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We give a method to obtain the quasiparticle band structure and renormalized density of states by diago-
nalizing the interacting system Green function. This method operates for any self-energy approximation ap-
propriated to strongly correlated systems. Application to CeSi2 and YBa2Cu3O7 is analyzed as a probe for this
band calculation method.@S0163-1829~96!06036-5#

Since some years ago, there has been a tendency to at-
tempt to describe the electronic structure of strongly corre-
lated systems~SCS’s! from a one body point of view1–8 ei-
ther including self-energy effects in the local-~spin-! density
approximation@L~S!DA# Refs. 3–6 or by other methods.8

Some authors have considered that the reason for the fiasco
of the standard LDA in the description of the electronic
structure of the SCS’s lies in the determination of the crystal
potential, which does not include~and it should! the so-
called self-interaction correction~SIC!.1 Other authors have
added to the LDA potential a term which depends on the
occupation of each strongly correlated orbital in such a way
that it is able to reproduce the characteristic Hubbard-like
splitting. This method is called LDA1U.2 Both the SIC and
the LDA1U methods can be considered mean-field approxi-
mations, since the corresponding added potentials are inde-
pendent of the energy. Other authors include energy-
dependent pseudopotentials derived from several self-energy
approximations either inspired in the three-body Fadeev
equations5 or based on theGW approximation ~GWA!
theory7 adapted to the SCS’s.3,4 The aim of this paper is to
give a system for obtaining the electronic structure of the
SCS’s valid for any pseudopotential~SIC, LDA1U, or any
approximation to the self-energy!.

The method we present here is based on the diagonaliza-
tion in k space of the interacting Green function in which a
self-energy is considered. Thus the matrix element of the
interacting Green function is given byGab(k,v)

21

5(v2«ka
0 6 iu1)dab2Mab(k,v), whereMab(k,v) is the

self-energy matrix element calculated between two eigen-
statesuka& and ukb& of the noninteracting system’s Hamil-
tonian ~HLDA) of eigenvalues«ka

0 and «kb
0 respectively (a

and b are band indexes!. The interacting Hamiltonian of
SCS’s, considered here, has only terms between strongly
correlated orbitals belonging tof or/andd atoms, therefore,
the self-energy only affects the strongly correlated compo-
nent of the band states. Then the Green functions can be
written as

Gab~k,v!215~v2«ka
0 6 iu1!dab

2 (
mm8

(
nn8

^kaumn&Mmm8
nn8 ~k,v!^m8n8ukb&.

~1!

The matrix of the former equation must be constructed and
diagonalized for eachk. This requires a first band calculation
in order to determine«ka

0 and^kaumn&. We have performed
a LDA band structure calculation with a standard symme-
trized augmented plane-wave method, and determined«ka

0

and ^mnuka&, whose expression is
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The former equation, after the standard notation,6 defines the
shape of the m strongly correlated orbitals
@Ym(u i ,w i)ul(ur2r nu;«ka

0 )#. The radial part of these orbitals
(ul), centered in then atoms, is calculated by means of the
radial part of the Schro¨dinger equation for the energy of the
crystal eigenstate~i.e., E5«ka

0 ) and the symmetries of the
angular part of these orbitals@Yp(u i ,w i)# are compatibilized
with the crystal symmetry. Therefore, these orbitals are af-
fected by both the crystal symmetry and solid-state effects
via the dispersion energy of the eigenstates. The coefficients
v(k i ,«ka

0 ) which also define theuka& state are obtained in
this first LDA calculation.

