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The problem of electromagnetic response and collective excitations in an array of quantum dots is solved in
the self-consistent-field approximation using the complete system of Maxwell equations. We calculate the
radiative decay of collective excitations in the system and show that it can be of the order of or larger than the
damping due to collisions. We show that in previous theoretical work the effect of radiation of electromagnetic
waves by the dipole collective modes of the system was underestimated by several orders of magnitude. Our
results remove the discrepancy between the observed and calculated linewidths of collective modes in arrays of
dots. The results are discussed in connection with the related problem of the optical properties of small
polarizable particles.@S0163-1829~96!03839-8#

Electrodynamic effects due to the finite velocity of light
c are normally neglected in calculations of the far-infrared
~FIR! response of low-dimensional electron systems such as
periodic lattices of quantum wires, dots, antidots, etc. As far
as thefrequencyof plasma modes is concerned, this is cer-
tainly justified as retardation effects are determined by the
parameter (a/l)2, which is several orders of magnitude
smaller than unity in real structures@here a is the lattice
period~typically smaller than 1mm! andl is the wavelength
of light ~typically 50–200mm!#. However, the radiation ef-
fects can result in a radiative decay (G) of plasma modes and
hence influence thelinewidth of observed resonances. In an
infinite two-dimensional electron system~2DES!, the FIR
radiation is coupled with the two-dimensional~2D! plasmons
via a periodic grating imposed on the system,1 and the radia-
tive decay of 2D plasmons essentially depends on the grating
coupler efficiency. As shown in Ref. 2, in real 2DES the
radiative linewidthG is much smaller than the collisional
dampingg of 2D plasmons (G/g;1022). The influence of
the radiative decay on the linewidth of the single-particle
cyclotron resonance~CR! in the infinite 2DES is determined3

by the dimensionless parameter 4ps0 /c (s0 /Y0 in SI
units!, wheres0 is a static conductivity of the 2DES (Y0 is
the wave admittance of free space!. In earlier papers on the
CR,4 the radiative contribution to the full linewidth was usu-
ally neglected due to a small electron mobilitym.

In the structures with the dimensionality below 2~dots,
wires, etc.! plasmons can couple directly to the radiation
field. In addition, the electron mobility in modern GaAs/
Al xGa12xAs heterostructures can be very high. It would
therefore be reasonable to expect a relatively large contribu-
tion of the radiation effects to the full linewidth of collective
modes in these structures. However, Leavitt and Little,5 ana-
lyzing experimental data of paper6 on the FIR response of an
array of 2D electron-gas disks in a GaAs/AlxGa12xAs het-
erojunction, found~in zero magnetic fieldB50) a negligible
contribution of the radiative decay (G/g,1022). To the best
of our knowledge, after that, the problem of the radiative
decay of collective modes in such structures was no longer
discussed in the literature.

To solve the problem, Leavitt and Little5 considereda
single disk in the oblate spheroid model atB50. In this

model one can obtain the following expression for the radia-
tive decay of plasmons:
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where e and m are the charge and the effective mass of
electrons,ns is an average area density of electrons in the
disk, R is the disk radius,e is the dielectric constant of a
surrounding medium, andv0 is the frequency of the dipole
plasma mode atB50,
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@The formula reported in Ref. 5 differs from Eq.~1! by an
additional factore in the nominator. The correct expression
should obviously have the form~1!, as the dielectric constant
e must appear in the combinationse2/e andc2/e.# The result
~1! can be understood from a simple physical consideration.
An external ac electric field induces an oscillating dipole
momentd}exp(2iv0t) in the dot. The intensity of the dipole
radiation is given7 ~in vacuum! by the formula
I54v0

4d2/3c3. Estimating the dipole moment asd;qR,
with q being the oscillating charge, and dividingI by the
energy of the oscillating dipole;q2/R, we obtain the result
coinciding with ~1! up to a numerical factor.

Equations~1! and ~2! are valid fora single dot, while in
real experiments one deals witharrays of dots. The fre-
quency~2! is weakly influenced by interdot interaction:8 the
corrections to~2! are proportional to (R/a)3!1. However,
this is not the case for the radiative decay of plasma modes.
If the lattice perioda is much smaller than the wavelength of
light a/l!1, all dipoles in the area;l3l radiate in phase,
which results in a considerable increase of the total radiated
power and hence the radiative decay.

