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A chiral smectic liquid crystal is considered, made of elongated molecules whose directions describe a helix
along a given direction. It is shown that for small values of the helix pitch it behaves as a homogeneous
medium which is optically active and uniaxial, with maximum rotatory power for light propagating orthogo-
nally to the helix axis. Analytic expressions are given to describe the gyrotropic properties of the medium. The
analogies with other helical-shaped structures are discussed.@S0163-1829~96!04939-9#

After the works of Van’t Hoff and Le Bel on the tetrahe-
dral shape of carbon atoms, the natural optical activity~or
gyrotropy! has been associated with the stereoisomerism of
organic compounds. In our century, and, in particular, in the
past decades, the attention has gradually shifted from tetra-
hedral shaped objects to helical structures, involving re-
searchers outside the traditional fields of physical optics, ste-
reochemistry, and crystallography.1 After the pioneering
work of Lindman2 on the gyrotropy induced by an assembly
of small metallic helices, researchers in the field of radio
waves propagation have been increasingly interested in gy-
rotropic media. Similarly, the discovery of the double helix
of DNA stimulated new researches in the field of biology. It
has been recognized that gyrotropy is, in general, associated
with molecules having the shape of helices or of segments of
helix,3 and numerical algorithms have been designed to treat
complex dielectric structures.1

We approach here a similar problem with a different tech-
nique, on the basis of a simple optical model. More pre-
cisely, we consider a medium which is locally uniaxial and
nongyrotropic, with the optical axis uniformly rotating along
the direction of a given axis, sayz, in such a way that the
components of its versorn̂ are given by

nx5sinacosw, ny5sinasinw, nz5cosa, ~1!

wherea is the tilt angle of the structure,w5qz1w0 and
p52p/q is the helix pitch.

A thin cylinder of such a medium, elongated alongz,
simulates a helical-shaped macromolecule whose optical ac-
tivity is related to the rotation of the polarizability direction
of its atomic groups and not to their positions. The model
also describes a chiral smectic C liquid crystal~LC! and, in
the particular casea5p/2 (n̂ orthogonal toz), a cholesteric
LC. The optical properties of these media have been exten-
sively studied in our century for pitchesp of the same order
of magnitude or greater than the light wavelengthl. Here we
consider the casep,l, which is interesting to understand
the gyrotropy induced by helical-shaped molecules; further-
more, it has been recently shown that short-pitch cholesterics
can be used as electro-optical devices.4

It has already been shown numerically5 that small-pitch
chiral smectic LC can be well approximated by gyrotropic
uniaxial homogeneous media, whose optical activity cannot

be derived from the well known de Vries equations.6 Here,
analytic expression for their gyrotropic properties will be ex-
plicitly given in the limit p!l.

According to Landau-Lifshitz7 and Agranovich-Gins-
burg,8 the electromagnetic properties of the effective homo-
geneous medium are defined by the constitutive equations

Deff5«0«
eff
•Eeff, Beff5m0H

eff, ~2!

which involve the single tensor«eff . The optical activity
comes from the nonuniformity in space of the medium
~which is assumed as locally nongyrotropic! and of the elec-
tromagnetic field. In fact, the polarization at a given point
also depends on the field values at neighboring points. We,
therefore, write

Di
eff5«0S «̃ i j Ej

eff1g i j l

]Ej
eff

]xl
D , ~3!

where the suffixesi , j , l run over the Cartesian coordinates
x, y, z. Terms in higher order derivatives are neglected since
we are considering the casep!l. For a plane wave we have
Ej
eff5E0 j

effexp@i(klxl2vt)# and Eq.~3! gives

« i j
eff5 «̃ i j1 ig i j l kl . ~4!

The effective dielectric tensor« i j
eff is complex and de-

pends on the light wave vectork ~spatial dispersion!. The
imaginary part, responsible for the optical activity, depends
on the third rank tensorg i j l . Energy conservation

9 requires
that g i j l 52g j i l . This reduces the number of independent
components of the tensor from 27 to 9, and allows us to write

g i j l 5ei jmgml /k0 , ~5!

whereei jm is the completely antisymmetric unit pseudoten-
sor,gml is a second rank pseudotensor, andk05v/c the light
wave vector in vacuum.

