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Calculations of the one-body electronic structure of the strongly correlated systems
including self-energy effects
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We give a method to obtain the quasiparticle band structure and renormalized density of states by diago-
nalizing the interacting system Green function. This method operates for any self-energy approximation ap-
propriated to strongly correlated systems. Application to Ge8d YBaCu;0- is analyzed as a probe for this
band calculation methodiS0163-1826)06036-5

Since some years ago, there has been a tendency to dte matrix of the former equation must be constructed and
tempt to describe the electronic structure of strongly corrediagonalized for eack. This requires a first band calculation
lated system$SCS’9 from a one body point of vieWv® ei-  in order to determinega and(ka|mv). We have performed
ther including self-energy effects in the locépin- density a LDA band structure calculation with a standard symme-
approximation[L (S)DA] Refs. 3-6 or by other methofls. trized augmented plane-wave method, and determirfed
Some authors have considered that the reason for the fiasg@d(my|ka), whose expression is
of the standard LDA in the description of the electronic

structure of the SCS’s lies in the determination of the crystal i47mg 0

potential, which does not includéand it should the so- (mV|ka>=n—2 > vk eg ) [TH(R)T*
called self-interaction correctiof8IC).> Other authors have P R

added to the LDA potential a term which depends on the ) ii(RKk;,S,)

occupation of each strongly correlated orbital in such a way Xe'Rk"'”myp( b, ¢i)

that it is able to reproduce the characteristic Hubbard-like 119 Eka

splitting. This method is called LDAU.2 Both the SIC and

the LDA+U methods can be considered mean-field approxi- X \/f r2driuy(|r=r,];e,)[% 2

mations, since the corresponding added potentials are inde-
pendent of the energy. Other authors include energyThe former equation, after the standard notafioefines the
dependent pseudopotentials derived from several self-energhhape of the m strongly correlated orbitals
approximations either inspired in the three-body Fadeey),.(6;,¢:)u(Jr—r,|;e2,)]. The radial part of these orbitals
equation$ or based on theGW approximation (GWA)  (u)), centered in thes atoms, is calculated by means of the
theory adapted to the SCS%! The aim of this paper is to radial part of the Scfidinger equation for the energy of the
give a system for obtaining the electronic structure of thecrystal eigenstatéi.e., Ezsck’a) and the symmetries of the
SCS's valid for any pseudopotentie8IC, LDA+U, or any  angular part of these orbital&/,( 6, ¢;)] are compatibilized
approximation to the self-energy with the crystal symmetry. Therefore, these orbitals are af-
The method we present here is based on the diagonalizgected by both the crystal symmetry and solid-state effects
tion in k space of the interacting Green function in which ayija the dispersion energy of the eigenstates. The coefficients
self-energy is considered. Thus the matrix element of the, (. ,&0) which also define théke) state are obtained in
interacting Green function is given bYG,s(k,w)™"  this first LDA calculation.
=(w—eR,*1607) 8,5~ M 4p5(K,0), whereM ,4(k,w) is the When a complex self-energy is considered, EX). be-
self-energy matrix element calculated between two eigencomes a complexw-dependent non-Hermitical matrix
stateslka) and|kgB) of the noninteracting system’'s Hamil- \whose eigenvalues [Ey,(w)] can be written as
tonian (H pa) of eigenvaluessy, and ey, respectively & Ey () =ey,(®)+iyya(®). ThenG, can be rewritten in
and g are band indexgs The interacting Hamiltonian of the diagonalized form as Gy,(w) '=w—s&,, ()
SCS’s, considered here, has only terms between stronglyjy, . (w). The spectrum of the interacting system is given
correlated orbitals belonging tbor/andd atoms, therefore, by the poles of the Green function; we find then quasiparticle
the self-energy only affects the strongly correlated compostates of energy  wo=¢ey,(wg) and half-life
nent of the band states. Then the Green functions can bg =1y, (w,) ! The density of state€DOS) is calculated

written as from the spectral function$A, ()= (1/7)|ImG,(w)|].
Developing the functionw—e¢y,(w) in a Taylor series
Gap(k, @) t=(w—e0,*107) 8,4 around the solution ofvy=€y,(wy), the following spectral

function is obtained:

