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General equations of motion are introduced for the evaluation of spin dynamics in magnetic materials. The
theory uses the adiabatic separation of diagonal and off-diagonal components of the spin density matrix. This
adiabatic approach considers the orientation of the local magnetic moments to be slowly varying relative to
their magnitudes. The angles of the magnetization density are introduced ascollectivevariables in density
functional theory. The equations and technique can be simultaneously combined with those of first-principles
molecular dynamics for the consistent treatment of spin-lattice interactions. Stochastic and deterministic ap-
proaches for treating finite temperature effects are introduced for such dynamics. The method is implemented
within the local density approximation and applied tog-Fe, a frustrated system where we obtain additional
low-energy magnetic configurations.@S0163-1829~96!04026-X#

INTRODUCTION

The theoretical description of the properties of magnets
has a long history fraught with complexities. The difficulty
of reconciling experimental results which indicate local mag-
netic moments~MM’s ! and bandlike itinerant electrons has
been recounted numerous times. There have been a number
of theoretical approaches suggested and quite a number of
successes.1–3 For highly correlated~nearly localized! sys-
tems, the Hubbard model and its extensions have provided
considerable insight, although the parameters entering the
model are frequently empirical or obtained by other theoreti-
cal methods which better lend themselves to first-principles
calculations. Among these methods, the local spin density
approximation~LSDA! to density functional~DF! theory4

has proven accurate and popular for calculating ground-state,
static magnetic properties. Questions still abound concerning
the high-temperature and excited-state properties, where lo-
cal changes in the MM directions or magnitudes destroy the
periodicity which is so convenient for accurate electronic
structure calculations. Methods designed for disordered al-
loys have been utilized to gain insight into the average high-
temperature magnetic structure,5 and different tight-binding
~TB! and DF methods have been proposed6–8 to consider the
states with deviated directions of MM’s forT50; however,
there remain many open questions which we believe a more
general finite temperatureab initio approach to spin dynam-
ics ~SD! can address.

We recently presented a brief description of a general
method for treating the motion of MM’s in magnetic
materials.9 The basic idea is to treat the angles defining the
MM directions as slow degrees of freedom@like the nuclear
coordinates in the Born-Oppenheimer adiabatic approach to
molecular dynamics~MD!#. The equations of motion
~EOM’s! can be solved using force~or torque! techniques

within first-principles self-consistent-field~SCF! theory.
Also, by combiningab initio SD and MD, simulations in-
volving spin-lattice interactions may be undertaken.

The physical picture underlying the SD formalism which
we present is not completely new, although the general deri-
vation of the EOM’s and their implementation with first-
principles techniques are of fundamental importance. In the
first section the adiabatic time-dependent density functional
approach for magnetic systems is presented. We begin with
the time-dependent Pauli~the spinor form of the Schro¨-
dinger! equation and obtain the desired EOM’s for SD. The
basic assumption and physical arguments for the validity of
the EOM’s are also presented. Specific formulas are given
for implementing the method within a standard multiple-
scattering formalism. In Sec. II relativistic considerations,
including spin-orbit~SO! coupling, are discussed, and in Sec.
III an orbital-dependent variant of the formalism is pre-
sented, which is appropriate for adiabatic Hartree-Fock types
of treatments of the electronic structure. Section IV deals
with the inclusion of the temperature into the EOM’s, while
Sec. V outlines the generalization required to simultaneously
run both MD and SD simulations. Section VI gives a brief
description of the method employed for the calculation of the
electronic structure. In Sec. VII we describe the results ob-
tained from implementing the SD formalism forg-Fe and
Ni-Fe. Finally, we summarize the content of the paper and
discuss the prospects for future applications of SD.

I. ADIABATIC DENSITY FUNCTIONAL SPIN DYNAMICS

The theory of magnetism is fundamentally the theory of
electronic structure. The most widely used and successful
techniques to study the electronic structure of extended sol-
ids are based on the DF formalism.4 The equations to be
solved are familiar from SCF methods in which each elec-
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tron moves in the average ‘‘charge’’ and ‘‘spin’’ SCF’sV~r !
andB~r ! of the electrons and ions. Each one-electron stateC
is a solution of the Schro¨dinger-Pauli equation with the ef-
fective Hamiltonian

H5HL2ŝ•B,
~1!

HL52¹ r
21(

R
VrR12E dr 8

n~r 8!

ur2r 8u
1Vxc ,

whereVrR describes the interaction between the electrons
and the nuclear charges~we use Ry units!, Vxc andB are the
scalar and vector parts of the exchange-correlation potential,
respectively, and the one-electron equation has the form

i
]C

]t
5@HL2ŝ•B~r ,t !#C, ~2!

where

C5S C1

C2
D

is the electronic spinor. The fieldB~r , t!, in general, has both
a time and space dependence for both magnitude and direc-
tion. Except for this time and space dependence forB, Eq.
~2! is fairly standard. Below we show how the time depen-
dence can be separated into an EOM for the local magneti-
zation~or local MM! and~with the adiabatic approximation!
a standard single-particle electronic spin-polarized equation.
For a derivation of the nonstationary Schro¨dinger equation in
the framework of the DF approach, see, e.g., Ref. 10.

The full electronic dynamics of Eq.~2! can be equally
well described by the dynamics of the one-particle density
matrix r̂~r ,t! which can be expanded as

r̂~r ,t !5n~r ,t ! Î /21m~r ,t !•ŝ/2, ~3!

wheren~r ,t! is the charge density andm~r ,t! is the magne-
tization density. Among these four variables, two compo-
nents,n andmz , are spin diagonal, whereas themx andmy
components are spin off-diagonal elements of the density
matrix. Here we are considering a system with noncollinear
magnetic ordering among spatial regions surrounding the at-
oms.

We introduce global and local coordinate axes, so that the
local z axes, centered at atomic sites, are not necessarily
parallel. The starting point of our adiabatic approximation is
the assumption that the effective time scales for the evolution
of the diagonal~n andmz! and off-diagonal~mx andmy!
density matrix components are different, with the dynamics
of the diagonal elements being much faster compared to that
of the off-diagonal elements. In other words, we assume that
on the time scale when the charge density and thez compo-
nent of the magnetization density are varied, the orientation
of the magnetization can be considered as fixed. The geomet-
ric picture of this evolution can be thought as a slow rotation
of the local coordinate axes in time. The physical idea of this
adiabatic separation in the electronic theory of magnetism is
not new and has been discussed since the 1950s. Discussions
can be found in Refs. 1 and 2 and especially in Ref. 3~dis-

cussion of the spin adiabatic approximation for one particle
in an external magnetic field can be found in Refs. 11–13
and references therein!.

This approximation is motivated by the following obser-
vation. The interatomic exchange parameters among MM’s
~e.g., theJi j parameters in a Heisenberg Hamiltonian! are
small ~,100 meV! compared to the characteristic electronic
energies such as intraatomic exchange, bandwidth, etc. Thus
the MM directions correspond to the slow degrees of free-
dom within the adiabatic approximation while the evolution
of the magnitudes of the MM’s is determined by the change
of the electronic wave functions~fast degrees of freedom!.
Using the analogy with the Born-Oppenheimer approxima-
tion, the moment directions correspond to the slow nuclear
motion, and the forces or torques governing their rotation
arise from the rapid relaxation of the electronic system to the
instantaneous directions~or positions! of the moments.

The starting point for this spin variant of the adiabatic
technique relies on the possibility of instantaneously diago-
nalizing a time-dependent Hamiltonian~1! whose time evo-
lution is slow enough so that no level transition is induced by
the dynamics. Using the canonical transformation
C5Ux,3,12,13where

U~j!5~11uju2!21/2S 1
2j*

j
1D ~4!

and j52exp~2iw!tanu/2, the new diagonal~adiabatic!
Hamiltonian can be rewritten as

Hdiag52ŝzBz2 iU †~j!
d

dt
U~j!, ~5!

where the diagonal for the second term is

U†~j!
d

dt
U~j!5

jj̇*2j* j̇

11uju2
ŝz5 i ~12cosu!ẇŝz . ~6!

This transformation depends on the atomic site and we intro-
duce a site index to emphasize the different local~or atomic!
coordinate axes. We write all equations in the local coordi-
nate systems~which are slowly precessing in time!. Now the
time-dependent electronic equations may be written as

i
d

dt
x~r ,t !5SHL2(

i
ŝzi

~B2Bg!zi Dx~r ,t !. ~7!

In arriving at this equation we neglected all spin-flip ele-
ments~proportional toŝ1 or ŝ2!, and all ‘‘magnetic’’ gra-
dients involving“u~r ! or “w~r ! ~see the discussion of the
rigid-spin approximation below!. The term Bg~r !
5@12cosu~r !#ẇ~r ! ~Refs. 3 and 11! can be dropped due to
the presence ofẇ~r !. Finally, our equation forx1 andx2 can
be written as

i
d

dt S x1~r ,t !
x2~r ,t ! D 5SHL2(

i
ŝzi

Bzi
~r ,t ! D S x1~r ,t !

x2~r ,t ! D .
~8!