Our aim is to explicitly find the dielectric tensor«̃ and the
gyrotropy pseudotensorg of the effective homogeneous me-
dium. To this purpose we recall that the eigenwaves in this
medium are plane waves, whereas the eigenwaves in any
periodic medium are, in general, Bloch waves with an infi-
nite number of Fourier components. When we consider an
effective homogeneous medium we simply neglect all these
components except the zeroth order one, which defines an
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average field smoothly varying over one spatial period. In
crystal optics only this average field is of practical interest,
because the period is of molecular dimensions. This is not
our case, because the pitch of actual helical-shaped LC is
usually not negligible with respect tol. So we will not only
define an effective homogeneous model, but also find out the
most important effects related to the neglected Fourier com-
ponents. Such components play a main role in the definition
of the boundary conditions. It is, therefore, convenient to
consider the optical properties of a finite sample.

Let us first consider a layer of the periodic medium with
boundary planes atz50 andz5Np, whereN is an integer
number, and an incident plane wave defined by

S EHD 5S Z0
1/2e~z!

Z0
21/2h~z!

D exp@ i ~kxx2vt !#1c.c., ~6!

whereZ05(m0 /e0)
1/2 is the vacuum characteristic imped-

ance. Only four components of the electromagnetic field are
independent, and Maxwell’s equations can be cast in the ma-
trix form10

db~z!

dz
5 ik0B~z!b~z!, ~7!

whereb5(ex ,hy ,ey ,2hx) andB is theBerreman matrix.
In our caseB5B01Ba , where

11

B05S 0 12mx
2/ «̃e 0 0

«̃o 0 0 0

0 0 0 1

0 0 «̃o2mx
2 0

D , ~8a!

Ba5S b1cosw 0 b1sinw 0

2b2cos~2w! b1cosw 2b2sin~2w! 0

0 0 0 0

2b2sin~2w! b1sinw b2cos~2w! 0

D .
~8b!

Herem5k/k0, b152mx«asin(2a)/(2«̃e), b252«a«0sin
2a/

(2«̃e), and

«̃e5«o1«acos
2a, «̃o5«o~11«e / «̃e!/2, ~9!

where«e and«o are the principal values of the local dielec-
tric tensor of the periodic medium and«a5«e2«o is the
dielectric anisotropy.

The optical properties of the sample are summarized by
its transfer matrixU(Np)5U(p)N, which gives the output
field as a function of the input field, according to
b(z)5U(z)b(0). The matrix U(z) satisfies the condition
U(0)51, where1 is the identity matrix, and the same propa-
gation equation~7! of the vectorb. Its computation requires
a numerical integration. An approximate analytical expres-
sion can be obtained by a perturbative approach, takingB0 as
the unperturbed matrix. This matrix describes a homoge-
neous uniaxial medium without optical activity and with
principal values of the dielectric tensor equal to«̃e and «̃o.
Since the perturbing matrixBa depends onz, we make use of
a perturbation method very similar to the interaction picture

of quantum mechanics for time dependent perturbations.
More precisely, we define a new vectora and a new matrix
A related tob andB by the equations

a~z!5T0
21~z!b~z!, A~z!5T0

21~z!Ba~z!T0~z!, ~10!

whereT0(z) is the 434 matrix whose columns are theb
vectors of the four eigenwaves propagating within the unper-
turbed medium, given byb ( j )exp(ik0mjz). Here, b ( j ) and
mj are the eigenvectors and eigenvalues, respectively, of the
matrixB0. The elements ofa(z) have a very simple physical
meaning, since they are the complex amplitudes of the un-
pertubed eigenwaves. The nondiagonal elements ofA(z)
give the coupling between these waves. The vectora(z) and
its transfer matrixUa(z) satisfy an equation formally identi-
cal to Eq.~7!, with A(z) instead ofB(z).