In this paper we calculate the FIR response of plasma
modes in a square lattice of dots in arbitrary magnetic fields,
taking into account the radiative decay and show that, under
real experimental conditions (a/l!1) the radiative decay of
plasma modes isseveral orders of magnitude largerthan that
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found in Ref. 5. In the structures with high electron mobility
the ratioG/g can be of the order of or even larger than the
unity.

Let a periodic lattice of 2D disks be placed at the plane
z50 in a magnetic fieldB5(0,0,B), and the background
dielectric constants equal toe1 at z.0 ande2 at z,0. An
equilibrium electron density of 2D electronsns(r )d(z) is a
periodic function ofr5(x,y),

ns~r !5(
k,l

nsq~r2ak,l !, ~3!

where the sum is taken over all lattice vectorsak,l5a(k,l )
and the functionq describes an electron density profile in-
side the dots@q(r )[q(r ), ^q(r )&dot[^q&51, the angular
brackets mean the average over the area of a dot, and
q(r )50 at r.R#. The electric field of an external electro-
magnetic wave acting on electrons,Ea

ext}exp(2ivt),
a5$x,y%, is assumed to be uniform and parallel to the plane
z50.

In the periodic lattice of dots an induced electric field is
expanded in a Fourier series over reciprocal lattice vectors
Gm,n5(2p/a)(m,n),

Ea
ind~r ,z!5(

G
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where j51 ( j52) for positive~negative! z,

kG, j5~G22v2e j /c
2!1/2 ~5!

is the inverse penetration length of the induced electric field
in thez direction, andG5uGu. Using the Maxwell equations,
we expressEz

ind and all components of a magnetic field
H(r ,z) via Ex

ind andEy
ind . Imposing the standard boundary

conditions at the planez50, Eau20
1050, Hxu20

1054p j y /c,
and Hyu20

10524p j x /c, we obtain a relation between the
Fourier components of the induced and total electric field
and an electric currentj a at z50,
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Heresab(v,r ) is a dynamic conductivity tensor assumed to
be proportional to the local electron density,f5pR2/a2 is
the area filling factor,Â5Â(1)1Â(2),

Aab
~ j ! 5
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and ^&cell means the average over an elementary cell.
From Eqs.~6! and ~7! we obtain the integral equation
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which relates the induced field at any point of the plane
z50 with the total electric field inside the dots. Assuming
that the induced~and total! electric field inside the dots is

uniform ~this is an exact statement in the oblate spheroid
model5,6 and in the model of parabolically confined dots9!,
multiplying Eq.~9! by q(r ) and integrating over the elemen-
tary cell, we obtain the relation between the total and exter-
nal electric fields inside the dots,zab(v)Eb

tot5Ea
ext where

the functionzab(v) has the meaning of the response func-
tion of one dot in the lattice. In a square lattice of circular
dots this relation can be written in the scalar form
E6
tot5E6

ext/z6(v), where E65(Ex7 iEy)/A2 are the field
amplitudes with6 circular polarizations~the upper sign cor-
responds to the polarization of the CR!,

z6~v!512
2p iv f ^s6&
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ands65sxx6 isxy . The form factor

a~G!5u^qeiG–r&u2 ~11!

is determined by the Fourier components of the equilibrium
electron density in the dots.

The velocity of light enters the functionz6(v) via the
inverse field penetration lengthskG, j given by Eq.~5!. Under
the condition (a/l)2!1, the termsv2e j /c

2 in ~5! can be
neglected for all nonvanishingG. The radiative decay of
plasma modes in the lattice arises from the termG50 in Eq.
~10!: the factorkG50,j52 ivAe j /c has vanishing real and
finite imaginary parts and describes induced waves radiated
from the planez50 ~the sign of the imaginary part Im
k0,j,0 is fixed by radiative boundary conditions at
z56`). The response functionsz6 then assume the form

z6~v!511
4p f ^s6&
c~e1

1/21e2
1/2!

1
2p i f ^s6&
v~e11e2!

(
GÞ0

Ga~G!.