_n%/g,,<ka|mv>|\/|mm/(k,w)<mfyf|k,3>. N 22 (00 el )
(1) ke O [0 = £l 00) I+ [ Zkal @0) Yeal @) 12

)
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where the renormalization fact@,(wg) corresponding to energy described above can be compared to other approxi-
the quasiparticle state of energy.(wo) IS given by  mations to the self-energy, as, for example, those calculated
ZI:;(wO):|1_(&£ka/aw)|w:w0' The band calculation from a one-band Hubbard Hamiltonian by Calandra and

method explained above presents obvious advantages ManghP or from a multiorbital Hubbard Hamiltonian by
comparison with our previous meth8daince it provides an Manghi, Calandra, and Ossihin this work of Calandra and
exact evaluation of the half-life of the quasiparticles as wellManghi the calculated hole and particle self-energies
as of the renormalization factor within the self-energy ap-present a discontinuity at the Fermi levet) which, as
proximation, while in our previous methbthese two vari-  stressed by the authors, is responsible for the metal-insulator
ables were calculated up to the first order of approximationtransition when increasing the ratitJ/W (correlation-

On the other hand, it makes it possible to consider matriciabandwidth. Except for this jump, the self-energy of E@)
self-energie :n”n;, which arise, for example, from regarding shows similar characteristi¢see Ref. Hto that of Calandra
and Manghi’s work. In fact, the agreement is excellent when

' : H : :
a Uy, matrix for the pare mtergchon between eI(_ectrons Inthe self-energy obtained by Calandra and Manghi is continu-
strongly correlated orbitals of different atoms. This method . (+) . . .
s atEr [i.e. for2]~’(w)=0]. In this case the straight lines

is also more advantageous than those of Refs. 1 and 2, sin8¥ o
it admits any pseudopotentiéihcluding of course those of (@~ €ka) cut Off the real part of the self-energy, yielding
Refs. 1 and P, and furthermore it can consider any dynami- Poles of the Green function in the energy region nar
cal effects corresponding to any Dyson solution for effective@ind therefore metallic behavior can arise. Obviously, this last
interactions between quasiparticles. Moreover, the methogase should be considered when analyzing the electronic
presented here constitutes a completely general system, valiructure of metallic CeSiand YBa,Cu;0,, which are the
for any approximation to the self-energy. In this paper,compounds studied in this work. This agreement can seem
though, our attention is not centered in the self-energy analysurprising, since the self-energy of E@) is obtained by
sis, therefore, an expression for the self-energy which hasummation of the ERPAwhile Calandra and Manghi’s cal-
yielded result$ in reasonable good agreement with the ex-culations are performed considering three-body Fadeev
perimental data, will be used to test this method with respectéquations. However, it must be remembered that the vertex
to that of previous papefsThe self-energy expression used effects vanish for sufficiently large bandwidths and, on the
in the examples of the electronic structures given in thepther hand, for these bandwidths and large number of par-
present paper is ticles (cases close to the half-filing conditipthe bubble
diagrams of the ERPA yield basically all characteristic fea-
02 —y2 tures of the electronic structure of these systems.

My (@) = Sy 8,0 U 3= ) + Sy SvlUm—Hq Our method can be also compared to those arising from
m the GWA, where a dynamical screened interaction is consid-
Er N;(X)dx ered to obtain the self-energy by means of the well-known