Now in the adiabatic limit one can define a set of instanta-
neous eigenstates associated with the Hamiltonian evaluated
at time t by solving the time-independent equation
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SHL2(
i

ŝzi
Bzi D S x1~r !

x2~r ! D 5«S x1~r !
x2~r ! D . ~9!

Equation~9! is the standard problem of any spin-polarized
DF method8 allowing for noncollinear local moment direc-
tions in the stationary case. The dynamics ofx1 and x2

determines the dynamics of the diagonal~in local axes! com-
ponents ofr̂ in the adiabatic limit forT50.

We next obtain the EOM for the other components ofr̂. It
can be obtained by multiplication of Eq.~2! by C* ŝ from
the left and adding the corresponding conjugate equation.
We obtain

ṁ~r ,t !5gm3B1
i

2
“~C* ŝ•“C2c.c.!, ~10!

where c.c. is the complex conjugate andg is the gyromag-
netic ratio. A modified Hamilton form of this equation was
presented in Ref. 9@there the term withVss is the precession
term in Eq.~l0! while the term withVes is responsible for
orbital- and coordinate-dependent interactions#. The struc-
ture of the second term in Eq.~10! is complicated and con-
tains spatial derivatives of wave functions. Depending on the
choice of the wave function, different forms of these gradient
terms can be obtained.l4 Among the quantum effects arising
from these terms are longitudinal spin fluctuations~i.e., the
change of amplitude of the local MM’s due to the appearance
of electron-hole pairs!. Consideration of such processes is
obviated by the reduction of the exact, nonstationary Eq.~2!
to the SD equations, where Eq.~8! allows for changes in the
moment magnitude. We would like to stress that both the
moment directions and moment amplitudes~along with the
charge density! are time dependent in our approach, and, as
we will see later, can be treated as functions of temperature.
This is an important difference compared to previous models
of classical SD. We now proceed with a detailed description
of the quasiclassical spin approximation, which is also a
more suitable starting point for the inclusion of temperature
effects.

In considering local magnetic properties it is common to
assume that the magnetization density in the immediate vi-
cinity of an atom has a uniform orientation. With this ansatz
we gain an important reduction of Eq.~l0!. Specifically, we
assume that space is divided into spheres or polyhedra, and
that within each such regionVi we associate a unit vectorei
with the instantaneous magnetization direction. We call this
the ‘‘rigid’’-spin approximation~RSA!.l5 If such a region is
associated with one particular atom then the moment
M i5mei of this region is the average or ‘‘rigid’’ atomic mag-
netic moment. By the term ‘‘rigid’’ we mean that in the time
evolution of the orientation there is a simultaneous~or rigid!
rotation of the magnetization density at each point inside the
atomic sphere~or polyhedra! by the same angle, whereas the
amplitude of the magnetization density@the mz~r ! compo-
nent# changes its value according to Eq.~8!. This approxi-
mation of a uniform direction of the magnetization density
surrounding an atom is a standard assumption in experimen-
tal analysis of magnetic structures and has so far been used
in band structure calculations for ordered8 and disordered6,7,5

magnets. We also refer to this as the quasiclassical approxi-
mation when the spin direction is rotated and the magnitude

is governed by quantum equations. Our approach thus makes
use of the standard LSDA, but in addition introduces the
angles of the magnetization density ascollectivevariables.

We will assume that the last term in Eq.~10! can be
omitted within the RSA, and for the spatially averaged mag-
netization inside an atomic sphere one may write

de

dt
52

2

m
e3I , ~11!

whereI52mB andM5me. Equation~11! describes the pre-
cession of theM i of the i th sphere under the action of inter-
nal and external~due to intersite interactions! fields. The
quantity I can be considered as an effective time-dependent
spin splitting, and has units of energy~see also Ref. 7!. As
the moment direction changes, self-consistency will gener-
ally requireI and the potentials to change as well. Equations
~11! and~9! are the basis of our quantum classical variant of
ab initio SD. These equations are useful under the following
approximations.

~i! It is possible to identify well-defined regions having
more or less uniform distribution of spin direction, with the
spin density outside equal to zero. This implies the existence
of well-defined local MM’s~we assume here also a case of
several on-site rigid MM’s with different directions!. This
approximation seems justified in metals of the Fe group, in
strong-itinerant-electron magnets such as Heusler alloys, and
in rare-earth magnets, etc. The opposite limiting case is the
weak itinerant magnets like ZrZn2, Sc3In, or some magnetic
impurities in metals of the Fe group. Here the magnetization
arises because of specific narrow peaks in the electronic den-
sity of states~DOS! at the Fermi level, fulfilling the Stoner
criteria. Under such circumstances the concept of the mo-
ments rotating nearly rigidly probably breaks down and the
excitations can be more from electron-hole pairs than from
moment rotations or magnons.

~ii ! The adiabatic approximation is valid, which seems
quite reasonable for all magnets with local MM’s, because
the ratio between intersite exchange parameters and relevant
electronic energies is small in this case. The concrete condi-
tions for the validity of the adiabatic approximation are dif-
ferent for different magnetic systems. For magnetic dielec-
trics or for rare-earth materials the criterion is simple,J!U
~whereU is the on-site Hubbard parameter!, and it holds
without any real restrictions. In 3d magnets the situation is
rather more complicated, since the magnetism may be deter-
mined by a rather small group ofd electronic states near the
Fermi level~see paragraph above!, and the ‘‘adiabatic’’ con-
dition J!W ~W is an effective bandwidth! is not necessarily
satisfied, sinceW may correspond to the width of a DOS
peak rather than the total bandwidth~see Ref. 16!. However,
according to experiments in Fe, Co, and Ni,17 the local
MM’s are well defined~in the paramagnetic region also!.
This circumstance leads us to believe that the adiabatic ap-
proximation is qualitatively valid for most magnetic systems.

From the formal point of view, under ‘‘adiabatic approxi-
mation’’ we understand something analogous to the ‘‘static
approximation’’ in the functional integral approach to the
Hubbard model,2 where the initial many-electron system is

54 1021SPIN DYNAMICS IN MAGNETS: EQUATION . . .



mimicked by the system of classical MM’s, when the direc-
tions and amplitudes are determined self-consistently from
the requirement of minimizing the free energy.

For a practical implementation of SD, we must resort to a
specific means for calculating the electronic structure to ob-
tain the ‘‘forces,’’ i.e., the first variation of the total energy
for a differential rotation of a local moment. The formalism
of multiple-scattering theory18 together with the ‘‘force theo-
rem’’ generalized for noncollinear magnetic perturbations19

offers a highly effective method for the implementation of
the RSA and the calculation ofI[dE/de5]E/]e in Eq. ~11!.
We can define the orientation of the local moment by defin-
ing at each site a local axisei for the spin density matrix. In
this case the ‘‘rotational’’ part of the inverse one-site scat-
tering matrixP can be represented as a vector~using the
decomposition of theP matrix into scalar and vector parts in
spin space!:

P~«!5p0• Î1p•ŝ5p0• Î1pe•ŝ, ~12!

wherep05TrsP/2 andp5Trs~P•ŝ!/2. Hereŝ is a vector of
Pauli matrices. And for the path operatorT matrix the same
spin-space decomposition is required:

t~«!5T0• Î1T•ŝ5T0• Î1Te•ŝ, ~13!

T05Trst/2, andT5Trs~t•ŝ!/2 ~in generalp andT are not
parallel!. On the level of time-dependent multiple-scattering
formalism one can say thatT0 andT

z are ‘‘fast’’ variables,
whereasTy andTx are ‘‘slow’’ variables. Then the variation
of the single-site scattering matrix is given by

dP~«!5dp•ŝ5p~«!de•ŝ5p~«!~dw3e!•ŝ, ~14!

wheredw is the rotation angle of the unit vectore ~see Ref.
19!. For a general orientation of MM’s the effective spin
splitting may be written in vector notation as

I i5
2

p E« f
d« Im Tr$Tiipi%, ~15!

where «f is the Fermi energy andT~«! has the same spin
direction for any energy. The parameterI i corresponding to
rotations at a single siteei or to a collective mode such as a
spin waveeQ5eiexp$iQ•Ri% may be calculated, and conse-
quently both real-space~short-range! and reciprocal-space
~long-range! spin splittings may be determined.

Within this multiple-scattering implementation an expres-
sion for updating the amplitude of the magnetic moments can
also be found. If we use the relation

M i5m iei52
1

p E« f
d« Im Tr~t i i ŝ! ~16!

and the sum rule for the collinear state9,19,20

dt i i52(
j
Ti j
↑ dpjTji

↓ , ~17!

the expression for the change of amplitude of the MM’s can
be written

ṁ i5
2

p E« f
d« Im TrH( Ti j

↑ pjTji
↓ ei•ėj J . ~18!

This expression is the time-dependent analog of the linear-
response technique used to accelerate self-consistency in
standard electronic structure methods.

As an illustration, we show how the EOM, Eq.~11!, may
be solved in the case of small deviations from the ordered
ground state~e85e1de!, which corresponds to linear spin-
wave excitations. In this case

dde

dt
52

2

m
~@de3I #1@e3dI # !. ~19!