The perturbation approach is obtained by writing the
propagation equation forUa(z) in the integral form

Ua~z!511 ik0E
0

z

A~z8!Ua~z8!dz8, ~11!

and making use of the iteration procedure

Ua
~0!~z!51, Ua

~n11!~z!511 ik0E
0

z

A~z8!Ua
~n!~z8!dz8,

~12!

which, for p!l, is rapidly converging.
The zeroth order approximation gives an homogeneous

model without optical activity, corresponding to the unper-
turbed medium defined by the matrixB0. The first iteration
gives a transfer matrixU (1)(Np) which depends on the
phase constantw0 appearing in Eq.~1!, which defines the
director orientation and the phases of the higher order Fou-
rier components of the Bloch wave at the boundary planes of
the sample. A change ofw0 is equivalent to a shift of the
helix alongz. The transfer matrix of the homogeneous model
is obtained by averagingU (1)(Np) over w0, and is exactly
the same as for the zeroth order approximation, as discussed
below.

The next iteration takes into account the two photon in-
teractions between neighboring molecules. The transfer ma-
trix U (2)(Np), averaged over the phase constantw0, has ad-
ditional terms which couple the two forward propagating
unperturbed eigenwaves, giving a rotation of the plane of
polarization of the light. The same happens for the bakward
waves. This averaged transfer matrix is the same as for a
homogeneous medium with optical activity whose dielectric
tensor and gyrotropy pseudotensor are given by

«eff5S «̃o 0 0

0 «̃o 0

0 0 «̃e
D 1 ig'S 0 0 2my

0 0 mx

my 2mx 0
D ,

~13!

g5S g' 0 0

0 g' 0

0 0 0
D , ~14!

where

10 274 54BRIEF REPORTS



g'52
p

l

«a
2

8«̃e
sin2~2a!. ~15!

No essentially new features are given by the following
steps of the iteration procedure, which only give minor cor-
rections to the already found equations.

Comments. ~i! Let us first discuss the role of the higher
order Fourier components. Interestingly, their effect on the
optical properties of the above considered sample is given by
a single parameterw0, which can be changed by simply ro-
tating the sample with respect to the incidence plane of the
light. This fact is a direct consequence of the helical symme-
try of the periodic medium. The explicit expression of the
transfer matrix is very complicated, even at first order of the
perturbation expansion. The optical properties of interest~re-
flectance and transmittance! are more simply and quickly
obtained by a numerical integration of the exact equations. It
is however interesting to explicitly write the elementsUeo

(1)

Uoe
(1) of the matrixU (1)(d) which couple the extraordinary

and ordinary forwardly propagating waves, giving a rotation
of the plane of polarization of the input beam. To compare
this rotation with the one given by the gyrotropy parameter
g', it is convenient to setd5l/2p:

Ueo
~1!52Uoe

~1!5
p

l
m̃aF12 t̃ e

t̃o
b1sinw01

1

4

1

t̃ et̃o
b2cos~2w0!G

1O„~p/l!2…, ~16!

where m̃a5m̃e2m̃o5@ «̃o(12mx
2/ «̃e)#

1/22( «̃o2mx
2),

t̃ e5@ «̃o /(12mx
2/ «̃e)#

1/4 and t̃ o5( «̃o2mx
2)1/4. These terms,

as well as the other terms of the matrixU (1)(d), become
identically zero when averaged overw0. Their dependence
on p/l and on«a is such that they are of the same order of
magnitude of the gyrotropy parameterg' even in the limit
p→0. This means that, strictly speaking, the homogeneous
model for a periodic medium is never valid. However, we
know that the optical properties of gyrotropic crystals are
well described by a homogeneous model. The paradox is due
to the fact that in such crystals only the average field is
related to measurable quantities. This obviously occurs for
light entering a sample whose boundaries are obliquely ori-
ented with respect to the crystal planes, and for samples
where the long range correlation is lost~as a consequence of
surface irregularities or impurities, defects, etc.!. Our com-
putation suggests therefore that for periodic media the valid-
ity and usefulness of the homogeneous model are not related
to the vanishing of the higher order Fourier components, but
to the fact that their effects are difficult to detect in experi-
ments. Small-pitch chiral smectic LC represent perhaps a
unique example of periodic media whose optical properties
are, in general, well described by a homogeneous model,
except for samples with boundary planes orthogonal to the
helix axis. Experiments to test this point are in progress, for
media with pitches of the order of 0.1mm. Preliminary re-
sults confirm this fact.