When a complex self-energy is considered, Eq.~1! be-
comes a complexv-dependent non-Hermitical matrix
whose eigenvalues @Eka(v)# can be written as
Eka(v)5«ka(v)1 igka(v). ThenGab can be rewritten in
the diagonalized form as Gka(v)

215v2«ka(v)
2 igka(v). The spectrum of the interacting system is given
by the poles of the Green function; we find then quasiparticle
states of energy v05«ka(v0) and half-life
tka5gka(v0)

21. The density of states~DOS! is calculated
from the spectral functions@Aka(v)5(1/p)uImGka(v)u#.
Developing the functionv2«ka(v) in a Taylor series
around the solution ofv05«ka(v0), the following spectral
function is obtained:

Aka~v!5
1

p

Zka
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where the renormalization factorZka(v0) corresponding to
the quasiparticle state of energy«ka(v0) is given by
Zka

21(v0)5u12(]«ka /]v)uv5v0
. The band calculation

method explained above presents obvious advantages in
comparison with our previous method,6 since it provides an
exact evaluation of the half-life of the quasiparticles as well
as of the renormalization factor within the self-energy ap-
proximation, while in our previous method6 these two vari-
ables were calculated up to the first order of approximation.
On the other hand, it makes it possible to consider matricial

self-energiesMmm8
nn8 which arise, for example, from regarding

a Umm8
nn8 matrix for the bare interaction between electrons in

strongly correlated orbitals of different atoms. This method
is also more advantageous than those of Refs. 1 and 2, since
it admits any pseudopotential~including of course those of
Refs. 1 and 2!, and furthermore it can consider any dynami-
cal effects corresponding to any Dyson solution for effective
interactions between quasiparticles. Moreover, the method
presented here constitutes a completely general system, valid
for any approximation to the self-energy. In this paper,
though, our attention is not centered in the self-energy analy-
sis, therefore, an expression for the self-energy which has
yielded results6 in reasonable good agreement with the ex-
perimental data, will be used to test this method with respect
to that of previous papers.6 The self-energy expression used
in the examples of the electronic structures given in the
present paper is
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~the meaning of the variables appearing in the above equa-

tion are given in Ref. 6!. The termU( 122nm
n ) yields the

Hubbard splitting in the unrestricted Hartree-Fock approxi-
mation, and the two terms depending onv arise from the
extended random-phase-approximation~ERPA!.6 The Vmn

and ymn parameters depend on theUm
n energy and on the

noninteracting density of states~which is modelized by
means of Lorentzian-like curves!, in such a way that the
v-dependent terms of the self-energy tend to zero when the
bandwidths of the noninteracting system increase, and/or the
strongly correlated orbital is either totally occupied or unoc-
cupied. For eachm strongly correlated symmetry of eachn
atom, the self-energy of Eq.~4! has two energy-dependent
terms with two maxima at energies next tov56Vmn .
These maxima would be divergences if the imaginary part of
the self-energy had the shape ofd(v2Vmn) functions. But
this is not the case here, since for Lorentzian-like noninter-
acting DOS’s the imaginary part of the self-energy of Eq.~4!
is also constituted by Lorentzian-like curves, and thus the
self-energy presents, instead of divergences, maxima and
minima more or less pronounced depending on the larger or
smaller narrowness of the bandwidths~see Ref. 6!. The self-

energy described above can be compared to other approxi-
mations to the self-energy, as, for example, those calculated
from a one-band Hubbard Hamiltonian by Calandra and
Manghi5 or from a multiorbital Hubbard Hamiltonian by
Manghi, Calandra, and Ossini.5 In this work of Calandra and
Manghi,5 the calculated hole and particle self-energies
present a discontinuity at the Fermi level (EF) which, as
stressed by the authors, is responsible for the metal-insulator
transition when increasing the ratioU/W ~correlation-
bandwidth!. Except for this jump, the self-energy of Eq.~4!
shows similar characteristics~see Ref. 6! to that of Calandra
and Manghi’s work. In fact, the agreement is excellent when
the self-energy obtained by Calandra and Manghi is continu-
ous atEF @i.e. forS1

(6)(v)50#. In this case the straight lines
(v2«ka) cut off the real part of the self-energy, yielding
poles of the Green function in the energy region nearEF ,
and therefore metallic behavior can arise. Obviously, this last
case should be considered when analyzing the electronic
structure of metallic CeSi2 and YBa2Cu3O7, which are the
compounds studied in this work. This agreement can seem
surprising, since the self-energy of Eq.~4! is obtained by
summation of the ERPA,6 while Calandra and Manghi’s cal-
culations are performed considering three-body Fadeev
equations. However, it must be remembered that the vertex
effects vanish for sufficiently large bandwidths and, on the
other hand, for these bandwidths and large number of par-
ticles ~cases close to the half-filling condition! the bubble
diagrams of the ERPA yield basically all characteristic fea-
tures of the electronic structure of these systems.