By choosing the local coordinate systempiz and
dp i

15p i
zdei

1 we find

Tii
152(

j
Ti j
↑ pj

1Tji
↓ ~20!

from Eq. ~17! and

Tii
z52(

j
Ti j
↑ pj

zTji
↓ ~21!

which allows the linearized EOM Eq.~11! to then be rewrit-
ten for the collinear state as

v•dei
15

2

m i
(
j
Ji j ~ej

zdei
12ei

zdej
1! ~22!

with the effective exchange interactions given by

Ji j5
1

p E« f
d« Im Tr$piTi j

↑ pjTji
↓ %. ~23!

This expression forJi j is the same as the one obtained in
Ref. 19.

Equation~22! is the same form as the EOM of the phe-
nomenological Heisenberg model. Consequently, the disper-
sion laws of Eq.~22! are the same as for the Heisenberg
model. For example, from the Fourier transform of Eq.~22!
for a ferromagnet we obtain

vq•deq
15

2

m
@J~0!2J~q!#deq

1 . ~24!

Thus the Heisenberg form for the dynamics of ferromagnons
emerges in a natural way as ananalyticalsolution of ourab
initio theory. It follows directly from the linearization of the
EOM, Eq. ~11!, and the adiabatic, quasiclassical limit.

While on the topic of magnons we would like to conclude
this section by mentioning that, strictly speaking, the off-
diagonal components of the density matrix are not isolated
and this leads to the decay of spin waves even forT50 ~see
Ref. 1!. It is possible to develop expressions for slow and
fast relaxation terms within our formalism; however, in the
usual nonrelativistic spin DF formalism4 many such effects
are prohibited, and we leave a treatment of relaxation effects
to a second paper.20 For those wishing to optimize magnetic
ground-state structures~perhaps starting from a disordered
array of moments!, we note that the convergence to a final
state may be aided in the nonrelativistic DF formalism by
postulating a ‘‘friction’’ force in the EOM’s and using these
equations to evolve the system to a minimum total energy
configuration~see Secs. VI and VII!.
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II. RELATIVISTIC EFFECTS

For the modeling of some spin systems the inclusion of
magnetic anisotropy effects is necessary. Here we will con-
sider the influence of relativistic effects on precessional mo-
tion only and describe SD within the framework of the sec-
ond order of perturbation theory~order 1/c2!. The four-
component Dirac equation for the non-spin-polarized case
can be transformed in the usual fashion21 to

H52D1V2
1

c2
D22

i

c2
s•~“V3“ !1

1

2c2
DV,

~25!

where the three last terms in Eq.~25! represent the mass-
velocity corrections, SO coupling, and Darwin term. The av-
eraged value of the SO operator can be treated as an addi-
tional field and we can substitute

B→B2~§L ! ~26!

where

~§L !5
1

c2 E dr
1

r

dV

dr
C1* ~2 i r3“ !C1 ~27!

is the average value of the product of the orbital atomic
momentL and§, the SO interaction coupling parameter.

Then instead of Eq.~11! we may write

d

dt
e5

g

m
@~ I1ISO!3e# ~28!

whereISO52M (§L ) at each particular site.
Equation~28! corresponds to keeping terms to order 1/c2

in the relativistic EOM for the spin of a particle with no
anomalous magnetic moment.21 One can ask how the expres-
sions for the exchange parameters presented above will
transform for the magnetic relativistic case. For collinear
structures the expressions for the exchange parameters have
been described in Refs. 22 and 23, and for the generalization
to the relativistic noncollinear case, techniques are described
in Ref. 20.

There are other terms to order 1/c2 which arise in a many-
electron system such as ‘‘own spin–other orbit’’ and mag-
netic dipole interactions~see the discussion of Breit’s equa-
tion in Ref. 21!. The additional SO effects may be
incorporated intoISOwhile the dipole interactions require the
addition of Idd to Eq. ~28!, where

Idd52
2

c2 (
j, i

m im jF ejr i j32
3r i j ~ej•r i j !

r i j
5 G . ~29!

In this equationr i j is a vector connecting the MM at atomi
with the one at atomj . The dipolar term is long range and
known to be important on the scale of magnetic domains.

We caution that the RSA for the spin magnetization is
inconsistent with SO coupling since the orbital moment may
have a different orientation from the spin moment and induce
off-diagonal components in the spin magnetization density.

Within the approach presented above we have not intro-
duced a separate EOM for the orbital moment. In many 3d
systems it may be sufficient to follow the spin magnetization
with the orbital moment arising from solving the relativistic

equations with the instantaneous moment directions. The
implementation of SO coupling using this approach for non-
collinear magnets in the LSDA was presented in Ref. 9. In
other cases~see Sec. III below! it may be necessary to let the
on-site magnetic moment directionseiL evolve with a sepa-
rate EOM and a separate forceI iL for each orbital state
L5( l ,m). In the LSDA such separate intra-atomic motion
cannot be described because the potential does not depend on
the orbital. These issues will certainly have to be faced when
dealing with strongly correlated materials~oxides ofd met-
als, f systems, and so on!, where the magnetism is frequently
carried by localized electrons not well described in the
LSDA. For this reason we consider Hartree-Fock approaches
in the next section.

III. ORBITAL SPIN DYNAMICS IN THE ADIABATIC
TIME-DEPENDENT HARTREE-FOCK APPROXIMATION

While the LSDA methods have been very successful in
describing the magnetic properties for a wide variety of ma-
terials, there are some notable failures. For Mott insulators,
for most materials containing partially occupiedf orbitals,
and for other strongly correlated systems it is often advanta-
geous to start from a Hartree-Fock type of description. Sev-
eral hybrid or intermediate techniques have been proposed to
simultaneously treat systems which contain both localized
and itinerant electron orbitals. Techniques like the self-
interaction correction24 ~SIC! and the LDA1U methods25

are related to the spin-unrestricted Hartree-Fock approxima-
tion ~HFA!,26 which we consider in this section.

First of all, we write the equation for the nonstationary
HFA:

i
]cns~r !

]t
5S 2D1Vext12E dr 8

n~r 8!

ur2r 8u Dcns~r !

2(
ms

Kmn
s ~r !cm~r ! ~30!

whereVext is an external potential,m andn are orbital quan-
tum numbers,s56 are spin indices,n~r !5(nsucns~r !u2, and

Kmn
s 52E dr 8

cms* ~r 8!cns~r 8!

ur2r 8u
cns* ~r !. ~31!

Let us introduce the explicit spin notation

Vmn52 1
2 ~Kmn

1 1Kmn
2 ! ~32!

and

Bmn5 1
2 ~Kmn

1 2Kmn
2 !; ~33!

then, by going to an arbitrary coordinate system with an
arbitrary direction of the quantized spin axis, Eq.~30! will
take the form
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i
]cns~r !

]t
5S 2D1Vext12E dr 8

n~r 8!

ur2r 8u Dcns~r !

2(
m

Vmn~r !cm~r !2(
m

@ŝ•Bmn~r !#cm~r !.

~34!

Bmn is a vector of amplitudeuBmnu with the direction deter-
mined by spin orientations. To proceed to a derivation of the
orbital-dependent EOM we choose an alternative derivation
from that of Sec. I. By defining variablesjn52cn2/cn1 ,

27,12

we obtain the set of equations

i
]jn

]t
52

1

cn1
2 “•~cn1

2
“jn!1(

m
cn1cm1~Vmn2Vnm!

1 1
2(

m
S cm1

cn1
D $Bmn

1 2Bmn
2 jnjm2Bmn

z ~jm1jn!%,

~35!

whereB65Bx6 iBy.
The condition of neglecting the first term in the right-hand

side of Eq.~35! is the same as the one which has been dis-
cussed in Sec. I~RSA!. However, the matrix structure of the
other terms does not allow reduction to a coupled set of
equations for thejn due to the presence of thecm1/cn1 term.
Because of this, the separation of the slow spin dynamics
from the electronic variables is possible only in simplified
versions of the HFA, where only diagonal~m5n! terms in
Eq. ~85! are present, namely, the SIC~Ref. 24! and LDA1U
~Ref. 25! methods. Then, instead of Eq.~11! for the vector

e5S 2
j1j*

11uju2
, i

j2j*

11uju2
,
12uju2

11uju2D
we immediately obtain

ėn52
2

mn
@en3I n#, ~36!

with I n5dE/den , and wheremn is the value of the magnetic
moment for the given orbital state. In calculatingI n it is
convenient to use the local force theorem, which is valid not
only in DFT,19 but in the HFA as well~see the Appendix!.
The I n contains contributions not only from the spin interac-
tions between different sites, but also from the interaction of
the different orbital states~for instance,d and f ! at one site.
We also note that the approach using the variablejn has been
used as one of the possible ways to calculate nonadiabatic
corrections for the case of a single spin in an external mag-
netic field.12

The independent treatment of the SD for different orbital
states at one site we believe is important. This is particularly
true for materials containing rare-earth elements, where the
4 f moments can thermally disorder with increasing tempera-
ture faster than the 5d moments~e.g., in rare-earth–Fe2 com-
pounds!. We have discussed this phenomenon and its impor-
tance for magneto-optic application in Ref. 28. The extent to
which such independent orbital polarizations are significant
in the thermal properties of pure 3d magnetic materials is
unknown; however, one can well imagine that at high tem-

peratures the extendeds and p electrons will ‘‘sample’’
many locald moments pointing in various directions, and
that thes andp net moments could change with a different
temperature dependence than the locald moments.