~ii ! We have tested the limits of validity of the homoge-
neous model, defined by Eqs.~13!, ~9!, and~15!, by compar-
ing its optical properties of practical interest with the corre-
sponding properties of the actual periodic medium. In
particular, we have computed the intensities and polariza-

tions of the transmitted and reflected beams for different
sample parameters and different orientations of the helix axis
with respect to the boundary planes. For samples with the
helix axis orthogonal to these planes, the Berreman equation
~7! has been integrated numerically and the optical properties
of the sample, such as the rotation angle of the input polar-
ization, have been averaged overw0, as previously ex-
plained. For the other orientations, the equations for aniso-
tropic gratings have been used, in whichw0 plays no role.12

According to our computations, the homogeneous model
fits all the considered properties within one percent up to
p,l/5. Large deviations are only found forp approaching
the value where the periodic medium gives the first Bragg
diffraction peak. Here, obviously, no homogeneous model is
valid. The range of validity of the model is unexpectedly
large, if we consider that it has been derived by an iteration
procedure which is meaningful only forp!l. We further
observe that the rotatory power is very large, compared to
typical values for isotropic liquids and crystals. The gyrot-
ropy parameterg' of the actually available small-pitch
smectic LC is of the order of 0.01. This gives a rotatory
power of the order of one degree over a thichness of one
wavelength, which, in general, cannot be neglected in experi-
ments. The possible contribution coming from the chirality
of the constitutive molecules is therefore negligible.

We further observe that the small local biaxiality of smec-
tic LC, which here has been neglected, does not greatly
change the gyrotropy parameterg' , and that the sample
generally transforms linear into elliptic polarization, owing
to the dielectric anisotropy of the effective homogeneous
medium. An experimental verification of the given theory
requires, therefore, the evaluation of the rotation of the el-
lipse’s axes. A simpler experiment could be done by consid-
ering a suitable polidomain crystal with random orientation
of the helix axis. In fact, the medium obtained by averaging
the effective dielectric tensor over all helix directions be-
haves as an isotropic optically active medium, whose gyrot-
ropy pseudotensor has diagonal terms equal to 2g'/3 ~bi-
isotropic medium, i.e., isotropic for both the real and
imaginary parts of the dielectric tensor!.

~iii ! The most interesting and unexpected result of our
computations lies in the great simplicity of the basic equa-
tions, if we consider that the optical activity comes from the
interactions between neighboring molecules, and is therefore
a second order effect, given by the second iteration. In fact
the effective medium is uniaxial in both the real and imagi-
nary parts of the dielectric tensor~biuniaxial!, and the gyrot-
ropy pseudotensorg depends on a single parameterg' , as
shown by Eq.~14!. The index' refers to the optical axis,
which is coincident with the helix axis. The absence of the
parallel component means that the rotatory power is zero for
light propagating along the optical axis.

The gyrotropy parameterg' ~i! is a linear function of
p/l, as expected, since it derives from linear terms in the
first order derivative appearing in Eq.~3!; ~ii ! depends on the
square of the local dielectric anisotropy of the medium. Its
sign is therefore the same for media having positive and
negative local anisotropy, and only depends on the handed-
ness of the helix, defined by the sign ofp. We recall that
p52p/q, and that, according to Eq.~1!, positive or negative
q values correspond to right- or left-handed helices, respec-
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tively; ~iii ! is maximum fora545°, zero fora50°, and
a590° ~namely, for a cholesteric LC!.