Our method can be also compared to those arising from
the GWA, where a dynamical screened interaction is consid-
ered to obtain the self-energy by means of the well-known
Hedin-Lundqvist7 theory. Some authors3 have recently at-
tempted to apply this GWA theory to strongly correlated
systems. The self-energy~4! of our calculation could be clas-
sified within the GWA models, and two main differences can
nevertheless be established between our method and that of
Ref. 3. The first one concerns the self-energy used, and con-
cretely the number of cuts between its real part and the
straight linev2«d , i.e., it concerns the number of solutions
of the equationv2«d2S1(v)50. While according to what
appears in Ref. 3 there seems to be only one solution, placed
next toEF , in our case there are at least three solutions for
each energy of the noninteracting system. Therefore, the re-
sulting electronic structure of Ref. 3 corresponds to an inter-
acting Fermi liquid and, due to the existence of only the one
solution of the above equation, the satellite states of NiO do
not appear. In our results a multipeak structure arises~see for
instance Fig. 1 of the present work! and, as commented upon
in Ref. 6, when increasing the bandwidth the self-energy~4!
tends to have only one cut, and therefore the Hubbard Hamil-
tonian yields a classical interacting Fermi liquid. The second
difference mentioned above corresponds to the procedure for
integrating the Schro¨dinger-like equation when considering
the self-energy operators. In Ref. 3, the self-energy operator
is applied to the orbitals, and the effect over the crystal elec-
tronic states is obtained from their linear muffin-tin orbital
structures, that are linear combinations of orbitals, some of
which are affected by the self-energy. This method presents
some difficulties when the real part of the self-energy and the
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straight linev2«d had several cuts, since for each orbital of
the noninteracting system there would be as many strongly
correlated orbitals as the number of these cuts. As a result,
the dimension of the Hilbert space would be modified, and
the analycity of the perturbation theory could be affected.
This difficulty is not present in the method described in Eqs.
~1!–~3!, because the interacting Green function is diagonal-
ized in k space and therefore the self-energy operators are
applied to the Bloch states and not to thed or f orbitals.

The most conspicuous feature of the electronic structure
yielded by the self-energy~4! is the multipeak character that
the electronic structure arising from eachmn orbital can
present~according to the bandwidth of the noninteracting
system!, where the position of the peaks depends on the oc-
cupation of everymn symmetry, and their intensity depends
on the weight of the states over everymn orbital6 ~this char-
acteristic is present in other self-energy approximations, such
as that of Unger and Fulde in Ref. 8!.

The band calculation method described in this paper is
applied to analyze the electronic structure of thef system
CeSi2 and thed/p system YBa2Cu3O7, since both are well-
known strongly correlated materials. CeSi2 is a nonmagnetic
material in which the f occupation per cerium atom is
'0.96; therefore one can consider only one occupiedf sym-
metry. The characteristics of the noninteracting system are
such that the self-energy~4! depends onv. The multipeak
structure of this compound can be seen in Figs. 1~a! and 1~b!,
which show the renormalized total and partialf DOS’s, re-
spectively, withU55.7 eV. They display the following reso-
nances: the one located at'3 eV belowEF corresponds to
the 4f 0 final state in a photoemision process and can be
attributed to the lower Hubbard band~LHB!; the structure at
'4 eV aboveEF corresponding to the 4f 2 final state in the
bremsstrahlung spectroscopy@the upper Hubbard band
~UHB!#; and a central peak next toEF which arises from the
spectral transference between the LHB and UHB. The
middle energy resonances~MER’s! practically join the 4f 0

with the 4f 2 final states, yielding an almost continuousf
band whose total bandwidth is clearly stretched, this being a
main feature which has been experimentally detected.9,10