It is possible to consider intra-atomic noncollinear mag-
netic ordering even among the orbitals with the samel but
different ml . This can happen, for example, in systems
where there is a large difference in bonding betweeneg and
t2g orbitals, a topic discussed some time ago by
Goodenough29 ~see Ref. 16 for a discussion of how the
LDA1U method with anml-dependent HubbardU might be
implemented to study such effects!. From what we have dis-
cussed above it is clear that the assumptions for SD~the
criteria for the RSA and adiabatic approximation! may be
orbital dependent, in which case the formulation of a consis-
tent set of EOM’s for SD will be more complicated than Eqs.
~8! and ~11!.

IV. FINITE TEMPERATURE DESCRIPTION

A. Stochastic method

While the description of finite temperature effects in DF
theory has been developed,30 here we have in mind a some-
what different program whereby the MM’s and their interac-
tions, as determined by electronic structure methods, can be
coupled to a thermobath for the evaluation of equilibrium
thermal properties. We use the same assumptions as made in
Sec. I for the deterministic EOM, but now there are addi-
tional terms associated with the thermobath. Several ap-
proaches are available for introducing this bath, and the
choice of bath will depend on which method drives the MM
system to thermal equilibrium most efficiently. We first de-
scribe a stochastic method based on Langevin-type dynamics
similar to the approach used in MD. We spend more time
and give more details for the second method, involving the
deterministic approach, since at the present time we feel this
method has advantages for applications. First, we describe
the approach based on using the stochastic differential equa-
tions of Langevin type.31 In this approach the interaction of
the dynamical system with the thermobath is described by
the addition to the EOM of a frictional force, and second,
some random forces, describing the fluctuations. If we as-
sume that the latter are the result of a large number of very
weak random events, then due to the central limit theorem
the fluctuations must be describable as a random Gaussian
process. If in addition we assume that the durations of the
random events and the intervals between them are much less
than the time scale of the movements of our chosen MM,
then the random processes are uncorrelated on this longer
time scale and constitute white noise. For spin systems the
Langevin dynamics procedure has been described in Ref. 32.
We write the corresponding EOM in a more general form,

d

dt
ei52

2

m i
@ei3I i #1Ri1gi , ~37!

whereRi is a relaxation term andgi is a random force. In the
case of magnetic noise the appearance of a random force
implies an additional term in the Hamiltonian of the form
e•I f , whereI f is a random, rapidly fluctuating spin splitting
arising from the bath. The conditions of conservation of the

1024 54V. P. ANTROPOVet al.



amplitude of the MM and the fluctuation-dissipation theorem
set up additional limitations on the choice of relaxation and
random forces. In general, the relaxation term also contains a
random part. If we would like to take into account the con-
servation of the amplitude explicitly for each term, we obtain
the stochastic EOM in the form32

d

dt
ei52Fei3S 2m i

I i1gi D G2l@ei3~ I i3ei !#, ~38!

wherel is the friction coefficient, andg is a random force of
Gaussian white noise type having the precondition

^gi&50, ^gia~ t !gjb~ t8!&52d•d i jdabd~ t2t8!, ~39!

wherea andb are Cartesian indices, andd is the intensity of
the noise. It can be shown32 that Eq.~38! satisfies for anyl
the relaxation to the Gibbs distribution ifd5lT, which is
the analog of the Einstein formula for rotational Brownian
motion.

The stochastic Eq.~38! is equivalent to the Fokker-Planck
equation for the distribution functionP~$ei%,t! as a function
of angles and time, which under condition~39! leads to the
equilibrium Gibbs distribution:

Peq~$ei%!5C exp@2E~$ei%!/T#)
j
sinu j ~40!

with the integrating elementdu dw. It is generally accepted
that with an appropriate choice of the friction coefficient
such an approach describes not only the equilibrium state
itself, but also quasiequilibrium states~the kinetic stage of
the evolution of the nonequilibrium system!.31

To reach proper equilibrium, the classical equations for
the MM orientations must be accompanied by a stochastic
electronic quantum equation@the analog of the deterministic
Eq. ~8!#. Here we present the following quantum stochastic
equation to describe also the relaxation and noise associated
with the amplitude of the MM~or themz component in our
local coordinate systems!:

i
d

dt
x~r ,t !5SHL2(

i
ŝzi

Bzi Dx~r ,t !2 i @R̂1c~ t !ĝ#x~r ,t !,

~41!

whereR̂ is a friction operator andĝ is an operator of quan-
tum noise. For the choice of the random functionc(t), we
may require the same condition as in Eq.~39!, but for dif-
ferent temperature ranges it should be done with some cau-
tion because the quantum noise is not white.31 The choice of
R̂ and ĝ operators must satisfy the condition of norm con-
servation of the wave functionx~r ,t!. Equation~41! for TÞ0
can be understood as a formal equation with fast relaxing
terms, leading to the corresponding proper EOM for the
adiabatic ~diagonal! density matrix at finite temperatures
with conservation of the total magnetic moment of system.

We propose the choice of the relaxation operator~without
the noise term! in a form very close to its classical analog,

R̂5l(
i

~aimzi
2ŝzi

Bzi
!, ~42!

whereai is some function such that this term will drive the
evolution of the amplitude of the magnetization density to its
equilibrium value. One can think about the system of
coupled Eqs.~41! and ~39! as an analog of the Bloch equa-
tions used in magnetic resonance,33 where the evolution of
Mx , My , andMz components of the total magnetization is
described with essentially different time scales~T1 and T2
relaxation rates!.

B. Deterministic method

It is possible to describe the thermal properties of mag-
netic systems in terms of a generalized MD which evolves at
constant temperature, rather than microcanonically at con-
stant energy. It was proven by Nose´ that one can relate the
canonical ensemble of a desired Hamiltonian to the microca-
nonical ensemble of a new Hamiltonian in a phase space
with one additional degree of freedom.34 This additional de-
gree of freedom can be interpreted as a dynamical realization
of a heat bath. Using a specific construction of the new
Hamiltonian with heat bath, one can evolve the microcanoni-
cal equations in this larger phase space. If the equations
evolve ergodically, then averages of observables along the
trajectory will converge to the microcanonical average. As a
consequence, the canonical ensemble is then obtained in the
subspace consisting of the original degrees of freedom. One
of the main limitations is that Nose´’s construction requires a
very specific coupling of the desired Hamiltonian to the heat
bath, which is not always ergodic. Shortly after, Hoover de-
veloped a more transparent and generalizable interpretation,
called the Nose´-Hoover approach.35 The Nose´-Hoover equa-
tions can be obtained from Nose´’s microcanonical dynamics
through a coordinate transformation. This method has proved
extremely powerful and simple to implement, but has several
notable limitations. An important aspect of the Nose´-Hoover
equations is the need for them to be strongly chaotic in the
full phase space, which is not always the case. For example,
they fail to describe the proper diffusion of a Brownian par-
ticle, as well as the thermal properties of harmonic and near-
harmonic potentials. This is especially problematic for path
integral approaches to quantum mechanics, or to classical
systems at low temperature. To resolve these shortcomings, a
canonical dynamics was proposed which is, from the outset,
non-Hamiltonian.36 The generality of this approach has al-
lowed its extension to general dynamical systems, Brownian
motion, and the Schro¨dinger equation, both in equilibrium
and far from equilibrium.37 Below we outline the application
to the classical-quantum hybrid scheme suggested above.

The method, termedglobal demons,37,38 is a prescription
to add dynamical fluctuations from any desired ensemble to a
classical or quantum system, resulting in a time-reversal-
invariant dynamics. The approach allows for simulation of
many physical types of boundary conditions, including con-
stant temperature, constant pressure, and so forth. For the
simulation of a heat bath, one uses a small number of new
dynamical degrees of freedom, which can be coupled to the
physical degrees of freedom in ways which simulate any-
thing from equilibrium or nonequilibrium steady states to
irreversible situations such as indentation and fracture.35 In
the simulation of systems near phase transitions, the problem
of critical slowing down, which hampers stochastic-based
approaches, is greatly reduced with global demons.38 An-
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other feature is that one does not need to know the equilib-
rium measure or nonequilibrium properties in order to simu-
late it ~compare to Metropolis sampling which requires the
use of a measure!. This is important in the study of staggered
fermions, where the measure is not known, only its
gradients.37

Classical MD is based on the HamiltonianH(x), with x
representing all degrees of freedom; for example,x5~R,P!
or x5~S!. The microcanonical dynamics of this system is
then defined by a Poisson tensorJi j (x), and the brackets
$xi ,xj%5Ji j (x). The only formal difference between the
conjugate variables~R,P! and the spin degrees of freedomS
is that the former are canonical, while the latter are nonca-
nonical. When one formulates either the microcanonical or
the canonical dynamics forH(x) through the Poisson tensor
Ji j (x), this distinction is unimportant. Hence we can treat all
degrees of freedomx on equal footing. The constant energy
~microcanonical! dynamics for the magnetic system have the
general form

ẋi5Ji j ~x!
]H~x!