~12!

Calculating Joule’s heatQ5^ j a(r )Ea
tot(r )&cell5g1uE1

extu2/2
1g2uE2

extu2/2 and using the Drude expressions for the con-
ductivity ^s6&5 inse

2/@m(v7vc1 ig)#, we find the ab-
sorption coefficientsg6(v) of the structure,

g6~v!5 f
Re^s6~v!&

uz6~v!u2

5
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, ~13!

wherevc is the cyclotron frequency,g is the collision relax-
ation rate,

G5
4pnsf e

2

mc~e1
1/21e2

1/2!
, a!l, ~14!

is the radiative decay of collective excitations inan array of
dots, andV0 is the excitation frequency atB50,

V0
25

2pnsf e
2

m~e11e2!
(
GÞ0

Ga~G!. ~15!

The changes in transmissionDT6 and reflectionDR6 coef-
ficients are proportional tog6 /c.
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Equation ~13! describes the absorption spectrum of the
square lattice of dots~Fig. 1! with the well-known6,10 two-
mode excitation spectrum with the resonance frequencies

Rev65@~vc/2!21V0
2#1/26vc/2 ~16!

~for 1 and2 circular polarizations! and the linewidths

Imv652
g1G

2 H 16
vc/2

@~vc/2!21V0
2#1/2J ~17!

determined by the sum of the radiative decayG and the
collisional dampingg. The ratioG/g can be written as

G/g54ps0 /c~e1
1/21e2

1/2!, ~18!

wheres0 is the static conductivity of a system with the av-
erage electron densitynsf . At f50.5, ns5331011 cm22,
e1512.8, and e251, it exceeds unity whenm.53105

cm2/Vs.
Equation~14! correctly describes the radiative linewidth

in the limit f→1 of the homogeneous 2DES.3 To obtain the
special case of the single dot (a@l), we apply the transfor-
mation

(
G

F~G!5E a2dq

~2p!2
F~q!(

k,l
eiq–ak,l ~19!

to Eq. ~10! and then take the limita→`. Assuming for
simplicity thatB50, e15e25e, and the density profile in
the dot is given by the formula

q~r !5 3
2 ~12r 2/R2!1/2 ~20!

~the oblate spheroid model5!, we obtain, ata@l,

z~v!512
v0
2
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1
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2
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2~v1 ig!

, ~21!

with G0 from Eq. ~1!. If (g1G0)!v0, the complex zero of
the function~21! describes the resonance at the frequency
v0 with the linewidthg1G0. Equation~1! obtained in Ref. 5
is thus valid ata@l.

Let us compare our results with experimental data of Ref.
6. The resonance linewidth observed in Ref. 6 atB50 was

equal to 50 GHz. The scattering linewidth was estimated in
Refs. 6 and 5 to be equal tog/2p516.8 GHz~the mobility
m52.53105 cm2/Vs!. Leavitt and Little5 estimated also the
edge-scattering contribution to the resonance linewidth at
B50. Using the simple classical picture in which all elec-
trons move with the Fermi velocityvF , they obtained the
mean free path for edge collisionss516R/3p and the mean
time between edge collisionsgEC

215s/vF . For the parameters
of Ref. 6 (R51.5 mm andns55.531011 cm22) this gives
gEC/2p520.2 GHz. The total collisional linewidth
~momentum-relaxation plus edge-collision contributions!
was thus found to be 37 GHz. The radiative decay estimated
in Ref. 5 using formula~1! ~multiplied by the additional
factore) was found to be negligible~0.16 GHz!. Calculating
now the radiative contribution from Eq.~14! ~we use6 a54
mm, e1512.8, ande251), we obtainG/2p513.4 GHz. The
total linewidth turns out to be equal to 50.4 GHz, in ideal
agreement with the measured value.

Thus our results remove a discrepancy between the
measured and calculated resonance linewidths and allow us
to draw the conclusion that the total linewidthG total
5g1gEC1G contains three contributions: the damping due
to the bulk and edge scattering and the radiative decay. Fig-
ure 2~a! demonstrates the dependence of different contribu-
tions andG total on R/a for parameters of Ref. 6. The total
linewidth has a minimum at

R

a
5
1

4 S 3cvF aB
!

a

e1
1/21e2

1/2

e D 1/3, ~22!

where aB
!5\2e/me2 is the effective Bohr radius and

e5(e11e2)/2. Note that the radiative contribution quickly
decreases with increasinga at fixedR andns .