This MER has a first structure at.2110 meV, a second one

at .230 meV, and a shoulder just aboveEF centered at
.40 meV. The location of the two structures just below and
aboveEF ~those at.230 and.40 meV! present an excel-
lent agreement with the experimental data of the Los Alam-
os’s group of Ref. 10. However, there is a discrepancy about
the first peak in the near-Fermi region, since it lies at
.2300 meV in the photoemision spectra,10 while in our
results it is located at.2110 meV. This discrepancy can be
justified by the absence of a spin-orbital correction in our
LDA Hamiltonian, which is estimated to be around 0.2 eV.
Therefore, the results shown in Fig. 1 are in good agreement,
both quantitatively and qualitatively, with the experimental
data.9,10We wish to emphasize the impossibility of obtaining
the central peaks that correspond to thef symmetry from
non-energy-dependent self-energy approximations, such as
those given in the SIC and LDA1U approximations.

We have performed two calculations of the electronic
structure of YBa2Cu3O7. One of them considers only the
constant~not depending onv) part of the self-energy~4!,
while in the other the full expression~4! is taken into ac-
count. The orbitals Cu~1! 3dx22z2, O~1! 2py , O~4! 2pz ,
Cu~2! 3dx22y2, O~2! 2px , and O~3! 2py ~after the atomic
notation of Ref. 11! are partially occupied and therefore the
strong correlation plays a role in these orbitals. Figure 2~a!
shows the DOS of YBa2Cu3O7 deduced from a constant self-
energy withUd53.5 eV andUp52.9 eV. These results are
in a reasonable agreement with other mean-field
calculations.12 In Fig. 2~b! the energy-dependent term of the
self-energy expression~4! has also been taken into account,
i.e., the fluctuation effects yielded by the self-energy are in-
cluded. These fluctuations give rise to a transference of the
spectral functions between the LHB and UHB for each
strongly correlated orbital, and therefore we obtain a differ-
ent pattern in both figures. The states atEF in Fig. 2~b! have
almost exclusively O~4! character, while those of Fig. 2~a!
are mostly Cu~2!, O~2!, and O~3! states, having a negligible
O~4! weight. The peak located at'3 eV aboveEF in Fig.
2~b! corresponds to the UHB; it has Cu~2! character and
shows a small tail due to Cu~1! states. The intermediate

FIG. 2. ~a! DOS of YBa2Cu3O7 deduced from a constant self-
energy with Ud50.26 Ry and Up50.22 Ry; ~b! DOS of
YBa2Cu3O7 calculated from anv-dependent self-energy like that
of Eq. ~4!.

FIG. 1. ~a! DOS of CeSi2 deduced from the self-energy of Eq.
~4!. ~b! Partial f -DOS of CeSi2.
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states betweenEF and the UHB have mainly Cu~1!, O~1!,
and O~4! weights. YBa2Cu3O7 presents ap-type electronic
structure, as shown by several measurements~Hall
effect, x-ray spectroscopy, and electron-energy-loss
spectroscopy!,11 with holes both in the CuO2 planes and the
CuO3 chains. The hole distribution on the different oxygen
and copper sites that correspond to Fig. 2~b! are as follows:
0.33 holes on O~1!, 0.14 on O~2! and O~3!, 0.78 on O~4!,
0.86 on Cu~1!, and 1.12 on Cu~2!. By comparing them to the
ones obtained by Nu¨cker et al. and Krol et al.,11 we find a
reasonable agreement except in the case of O~4!, for which

there is a considerable difference of'0.6. Although Fig.
2~b! shows a better description of the electronic structure of
YBa2Cu3O7 than Fig. 2~a! ~where the constant versusv
self-energy is considered!, we believe that a more accurate
description of the electronic structure of YBa2Cu3O7 can be
obtained by means of other approximations to the self-
energy, and will be the aim of further work.
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