]xj
. ~43!

When the dynamics is ergodic, the classical trajectoryx(t)
reproduces the constant-energy ensembled(E2H), whereE
is determined from the initial conditions. Using global de-
mons, the constant-temperature~canonical! dynamics, which
are non-Hamiltonian, are of the form37

ẋi5Ji j ~x!F]H~x!

]xj
2

k

nT
g~w!Aj~x!G ,

ẇ5
k

nT
Ji j ~x!F]H~x!

]xi
Aj~x!2

]Aj

]xi
G . ~44!

Here the heat bath is described by the global demonw, so
denoted since it is inherently nonlocal, coupling globally to
all degrees of freedom,n is the number of degrees of free-
dom, the coupling strengthk is typically ;An, andAj (x)
and g(w) are ~arbitrary! functions which couple the heat
bath (w) to the physical coordinatesx. In practice, a mini-
mum of two global demons is needed. When the above equa-
tions are evolved, averages along a single trajectory will re-
produce the canonical ensemble given byr5exp@2H(x)/
T#exp@2G(w)/T#, with g(w)5dG/dw. The distinction
between this method and the original approach by Nose´ is
that this dynamics is canonical in the full space.

For a Hamiltonian written in terms of canonical variables,
x5~R,P!,

H~R,P!5(
i51

n Pi
2

2mi
1V~$Ri%!, ~45!

one particular realization of the canonical dynamics is36

Ṙi5Pi /mi2
k1

nT
w1Ri

3, ~46!

Ṗi52
]V

]Ri
2

k2

nT
w2
3Pi ,

ẇ15
k1

nT (
i

F ]V

]Ri
Ri23TRi

2G ,
ẇ25

k2

nT F(
i

Pi
2

mi
2nTG .

These dynamics will reproduce the ensemble
r~R,P,w1 ,w2!5exp@2H~R,P!/T#exp~2w 1

2/2T2w 2
4/4T!.

The same formulation works for the noncanonical spin
coordinates x5S. In this case the Poisson tensor is
Ji j (S)5« i jkSk , so that we have for a generalH~S!

Ṡi5Ji j F ]H

]Sj
2

k

nT
g~w!Aj~S!G ,

~47!

ẇ5
k

nT
Ji j FAj

]H

]Si
2T

]Aj

]Si
G .

These dynamics will reproduce the ensembler(S,w)
5d(S2S0)exp@2H(S)/T#exp~2w2/2T!, which includes the
constraint over the magnitude of the spinS0. The magnitude
of S is set by the initial conditions.

It is possible to recast this deterministic SD in a form
similar to the stochastic dynamics presented previously. If
we use one global demon~usually at least two are needed for
simple systems!, takeA5S3~dE/dS!, g(w)5w, S5~m/2!e,
and define the ‘‘friction’’l5kg(w)/nT, then

d

dt
e52

2

m
@e3I #2l@e3~ I3e!#, ~48!

where

d

dt
l5S k

nTD
2

( ~ I2T“e!@e3~ I3e!#, ~49!

which conserves the ‘‘length’’ of the MM. As we mentioned
above, it is no longer necessary to adjust the kinetic energy
for temperature control. Althoughl has the appearance of a
friction, it is not dissipative, but adds and removes energy
from the spin in order to simulate the canonical distribution.
We note that Eq.~48! does not reduce to the classical~mac-
roscopic! equation of Landau and Lifshitz, but is rather a
microscopic, quasiclassical EOM and is the rotational analog
of the Newtonian EOM in MD.

For simultaneous MD and SD~discussed in the next sec-
tion!, the equations are unchanged, except that the Hamil-
tonian now depends explicitly on all degrees of freedom:
H~R,P,S!. Because one can couple select spins to a heat bath
and allow thermalization to occur through the interactions,
one can simulate many different situations, including thermal
gradients. Such approaches have been used to extract trans-
port coefficients.35,39 It follows that one can also thermalize
different subsystems at different temperatures. It is important
to thermalize the electrons separately at a low temperature to
keep their wave functions in the ground state so that the DF
approach can be applied.40 As a result of the use of different
temperatures, the coupling between slow and fast degrees of
freedom will generate heat flow from hot to cold reservoirs
and a net entropy production. If the coupling is strong, the
system will be driven to a nonequilibrium steady state, which
is no longer characterized by the equilibrium canonical dis-

1026 54V. P. ANTROPOVet al.



tribution. If the coupling is weak, the averages of observ-
ables will be close to the canonical averages at appropriate
temperatures.

We are presently testing these various schemes for includ-
ing temperature with SD and will report on optimized strat-
egies in a future paper.

V. SIMULTANEOUS MOLECULAR AND SPIN DYNAMICS

In this section we use the path integral formalism42 to
separate out the slow~adiabatic! degrees of freedom for both
MD and SD. The simultaneous treatment of both those dy-
namics is necessary for a consistent analysis of spin-lattice
interactions, particularly at finite temperatures. We will be-
gin with a general quantum-mechanical formulation of the
problem and then discuss the transition to the classical equa-
tions. A quite different derivation of these equations has
been presented in Ref. 41 where a more physically transpar-
ent time-dependent WKB approach was used.

We choose the Hamiltonian in the form

H5HR1H r$R,j% ~50!

whereHR is the Hamiltonian of the nuclear subsystem@see
Eq. ~47!#, andH r , the electronic Hamiltonian, depends on
the nuclear coordinates and the unit vectors of magnetization
ei5ei(j i) ~see Sec. III!. We assume that the RSA is valid and
that both variablese andR are slow variables~i.e., the adia-
batic approximation is valid for these variables!.

Let us introduce the basis statesuRi(t)& for the nuclear
motion and spin coherent statesuji(t)& ~see Ref. 43!. At the
initial time t50 the nuclear and spin coordinates areRi

8 and
j i8 , respectively, and the final coordinates areRi

9 and j i9 .
Then the evolution operator of slow variables will take the
form

^Ri9,j i9uÛ~ t !uRi8,j i8&5Tr^Ri9,j i9uexp~2 iĤ t !uRi8,j i8&,
~51!

where Tr means the trace over the fast electronic coordinates.
The electronic propagator within the adiabatic approximation
can be expressed through the spectrum and eigenfunctions of
stationary levels depending on theRi andji as parameters:

Er i ~0!5r i8

r i ~ t !5r i9

Dr ~ t !expH i E
0

t

dt L~ ṙ ,r ,R,j!J
5(

n
cn~r i8!cn* ~r i9!exp@2 iEn~$R,j%,t !#, ~52!

whereL is the electronic Lagrangian corresponding to the
HamiltonianH r~$R,j%!, andcn(r ! is a solution of the equa-
tion

H r~$R,j%!cn~r ,$R,j%!5En~$R,j%!cn~r ,$R,j%!. ~53!

Choosing the ground staten50 and performing calcula-
tions according to Ref. 42 in the adiabatic approximation we
have

^Ri9 ,j i9uÛ~ t !uRi8 ,j i8&

5ERi ~0!5Ri8,j~0!5j i8

Ri ~ t !5Ri9,j i ~ t !5j i9

DR~ t ! Dj~ t !expH i E
0

t

dt LJ
~54!

where the Lagrangian can be written as

L5(
i

miṘi
2

2
1(

i
A i•Ṙi1

s

2 (
i

j i* j̇ i2j i j̇ i*

11uj i u2

1U~R,j i ,j i* !, ~55!

where U(R,j i ,j i* )[E0(R,j i ,j i* ) is the energy of the
ground statex0 of the electronic subsystem which depends
on slow variables as parameters. In Eq.~55!,

A5 i ^x0u“Rux0&, ~56!

so thats51/2, and we assume for simplicity that on each
atom there is one electron. If on each atom there is an integer
numbern of magnetic electrons with the same direction of
spin, then after summation over all electrons we can substi-
tute s5n/2 for s51/2 in Eq.~55!.

The first term in Eq.~55! is the normal kinetic energy of
the nuclei, whereas the second one arises from the geometric
phase44 for the adiabatic variablesRi ,

42 and the third term
corresponds to the geometric phase for the spin variables and
is the analog of the kinetic energy for the spin variables.
Equation~55! contains all quantum effects for the~R,j! sub-
system.

For the case of magnetic dielectrics the above quantityU
can be presented similarly to the Heisenberg model represen-
tation:

U~Ri ,j i ,j i* !5U0~Ri !22( Ji j ~$R%!ei•ej , ~57!

where Ji j are exchange parameters depending only on
nuclear coordinates. Then the path integral~54! corresponds
to the Schro¨dinger equation

Ĥeffx5«x, ~58!

with

Heff5(
i

1

2mi
@P̂i2A i~Ri !#

21U0~$Ri%!

