusters.

Since direct experimental information on the lowest-
energy structure of nickel clusters is not yet available, it is

TABLE I. Symmetry structures of Nin clusters.

n Group Symmetry structure

2 G51Ag
3 D3h G51A8111E8
4 Td G51A111E11T2
5 D3h G52A8111A2

912E811E9

6 Oh G51A1g11Eg11T2g11T1u11T2u
7 D5h G52A8112E8112E8211A2

911E1
911E2

9

8 D2d G54A111A212B113B214E
9 C2v G57A114A215B115B2
10 C3v G56A112A218E
11 C2v G59A114A217B117B2
12 C5v G55A111A216E116E2
13 I h G51Ag11Gg12Hg12T1u11T2u11Gu11Hu
14 C3v G59A113A2112E
19 D5h G55A8111A8216E8115E8211A1

914A2
915E1

914E2
9

20 C3v G513A115A2118E
55 I h G52Ag14T1g13T2g15Gg17Hg16T1u14T2u15Gu16Hu11Au

FIG. 1. The most stable structures, their energies in reduced
units, and the associated symmetry group for Nin , n52–14, 19,
20, and 55, clusters.
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not possible to test the above predictions given by the
n-body Gupta potential. However, experiments on the
chemical reactivity of molecular adsorbates on nickel
clusters20 suggest that close packing and icosahedral symme-
try are present in the structure of these clusters. On the other
hand, accurateab initio methods are not easily applicable to
nickel clusters, and comparison with them is difficult since
their results fail to agree among themselves.21 Other semi-
empirical studies on the lowest-energy structures of Nin clus-
ters show good22–24 and partial,21,25 agreement with the
above results.

III. GROUP THEORY ANALYSIS

The cluster configurations and the associated point group
shown in Fig. 1 are used to do a group theory analysis,9 and
classify the cluster normal frequencies. To obtain the total
number of normal modes, symmetry operations of the corre-
sponding point group are applied to each cluster under con-
sideration. Using the number of atoms that remain fixed after
such transformation, and the trace of the transformation ma-
trix associated to the symmetry operation, the characters of
the reducible representation for the cluster symmetry group
are obtained. The reducible representation gives the normal
modes once the number of times each irreducible represen-
tation appears in the reducible one is calculated. Table I
shows the vibrational symmetry structure of the nickel clus-
ters. The degeneracy of the frequency modes will be dis-

cussed in Sec. IV in conjunction with their numerical values
obtained from the diagonalization of the dynamical matrix.

IV. NUMERICAL RESULTS AND DISCUSSION

To construct the dynamical matrix, the Gupta potential
second derivatives with respect to the atomic coordinates
were calculated analytically using Eq.~1!. The cluster most-
stable structures were used to evaluate the second derivatives
in the equilibrium configurations. These values generate the
elements of the dynamical matrix. A numerical diagonaliza-
tion of this matrix was performed to obtain the normal fre-
quencies and eigenvectors. Six of the calculated 3n eigen-
values are equal to zero, corresponding to translational and
rotational motions. The remaining 3n–6 frequencies are the
vibrational normal modes. Figure 2 displays the frequency
distribution of the nickel clusters under study. The vertical
axis indicates the degeneracy of the modes. Frequencies are
given in reduced units,v*5v/(Un /mr0n

2 )1/2, wherem is
the nickel atomic mass.

From Fig. 2 it is observed that Ni13 and Ni55, with a
highly symmetric icosahedral lowest-energy structure, have
normal modes with fivefold, fourfold, and threefold degen-
eracy. In addition, they have a single nondegenerate breath-
ing mode and, in the case of Ni55, other radial nondegener-
ate vibrations. Ni4 and Ni6 also have their lowest-energy
structures with high symmetry, the tetrahedron and octahe-

FIG. 2. Normal mode distributions of Nin , n52–14, 19, 20, and 55, clusters. The vertical axis shows the degree of degeneracy.
Frequency values are in reduced units. To set up an approximated absolute scale of frequencies, one can use the dimer frequency value of
262 cm21 ~see text!.
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dron, respectively. These structures cause normal modes
with threefold and twofold degeneracy, plus a single nonde-
generate breathing mode. All other cluster sizes, except Ni9
and Ni11, present frequency distributions with twofold de-
generacy and nondegenerate modes. Ni9 and Ni11, with
C2v symmetry, have a nondegenerate frequency spectrum. In
sum, the normal modes of nickel clusters can be classified,
according to degeneracy, as strong for Ni13 and Ni55, me-
dium for Ni4 and Ni6, and weak for Nin , n53, 5, 7, 8, 10,
12, 14, 19, and 20. Null degeneracy is obtained for Ni9 and
Ni 11. As expected, the degeneracy of the cluster normal
modes calculated from the diagonalization of the dynamical
matrix agree with that obtained from a group theory analysis.
The advantage of the numerical analysis is that the frequency
values can be calculated.

There are other interesting features in the normal modes
spectrum of nickel clusters: First, assuming that theUn and
r 0n parameters are similar for the cluster sizes under study,
all cluster frequencies are lower than the characteristic dimer
frequency. This effect has also been found in the vibrational
spectrum of ionic clusters.6 It is attributed to the small inter-
atomic distance in the dimer and the nearest-neighbor dis-
tance relaxation as the cluster size increases toward the bulk
phase.6 Experimental2 and first-principles theoretical studies7

of the vibrational spectrum of silicon clusters as a function of
size also show that the dimer frequency is higher than the
frequencies of larger cluster sizes. Second, taking out the
dimer value, the width of the bands and the maximum fre-
quencies are independent of the cluster size in the range of
sizes studied here. Some size effects in the maximum fre-
quency are expected forn .55, as was found for argon clus-
ters in He-atom scattering experiments.3 Third, low-
frequency modes and special repetitive patterns are absent

from the frequency distribution for all cluster sizes investi-
gated.

Experimental orab initio data of the cluster binding en-
ergy and nearest-neighbor distances can be used to calculate
the cluster normal frequencies in absolute units. Such infor-
mation is not yet available, except for Ni2.

21 As an example,
using experimental data26 for the nickel dimer, we fit the
U2 and r 02 parameters and obtain a value of 262 cm21 for
the vibrational frequency. This number compares well with
the measured value26 ~329 cm21), and is within the range of
theoreticalab initio values ~between 190 and 289 cm21,
reported in Refs. 21 and 27!. A closer agreement is expected
if nickel dimer properties are included in the fitting of the
p andq parameters of the Gupta potential.

V. SUMMARY

The vibrational frequencies of Nin , n52–14, 19, 20, and
55, clusters in their most stable configurations, were obtained
through a normal-mode analysis using ann-body Gupta po-
tential to model the interatomic interactions in the cluster.
Nickel clusters have a frequency spectrum with strong, me-
dium, weak, and null degeneracies, according to the degree
of symmetry in their lowest-energy configurations. The clus-
ter frequencies are lower than the dimer characteristic fre-
quency for all cluster sizes, whereas the width of modes
distribution and the maximum frequency are independent of
the cluster size.
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