Our derivation automatically takes into account the influ-
ence of the interdot interaction on the resonance frequency
~15!. Making use of the transformation~19!, one can obtain

FIG. 1. Absorption coefficientsg1(v) ~solid curves! and
g2(v) ~dashed curves!, Eq. ~13!, of the square lattice of dots at
different magnetic fields,V0 /g520 andG/g50.8.

FIG. 2. ~a! Linewidth and ~b! frequency~23! of the plasma
resonance in the square dot lattice atB50 as a function ofR/a; the
dotted curve in~b! shows the dependence~23!, taking into account
only the dipole@proportional to (R/a)3# correction.
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the regular expansion of the frequencyV0 over the powers
of R/a. For a square lattice of the dots with the profile~20!
the first terms of this expansion have the form@see Fig. 2~b!#

V0
2

v0
2 512

2h~3/2!

3p SRa D 326h~5/2!

5p SRa D 51•••, ~23!

whereh(z)5((k21 l 2)2z ~the sum is taken over allk,l ex-
cluding k5 l50); h(3/2)59.03 andh(5/2)55.09. The di-
pole term proportional to (R/a)3 in ~23! coincides with that
obtained in Ref. 8. Taking into account the interdot interac-
tion improves the agreement between the resonance fre-
quency atB50 measured in Ref. 6~575 GHz! and the one
calculated with the help of Eq.~2! in Ref. 5 ~614 GHz!.
Using the parameters of Ref. 6 (R/a50.375), we obtain
V0 /v050.94 andV05577 GHz.

The emission of light by plasma excitations of low-
dimensional electron systems can be of interest in connection
with the design of light-emitting tunable FIR sources. FIR
emission spectroscopy of hot 2D plasmons has been studied
since about 1980~for a recent reference see, e.g., Ref. 11!.
The radiative decay of 2D plasmons depends on the grating
coupler efficiency, and is, however, too small.2 As we see
here, the radiative decay of magnetoplasma modes in dot
lattices can be a strong effect~similar results can be obtained
for wire and antidot lattices!.

Formula~14! can be rewritten as (e15e25e)

G/G053N/4p, ~24!

whereN is the number of dots in the coherence areal3l
(N5l2/a2 and l52pc/v0Ae). In this form G does not
contain the lattice period or the dot radius. This means that
our assumptions on the periodicity of the spatial distribution
of the dots and on their form~circular disks! are not essential

for the final result. In the form~24! it should also be valid for
randomly distributed small particles of an arbitrary form.

A problem similar to that considered here arises in the
optics of small polarizable particles and related phenomena
~surface-enhanced Raman scattering, optical properties of is-
land metal films, etc.!.12,13 A discrepancy between the mea-
sured and predicted intensities of radiation also exists in
these fields. The radiative decay of plasmons in a small metal
particle as a possible way for explaining this discrepancy
was discussed in the literature.12–14 It was, however, also
calculated14 in the model of a single particle. The results
obtained here show that the radiative effects can play a more
important role in these phenomena, than was found in Ref.
14.

In a number of papers devoted to the theory of optical
properties of adsorbate molecular layers~see, e.g., Refs. 15–
17! the authors considered an interaction of light with small
polarizable particles periodically arranged on a plane. In
these papers, the changes in the transmissionDT and reflec-
tion DR coefficients were calculated to the lowest order in
1/c, so that the 1/c corrections were ignored in both the
frequency and the linewidth of resonances. This does not
result in a mistake in the resonance frequency, as an influ-
ence of retardation effects on the frequency is determined by
the small parametera/l!1. This can, however, result in a
large mistake in the resonance linewidth, as the 1/c correc-
tion to the linewidth is determined by the other parameter
G/g, Eq. ~18!, which can be larger than the unity.

In conclusion, we have shown that the radiative decay of
collective excitations in the dot lattices and in arrays of small
polarizable particles is a much stronger effect than was as-
sumed so far.
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