2
2

s2 (
i
Ji j ~$Ri%!ŝi• ŝj ~59!

wherePi52 i“i ands is the spin operator withŝ
25s(s11),

s5n/2. Thus we have an exact quantum description of the
lattice ~phonon! and the spin~magnon! degrees of freedom.

For metals, however, a corresponding quantum descrip-
tion of the spin subsystem in the adiabatic approximation is
not possible. First of all,n is not an integer, and second, the
spin part of the Hamiltonian does not have a simple form as
in Eq. ~59!; and also there is no simple way to treat the unit
vectorsei as operators. We can, nevertheless, utilize a qua-
siclassical set of equations for the MD and SD. These equa-
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tions can be obtained by using the saddle point approxima-
tion for the path integral in Eq.~54!. We obtain

mR̈52“RU1Ṙ3b, ~60!

ė522Fe3dU

deG , ~61!

where

b5“R3A. ~62!

It is worthwhile to note that the termṘ3b is determined by
the geometric phase.11 It can be important near degeneracy
points in electronic spectra.44 Equations~60!–~62! are the
basis for the simultaneous description of spin and nuclear
~molecular! dynamics.

The interactions at finite temperatures can be described
through using either the Langevin equation, or the global
demon thermobath. To be precise, we write in explicit form
the Langevin type of dynamics~the global demon equations
can be easily written following the discussion in Sec. IV!

mR̈52“RU1Ṙ3b2gṘ3f, ~63!

ė522Fe3S 2 dU

de
1gD G2lFe3S dU

de
eD G , ~64!

whereg and l are the friction coefficients for the nuclear
motions and spin rotations, andg andf are the corresponding
random forces with the conditions

^fi&50, ^ f ia~ t ! f jb~ t8!&52gTl•d i jdabd~ t2t8!, ~65!

^gi&50, ^gia~ t !gjb~ t8!&52lTs•d i jdabd~ t2t8!,
~66!

^ f ia~ t !gjb~ t8!&50. ~67!

Equations ~63!–~67! can be used in the case when the
‘‘spin’’ temperatureTs is not equal to the lattice temperature
Tl . The concept of spin and lattice temperature has been
extensively discussed in the magnetic resonance and physical
kinetics literature~see, for instance, Ref. 45!.

Equations~63!–~67! ~or their analog using global de-
mons! provide a basis for the description of problems asso-
ciated with the interaction of the spin and lattice degrees of
freedom ~e.g., the Invar problem50!. The equations can be
used not only for magnetically ordered systems, but also for
paramagnetic systems with local MM’s above the ordering
temperature. Another example one can consider is the prob-
lem of the description of ESR spectra in liquids or polymer
molecules in external magnetic fields. Here the characteristic
frequencies for the motion of atoms~the bending motion of
polymer molecules, diffusion in liquids, etc.! are comparable
with the spin frequencies, so the simultaneous description of
spin and lattice degrees of freedom is necessary.

VI. METHOD OF CALCULATION

We employ a tight-binding version of the linear muffin-tin
orbital method~LMTO! method, using the atomic sphere ap-
proximation~ASA! and the ‘‘combined correction’’ term.46

In the collinear case, the ASA Hamiltonian with a single

orbit perL channel has the schematic form

H5~ \ !01~ \ !1S1c.c.1S~ \ !2S1VMTZṠ. ~68!

Here the quantities~\! are matrices diagonal in the site-
momentum representation and constructed from the potential
parameters.46 The structure constantsS connecting neighbor-
ing sites are diagonal in the spin indexs; Ṡ is the energy
derivative ofS. The overlap matrix has the same structure,
except thatVMTZ→1.

The LMTO basis is constructed starting from atom-
centered Hankel functions~usually of energy 0!, which are
then replaced~‘‘augmented’’! by numerical solutions of the
wave equation inside the augmentation spheres. TheVMTZṠ
term is the integral of the original Hankel functions through
all space in a constant potentialVMTZ . The remaining terms
arise from replacing integrals of products of two Hankel
functions with the numerical functions in the various
spheres. The~\!0 term arises from two orbitals centered on
the same site, and one is augmenting the orbitals in the
sphere where they are centered. The~\!1S terms arise when
only one orbital is centered at the augmentation site; the
three-centerS(\)2S terms arise when neither is centered at
the augmentation site.

To formulate the noncollinear problem, we assume that
the axis of spin quantization is fixed within each augmenta-
tion sphere, and that the spin is negligible outside each
sphere. Thus we use a single potential in the interstitial re-
gion for both spin components. This approximation is ad-
equate ford and f shell magnetism, since the local moments
are well localized within the augmentation spheres. It is
clearly not adequate when the magnetization is not well lo-
calized, as is the case in some molecules. Now the axis of
spin quantization may rotate at each site. TheS are rotated
by URL , diagonal in the site-momentum representation and
unitary ins, and the Hamiltonian may be written schemati-
cally as

H5S 1

2 D
0
1S 1

2 D
1
U†SU1c.c.

1U†SUS 1

2 D
2
U†SU1VMTZU

†ṠU. ~69!

The potential parameter arrays are shown explicitly with
their spin-up, spin-down components. For a SS of wave vec-
tor q,URL is 1, butS is47

S~k,q,u!5S~k2q/2!F cos2~u/2!

2~sinu!/2
2~sinu!/2
sin2~u/2! G

1S~k1q/2!Fsin2~u/2!

~sinu!/2
~sinu!/2
cos2~u/2!G . ~70!

Hereu is a rotation of the spins from thez axis before rota-
tion of each unit cell byq relative to its neighbors. A super-
position of general noncollinear rotations and the SS has the
same form as Eq.~69!, but withS~k! replaced withS~k,q,u!.
The order of rotation is, then, first a rotation of all spins from
thez axis byu, then a rotation of each unit cell byq relative
to its neighbor, and finally a rotation of each site within the
cell by URL .
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Some quite general spin configurations are possible. For
example, consider a two-atom cell of length 2, with the at-
oms stacked along thez axis. A SS alongz with q51/2,
u50, and with site rotationsU1 andU2 defined by the Euler
angles~0,p/2,0! and~p/2,p/2,0!, respectively, leads to a pe-
riodic arrangement of spins rotated just as in a simpleq51/2
SS: ~↑→↓←!. When insteadu5p/2 andU1 and U2 are
defined by Euler angles~0,0,0! and ~p/2,0,0!, the arrange-
ment of spins becomes~↑←↓←!.

In the nonmagnetic case, the energy moments of the out-
put density accumulated inside sphereR from eigenvectorz
have the form

QRL
j 5~rRL

1†rRL
1 1rRL

2†rRL
2 !~«2ERL!

j , ~71!

where

rRL
1 5 (

R8L8
~11oADSRL,R8L8AD!zR8L8 ,

~72!

rRL
2 5 (

R8L8
ApgADSRL,R8L8ADzR8L8 ,

andERL , oRL , ADRL, andpRL
g are the potential parameters

defined in the usual way.46

The collinear magnetic case is identical to the nonmag-
netic case, except that there are two spin channels uncoupled
from one another. The noncollinear case is also identical,
except that now the two spin channels are coupled andS is
rotated intoU†SU with separate spin quantization axes for
each site. The momentsQss8RL

j are no longer diagonal ins :
suppressing theRL index, theQ take the form

Qss8
j

5 (
«,occ

~rs
1†rs8

1 ,1rs
2†rs8

2
!~«2ERL!

j . ~73!

TheQs5s8 correspond to the charge density in the usual
way; theQsÞs8 are used in the generation of the magnetic
forces@for the torque expression through the noncollinear~in
general! moments of the DOS, see Refs. 20 and 48#. It is
well known that the above formulas only approximate the
interstitial contribution to the Hamiltonian. Because the
method only has a provision for representing the charge den-
sity inside augmentation spheres, there is no way to represent
the interstitial density. Accordingly, the moments are renor-
malized by requiring that the total charge inside all spheres
accumulated from each eigenvector is unity. For close-
packed systems, the renormalization is small~typically 0.98!.
Similarly, the forces calculated from the moments in this
way use only the ASA part of the Hamiltonian. Extensive
testing on Fe and other close-packedd-bonded systems
shows that the force formula is accurate, whether or not the
combined correction is used.