These properties are interesting from many points of
view, and some are rather unexpected, compared with the
properties of the same medium at higherp values. In fact, it
is well known that cholesteric and chiral smectic LC with
p>l give a huge rotation of the plane of polarization of
light,6 which is maximum for light propagating along the
helix axis, and disappears if the light beam is rotated above a
given angle.13 Here it has been shown that forp!l the
rotatory power is zero for light propagating along the helix
axis, maximum in the orthogonal directions, and completely
absent for the cholesteric phase. Let us discuss separately
these points.

Exact analytic expressions are available for light propa-
gating along the helix axis of cholesteric and chiral smectic
LC. They show that an optical activity actually exists also for
p,l, but decreases as (p/l)3, and becomes practically neg-
ligible for p,l/10. A full description of the optical activity
for any direction of the light beam and for anyp value re-
quires a more complex theory. Forp>l, the rotatory power
along the helix axis is essentially a first order effect, in the
sense that the rotation of the polarization plane within any
thin layer of the sample does not practically depend on the
presence of neighboring layers. It cannot be accounted for in
the framework of our theory since the iteration procedure
loses its meaning forp.l. In the opposite limitp!l, the
interaction between neighboring layers becomes important.

The fact that the gyrotropy parameterg' goes to zero for
a50° anda590° is not surprising if we compare the me-
dium M considered here with a mediumM 8 made of well
oriented dielectric helices with uniaxial polarizability tangent
to the helix. In fact, the anglea8 between the helix axis and
any small segment of the helix, which depends on the ratio
between the radius and the pitch of the helices, plays a role
similar to the tilt anglea with respect to the polarization
properties. Now,M 8-type media display optical activity ex-
cept fora850°, where the helix becomes a straight line, and
for a8590°, where the helix collapses into a circle.~A simi-
lar behavior is also found in biuniaxial media made of well
oriented conducting helices.14!

Other analogies between media of typeM andM 8 exist.
By increasinga8 the dielectric anisotropy ofM 8 changes its

sign, from positive to negative values, whereas the sign of
the gyrotropy parameters remains unchanged. A particular
angleac8 therefore exists, where the medium becomes isotro-
pic for what concerns the real part of the dielectric tensor and
anisotropic for what concerns the optical activity~isotropic-
anisotropic!. M-type media exactly display a similar behav-
ior. The corresponding angleac is obtained by setting
«̃e5 «̃o, and is given by cos2ac5@(«o

218«e
2)1/223«o#«a

21/4.
For this particular value ofa the medium simply rotates the
plane of polarization of linearly polarized light, and the ro-
tation angle depends on the direction of the light beam. The
conceptual~and perhaps also practical! interest of this fact is
evident. This value ofa is of great interest also for the op-
tical properties of smectic LC at higher values of the pitch.11

Owing to the above analogies, we expect that the obtained
results will be of help for a better understanding of the opti-
cal properties of other helical-shaped media, despite the
structural differences between them. In particular, it would
be of most interest to inquire to what extent the gyrotropy of
different types of helical conformations can be described by
expressions having the simple structure of Eq.~15!.

~iv! As a final comment, let us recall that the optical prop-
erties of cholesteric and chiral smectic LC have been first
understood for light propagating along the helix axis, and
that it is generally thought that no essentially new optical
property arises for obliquely propagating light.15 The gyro-
tropic properties of small-pitch chiral smectics LC represent
perhaps the most important effect which cannot be found if
we only consider light propagating along to the helical axis.
They are given by expressions which are at same time very
simple and of great generality, since they can describe biu-
niaxial, isotropic-anisotropic, and bi-isotropic media. Other
types of periodic helical structures have recently been con-
sidered, where the medium is locally gyrotropic and mag-
netic, in connection with the increasing interest for chiral
media in the field of microwaves.16 Only the case where
a590° and the light beam propagates along the helix axis
has been considered. According to our analysis, structures
having differenta values could be of even greater interest.

We thank P. Galatola, M. Omini, and P. Mazzetti for
stimulating discussions.
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