(f_m w0t O, —x_i6" Hedin-Lundqvist theory. Some authotshave recently at-

tempted to apply this GWA theory to strongly correlated

systems. The self-ener@¥) of our calculation could be clas-
(4)  sified within the GWA models, and two main differences can
nevertheless be established between our method and that of
. . L Ref. 3. The first one concerns the self-energy used, and con-
(the meaning of the variables appearing in the above equ%’retely the number of cuts between its real part and the
tion are given in Ref. b The termU(z—ny) vields the  straight linew— ¢4, i.e., it concerns the number of solutions
Hubbard splitting in the unrestricted Hartree-Fock approxi-of the equationn—e4— 3 () =0. While according to what
mation, and the two terms depending enarise from the appears in Ref. 3 there seems to be only one solution, placed
extended random-phase-approximati®RPA.® The O,  next toEg, in our case there are at least three solutions for
andyn,, parameters depend on th&), energy and on the each energy of the noninteracting system. Therefore, the re-
noninteracting density of state@vhich is modelized by sulting electronic structure of Ref. 3 corresponds to an inter-
means of Lorentzian-like curvgsin such a way that the acting Fermi liquid and, due to the existence of only the one
w-dependent terms of the self-energy tend to zero when thgolution of the above equation, the satellite states of NiO do
bandwidths of the noninteracting system increase, and/or theot appear. In our results a multipeak structure arises for
strongly correlated orbital is either totally occupied or unoc-instance Fig. 1 of the present worknd, as commented upon
cupied. For eaclm strongly correlated symmetry of eaeh in Ref. 6, when increasing the bandwidth the self-en€dyy
atom, the self-energy of Ed4) has two energy-dependent tends to have only one cut, and therefore the Hubbard Hamil-
terms with two maxima at energies next to==*=Q,,,. tonian yields a classical interacting Fermi liquid. The second
These maxima would be divergences if the imaginary part oflifference mentioned above corresponds to the procedure for
the self-energy had the shape &ffw—Q,,,) functions. But integrating the Schidinger-like equation when considering
this is not the case here, since for Lorentzian-like noninterthe self-energy operators. In Ref. 3, the self-energy operator
acting DOS'’s the imaginary part of the self-energy of E.  is applied to the orbitals, and the effect over the crystal elec-
is also constituted by Lorentzian-like curves, and thus thdronic states is obtained from their linear muffin-tin orbital
self-energy presents, instead of divergences, maxima argtructures, that are linear combinations of orbitals, some of
minima more or less pronounced depending on the larger owvhich are affected by the self-energy. This method presents
smaller narrowness of the bandwidifsee Ref. & The self- some difficulties when the real part of the self-energy and the

J’w N (x)dx
T e, o Qx+io
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FIG. 1. (a) DOS of CeSj deduced from the self-energy of Eq. FIG. 2. (a) DOS of YB&Cu;0- deduced from a constant self-
(4). (b) Partial f-DOS of CeSj. energy with Uy3=0.26 Ry and U,=0.22 Ry; (b) DOS of
YBa,Cuz05 calculated from anw-dependent self-energy like that
straight linew —e4 had several cuts, since for each orbital of of Eq. (4).
the noninteracting system there would be as many strongly
correlated orbitals as the number of these cuts. As a resulat =—30 meV, and a shoulder just abot#g centered at
the dimension of the Hilbert space would be modified, and=40 meV. The location of the two structures just below and
the analycity of the perturbation theory could be affectedaboveEg (those at=—30 and=40 meV) present an excel-
This difficulty is not present in the method described in Egslent agreement with the experimental data of the Los Alam-
(1)—(3), because the interacting Green function is diagonales’s group of Ref. 10. However, there is a discrepancy about
ized in k space and therefore the self-energy operators arthe first peak in the near-Fermi region, since it lies at
applied to the Bloch states and not to ther f orbitals. =—300 meV in the photoemision specifawnhile in our

The most conspicuous feature of the electronic structureesults it is located a — 110 meV. This discrepancy can be
yielded by the self-energfs) is the multipeak character that justified by the absence of a spin-orbital correction in our
the electronic structure arising from eaow orbital can  LDA Hamiltonian, which is estimated to be around 0.2 eV.
present(according to the bandwidth of the noninteracting Therefore, the results shown in Fig. 1 are in good agreement,
system, where the position of the peaks depends on the ochoth quantitatively and qualitatively, with the experimental
cupation of everymy symmetry, and their intensity depends data’®!°We wish to emphasize the impossibility of obtaining
on the weight of the states over evany orbitaP (this char-  the central peaks that correspond to theymmetry from
acteristic is present in other self-energy approximations, suchon-energy-dependent self-energy approximations, such as
as that of Unger and Fulde in Ref).8 those given in the SIC and LDAU approximations.