In the ASA where only the spherical parts of the charge
density and potential are taken, the first three DOS moments
Qs5s8RL
0 , Qs5s8RL

1 , and Qs5s8RL
2 , are sufficient to com-

pletely specify the potential inside sphereR. This is because
the method has only two kinds of orbitals perRL channel,
and thus only three possible kinds of wave-function prod-
ucts. Consequently, there is only one potential consistent
with these moments. Thus the method proceeds by starting

with some spin splittingsI i ~with local z components defined
by DOS moments48!, generating a potential consistent with
the input energy moments and the corresponding potential
parameters, making the output moments from eigenstates of
H, Eq. ~71!, mixing the input and output energy moments,
and repeating the procedure until self-consistency is reached.
When the total energy is minimized with respect to the local
magnetic moment angles, the ground state is found when the
angular forces vanish simultaneously with self-consistency
in the charge. The postulated~in nonrelativistic theory! mag-
netic ‘‘friction’’ force as we relax the system to a minimum
energy structure was chosen to be proportional to the differ-
ence I2I* , where the quasiequilibrium spin splittingI* is
proportional toe @e is the direction of the atomic MM’s
obtained from Eq.~9!#. In this case the total magnetic mo-
ment of the system is not conserved. When SD simulations
are evolved, and also in the determination of minimum en-
ergy structures, it is necessary to move the angles slowly
enough that deviations from self-consistency are small. In
dynamical simulations, we found that time steps of order
1–5 a.u. were small enough to keep the electron density near
self-consistency.

It is known that the local density approximation underes-
timates the lattice constants of the transition metals, espe-
cially for the 3d series. The gradient corrections dramatically
reduce the error~though they tend to overestimate the MM’s
by about 10%!. Since gradient-corrected calculations are
probably better predictors of the ground state, we show re-
sults of simulations using a local DF, and corresponding
simulations for the gradient-corrected functional of Perdew
and Wang.49

For the sake of computational efficiency, these simula-
tions were performed with anspd basis. As we shall show,
the magnetic ground state is extremely sensitive to the lattice
constant; the neglect off orbitals leads to a small error, but
one that is nevertheless significant for fcc Fe. Additional
errors arising from the ASA approximation to the LDA func-
tional are also considered.

VII. NUMERICAL RESULTS

As a concrete example, let us consider face-centered cu-
bic ~fcc! iron ~g-Fe! at T50 K. This and related systems
~Ni-Fe, Fe-Mn! have been studied for many years50 as part of
the ‘‘Invar’’ problem. It also serves as a prototype model for
a frustrated magnetic system. Earlier ‘‘static’’ calculations47

for fcc Fe have shown a dependence of the magnetic order-
ing on volume. Near the equilibrium volume fcc Fe was
found to be nonmagnetic, but with increasing volume the
antiferromagnetic~AFM! state first becomes stable, and then
a spin-spiral~SS! state, and finally ferromagnetic~FM! or-
dering appears.47 With our SD formalism we allow the spin
system much more freedom to choose an equilibrium struc-
ture and we considered a unit cell consisting of 32 atoms.

The evolution of the spins for two different lattice
constants,a53.59 and 3.73 Å, has been calculated within
the local density approximation using the functional of von
Barth and Hedin.4 For thea53.59 Å simulation, the energy
dropped smoothly and the spins ordered into the four atoms
per cell ‘‘triple-k’’ ~3k! structure~all spins oriented along
@616161# directions!, with the MM about 1.6mB.
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Fora53.73 Å, the evolution of the spins was more complex,
relaxing into a nearly stable structure of 16 atoms/cell, and
then finding a slightly more stable configuration with spins
ordered in a↑↑↓↓ pattern along@001# and a moment of about
2.3mB ~see Fig. 1 in Ref. 9!.

Subsequent static calculations for the 2k, 3k, FM, and
↑↑↓↓ magnetic configurations, and similar configurations
with a SS superimposed, showed that the energetically most
favorable configuration exhibited a complex volume depen-
dence. Considering first only cases with no SS~as no SS was
accessible to the simulation!, we find the system to be mag-
netically ordered at the theoretical equilibrium volume~a
53.44 Å!, in a 3k structure with small MM~0.8mB!. At that
volume the 3k is nearly degenerate with nonmagnetic Fe,
being only 0.9 meV/atom more stable. The 2k is also very
close in energy, lying only 1.2 meV above the 3k. With
increasing lattice constant the lowest-energy structure is
overtaken by the mixed FM/AFM↑↑↓↓ @001# structure for
a.3.59 Å, and is in turn overtaken by FM ordering for
a.3.73 Å. Including SO coupling increased the binding en-
ergy by approximately 5 meV/atom, but did not alter the
relative energies of the various magnetic configurations.

We considered various magnetic configurations with a
~0,0,q! SS superimposed~without SO coupling!, and the 3k,
2k, and FM structures were further stabilized by an incom-
mensurate SS with 1/q'(5–6)a. The equilibrium configu-
ration is a 3k1SS ata53.44 Å and 1/q'6a, the SS stabiliz-
ing the normal 3k structure by 1.8 meV; this is 2.0 meV
lower than nonmagnetic Fe at its own equilibrium lattice
constant ~3.43 Å!. With increasing volume the optimal

1/q evolves slowly from'6a at a53.44 Å to '5a at
a53.55 Å in both the 3k and 2k configurations. Ata53.55
Å the 2k1SS overtakes the 3k1SS. Fora.3.61 Å, ↑↑↓↓
@001# is the most stable structure; it is in turn overtaken by
FM ordering fora.3.73 Å. Remarkably, the simple~0,0,q!
SS is never the most stable structure, though ata53.59 Å it
is only 1 meV higher in energy than the 2k1SS and↑↑↓↓
structures.

When the local functional of Vosko was used in place of
the von Barth–Hedin functional, essentially similar results
were obtained. Corresponding calculations with the gradient
correction of Perdew and Wang shared some features in
common with local density results, namely, a very strong
dependence of magnetic moment on lattice constant and the
favoring of complex noncollinear orderings at small lattice
constants, the↑↑↓↓ ordering at intermediate lattice constants,
and FM ordering at large lattice constants. Apart from these
general tendencies, gradient corrections dramatically change
the results. Simulations with gradient corrections were per-
formed ata53.57, 3.61, and 3.65 Å. The latter two evolved
to the↑↑↓↓ configuration, although the evolution to↑↑↓↓ for
a53.65 Å was rather tortuous, owing to the existence of
other nearly degenerate orderings. Thea53.57 Å simulation
evolved to the noncollinear eight-atom configuration shown
in Fig. 1. This AFM configuration has two inequivalent at-
oms~a low-spin state markedL and a high-spin state marked
H!, and may be viewed as a four-atom structure with a com-
mensurate~0,1/2,0! SS superimposed. Fora,3.48 Å, the
anglef between NN in Fig. 1 isp/2, so that all spins are
aligned at~0, 90°, or 180°!. For increasinga.3.48 Å, f
smoothly decreases to a value where every angle is approxi-
mately ~60° or 120°!. This configuration is the most stable
we found fora,3.54 Å ~Fig. 2!. For 3.54,a,3.65 Å, which
includes the global minimum energy ata53.61 Å, the↑↑↓↓
is the most stable. Fora.3.65 Å, fcc Fe ordered ferromag-

FIG. 1. Magnetic moment arrangement of eight-atom cell found
by the simulation.H marks the high-spin moments;L marks the
low-spin moments. All moments are oriented in thex-z plane. For
small a,H lie along thex axis. For increasinga.3.50 Å, theH
spins rotate smoothly in thex-z plane, increasing to an orientation
where all NN angles are approximately 0, 60°, or 120°.

FIG. 2. Total energies as a function ofa for several configura-
tions. The global minimum energy structure is the↑↑↓↓ configura-
tion. For smalla, the eight-atom configuration is lowest in energy;
for largea, the FM configuration is lowest, as discussed in the text.
Note the two distinct energy-volume curves for the FM configura-
tion, corresponding to a low-spin and a high-spin state.
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netically. Once again, the SS was never the stable structure,
though it is nearly degenerate with the eight-atom configu-
ration~Fig. 2!. The corresponding DOS’s and MM’s as func-
tion of structure are shown on Figs. 3 and 4.

The low-energy magnetic configurations are generally dif-
ferent stacking sequences along@001# planes, with all spins
lying perpendicular to the stacking. Moreover, with the ex-
ception of the eight-atom structures, the remaining structures
had all spins within a plane ferromagnetically aligned. To
investigate the effective exchange coupling parameters, we
consider an effective planar Hamiltonian coupling neighbor-
ing planes along the@001# direction, with spins in each plane

aligned ferromagnetically in the plane. The coupling may be
decomposed as a Fourier series of the rotation anglefi2fj
between planesi and j . To determining the coupling param-
eters, we consider a cell of four independent planes. By con-
sidering a continual rotation starting from a FM~1111!
configuration to the AFM~1212!, and another from the
FM to the1122 configuration, the total energy may be
decomposed into a Fourier series for either rotation. Thus for
each Fourier component, there are two independent quanti-
ties and sufficient information to extract two parameters,
namely, the first- and second-neighbor couplingsJ1 and J2

~more-distant-neighbor coupling is neglected!. We assume
an effective exchange Hamiltonian

Heff5 (
k51,2,3

~Jk
1cos2pkw11Jk

2cos 2pkw2!. ~74!