The band calculation method described in this paper is We have performed two calculations of the electronic
applied to analyze the electronic structure of theystem  structure of YBaCu;O,. One of them considers only the
CeSi, and thed/p system YBgCuz0-, since both are well- constant(not depending onw) part of the self-energy4),
known strongly correlated materials. Ce$ a nonmagnetic while in the other the full expressiof#) is taken into ac-
material in which thef occupation per cerium atom is count. The orbitals Q) 3dy2_,2, O(1) 2p,, O(4) 2p,,
~0.96; therefore one can consider only one occupieym-  Cu(2) 3d,2_,2, O(2) 2p,, and Q3) 2p, (after the atomic
metry. The characteristics of the noninteracting system araotation of Ref. 11 are partially occupied and therefore the
such that the self-energi}) depends onw. The multipeak strong correlation plays a role in these orbitals. Figui@ 2
structure of this compound can be seen in Figa) 4nd 1b), shows the DOS of YB#&£u;0; deduced from a constant self-
which show the renormalized total and partiaDOS's, re-  energy withUy=3.5 eV andU,=2.9 eV. These results are
spectively, withU=5.7 eV. They display the following reso- in a reasonable agreement with other mean-field
nances: the one located &3 eV belowE corresponds to calculationst? In Fig. 2b) the energy-dependent term of the
the 4f° final state in a photoemision process and can beself-energy expressiof) has also been taken into account,
attributed to the lower Hubbard baidHB); the structure at i.e., the fluctuation effects yielded by the self-energy are in-
~4 eV aboveEg corresponding to the f# final state in the cluded. These fluctuations give rise to a transference of the
bremsstrahlung spectroscopthe upper Hubbard band spectral functions between the LHB and UHB for each
(UHB)]; and a central peak next & which arises from the strongly correlated orbital, and therefore we obtain a differ-
spectral transference between the LHB and UHB. Theent pattern in both figures. The state€atin Fig. 2(b) have
middle energy resonancéMER’s) practically join the 4°  almost exclusively @) character, while those of Fig.(@
with the 4f? final states, yielding an almost continuofis are mostly C(2), O(2), and (3) states, having a negligible
band whose total bandwidth is clearly stretched, this being &(4) weight. The peak located at3 eV aboveEg in Fig.
main feature which has been experimentally dete2tdd. 2(b) corresponds to the UHB; it has @) character and
This MER has a first structure at— 110 meV, a second one shows a small tail due to @i) states. The intermediate
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states betweek and the UHB have mainly Qo), O(1), there is a considerable difference &f0.6. Although Fig.
and g4) weights. YBgCu;0- presents @-type electronic  2(b) shows a better description of the electronic structure of
structure, as shown by several measuremefitiall  YBa,Cu;0-, than Fig. 2a) (where the constant versus
effect, x-ray spectroscopy, and electron-energy-losself-energy is considergdwe believe that a more accurate
spectroscopy'! with holes both in the Cu@planes and the  description of the electronic structure of Yg2u;0- can be
CUO3 chains. The hole distribution on the different oxygen ghtained by means of other approxima’[ions to the self-
and copper sites that correspond to Fith)re as follows:  energy, and will be the aim of further work.

0.33 holes on @), 0.14 on @2) and Q3), 0.78 on 4),

0.86 on C(l), and 1.12 on C{2). By comparing them to the We acknowledge financial support from DGICYT from
ones obtained by Niker et al and Krolet al,'! we find a  Spain, Project No. PB93-1249, and from CIRIT from Cata-

reasonable agreement except in the case (d§,@or which  lonian (Spair, Grant No. 1995SGR 00039.
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