While the modelHeff does not reproduce all magnetic
configurations exactly, it does by construction fit the FM-
AFM and FM-~1122! energy differences exactly, and
does reasonably well for other configurations such as the SS,
and is thus sufficient for the qualitative description we seek.
The J values for the bilinear, biquadratic, and bicubic terms
are listed in Table I. It is seen that the nearest-neighbor~NN!
bilinear coupling rapidly evolves from nearly zero ata53.59
Å to a large negative value. Near the point where it becomes
comparable to the 2NN bilinear term, there is a transition
from the AFM~1212! configuration to the FM. The rather
large~and more slowly varying! 2NN bilinear term accounts
for configurations favoring AFM second neighbors. When
the first NN bilinear term is very small, higher-order terms
such as the biquadratic become relatively important, explain-
ing why noncollinear ordering is found there.

We next turn to an investigation of errors associated with
the ASA and also the neglect off orbitals in the basis. We
investigated both of these errors by comparing to full-
potential spin-polarized calculations. Our implementation of
a full-potential program is essentially similar to that dis-
cussed in Ref. 51, but using the local functional of von Barth
and Hedin~BH!, with a gradient correction of Langreth and
Mehl ~LM !. The BH1LM and Vosko1Perdew-Wang~PW!
functionals produce similar results—a detailed comparison
of the two functionals for spin-polarized systems will be pre-
sented elsewhere—but for our present purpose, we only seek
to establish the validity of the ASA for fcc Fe.

Figure 5 compares several ASA calculations of FM fcc Fe
and a full-potential calculation, and thus offers a basis for
comparing the relative importance of the various approxima-
tions. All the data show a low-spin and high-spin magnetic
configuration, with similar moments and a transition from

FIG. 3. Calculated DOS’s per atom ata53.58 Å. A pronounced
minimum in the DOS near the Fermi level is present in the eight-
atom and↑↑↓↓ structures, suggesting that the low-energy structures
are stabilized by the formation of a pseudogap.

FIG. 4. Magnetic moment as a function ofq anda for the SS
state. A split between a high-spin and a low-spin configuration can
be seen fora53.53 Å. At q50, the high-spin configuration is very
weakly dependent ona, while the low-spin state is extremely sen-
sitive toa. The transition from low spin to high spin is much milder
for q51.

TABLE I. Pair exchange parameters~in mRy! according to the
model Hamiltonian Eq.~74!.

a ~a.u.!

Bilinear Biquadratic Bicubic

J1 J2 J1 J2 J1 J2

3.59 20.22 1.89 0.39 20.49 20.15 20.17
3.65 22.65 1.42 0.22 20.58 20.12 20.04
3.72 24.34 1.16 0.14 20.60 20.17 0.01
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the low-spin to the high-spin configuration ata'3.55 Å. The
dark squares show ASA results withf orbitals included, us-
ing the BH1LM functional. Apart from a small, approxi-
mately constant shift of 100 meV, they compare very closely
to corresponding full-potential results using the same func-
tional ~open squares!. This shift may be attributed within the
ASA approximation to the electrostatic double-counting
terms: for example, the muffin-tin correction to the ASA
electrostatic energy is about 200 meV. This error is almost
completely independent of magnetic configuration, so we
may safely conclude that the ASA functional introduces a
negligible error to the relative magnetic orderings for fcc Fe.

The dark diamonds in the figure show ASA results for the
Vosko1PW functional, again withf orbitals included. The
two functions produce rather similar results~apart from an
approximately constant shift of 400 meV!, the Vosko1PW
functional favoring a slightly larger lattice constant. The
open diamonds are results for the Vosko1PW functional
with f orbitals neglected. Here one sees that the neglect off
orbitals introduces a small, approximately linear term in the
total energy and thus leads to a slight overestimate of the
lattice constant.

Addition of f orbitals affected all the noncollinear mag-
netic configurations in approximately the same way, largely
preserving the MM’s and relative energies of differing con-
figurations for a given lattice constant, but adding a small
linear shift that reduced the position of the minimum energy
for each configuration. Figure 6 shows the same magnetic
configurations as in Fig. 2, but now withf orbitals included.
Because the minima occur at a smaller lattice constant, the
3k1SS structure is the most stable, with a minimum energy
at 3.49 Å. It is nearly degenerate, however, with the eight-

atom configuration and the SS, which both have minima near
a53.49 Å ~Fig. 6!. It is remarkable that such different mag-
netic orderings are so close in energy. The SS and the
3k1SS each have a MM of approximately 1.1mB at the mini-
mum lattice constant while the eight-atom configuration has
two inequivalent atoms, with MM’s of 0.8mB and 1.6mB ,
respectively.

It is difficult to compare our results directly with experi-
mental data. Some spin-density-wave-like states have been
observed.50 We do find spin-density-wave-like magnetic
configurations, such as the 3k1SS, but it is clear that the
relative orderings of these energies will be affected by lattice
distortions which we have not taken into account. Neverthe-
less, it is interesting that the addition of gradient corrections
significantly affects the magnetic ordering in fcc Fe and
therefore suggests the importance of searching for a more
adequate exchange-correlation potential.

We have conducted a preliminary investigation of alloy-
ing fcc Fe with Ni. Dynamical simulations were performed
with the 32-atom cell as mentioned above, but with two of
the Ni atoms substituted~6% Ni! and and also with eight
atoms substituted in an L10 arrangement~25% Ni!. The 25%
case exhibited a strong tendency to order ferromagnetically.
Simulations for the 6% case were made ata53.57, 3.61, and
a53.65 Å. The magnetic configurations ordered very much
along the lines of bulk fcc Fe. For small lattice constants, the
most stable configuration resembled the eight-atom configu-
ration shown in Fig. 7 and for intermediate lattice constants
it resembled the↑↑↓↓ structure; see Fig. 7. In this structure
the magnetization of the Ni was almost completely sup-
pressed, although in the lower-symmetry structure@Fig.
7~a!#, the Ni moment was approximately 0.4mB . Again, the
global minimum appeared to be the↑↑↓↓-like structure. We
defer a more detailed study of the Ni-Fe alloy to future work.

VIII. CONCLUSIONS

We have presented an approach for treating spin dynam-
ics in magnetic materials. Our approach goes beyond the
standard Heisenberg model Hamiltonians with fixed spins in

FIG. 5. Total energy for FM fcc Fe calculated in various ap-
proximations. ‘‘PW’’ signifies the Vosko1PW functional, ‘‘LM’’
signifies the BH1LM functional, ‘‘FP’’ signifies a full-potential
calculation, spdf an ASA calculation withf orbitals included, and
spd and ASA calculation withoutf orbitals.

FIG. 6. Energies as in Fig. 3, but withf orbitals included.
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that the moments and their interactions are obtained from the
electronic structure using band theory. The moments are free
to change their directions and magnitudes during a simula-
tion in response to temperature, changes in the local spin
environment, or lattice motion.

In order to arrive at a set of equations of motion for spin
dynamics we have had to make use of ideas appropriate for
the adiabatic evolution of the electronic system. In principle,
one would prefer a more direct quantum-mechanical ap-
proach such as modern quantum Monte Carlo techniques
provide; however, even with foreseeable increases in com-
puting power over the next ten years, it seems likely that
such direct methods will be limited to modest-size systems
~certainly much smaller than the thousands of moments we
would like to consider!. Nevertheless, accurate many-body
simulations on even modest-size systems will be valuable for
testing the physical picture and accuracy of the SD equations
we propose. Another more basic approach than the SD equa-
tions is to solve the time-dependent nonadiabatic spin DF
equations directly. There would be no need to separate the
SD ~moment! equations from the electronic ones. Such an
approach could certainly be implemented for larger systems
than would be feasible with the quantum Monte Carlo ap-
proach, but there would still be trouble treating finite tem-
perature, defects, alloys, and the nonuniform systems we
seek to study.

While the aforementioned more fundamental and precise
theoretical methods for treating electron dynamics will even-
tually be used to study SD, the utility of the approach to SD
which we propose will first be assessed by comparison to
experiment. The ability to realistically calculateS~q,v! as a
function of temperature~even aboveTc! offers a means of
directly comparing theory with neutron and magnetic x-ray
scattering results. These comparisons will be the initial tests
of ab initio SD. There are many materials where our formal-
ism should be applicable; and even in those systems with
strong correlations, some hybrid scheme such as the
LDA1U approach may be suitable. The extension of these
ideas to the simultaneous treatment of MD and SD offers an
even greater range of problems and physical systems for ex-
ploration. Such simulations will be very demanding on com-
puter resources; however, with the advent of massively par-
allel computers and the concomitant development of order-N

methods, the task is manageable now for modest system
sizes. For example, recent implementation of the basic SD
equations on the Intel Paragon at Oak Ridge52 has been com-
pleted for a system containing 512 independent atoms. We
expect that the introduction of an empirical TB approach for
SD will greatly facilitate the expansion of feasible system
sizes to thousands of atoms, and combined with TBMD it
will be a cost-effective means of exploring the full dynamics
of many large systems. An example of great current interest
where lattice relaxation and thermal spin exitations play a
role is in the determination of the temperature-dependent
electrical conductivity in materials exhibiting giant or colos-
sal magnetoresistance.

Finally, we would also like to mention that the quasiclas-
sical approximation used in the derivation of the SD EOM’s
forms a natural basis for studying aspects of quantum tun-
neling in magnetic systems. The imaginary-time formalism
~a method for following quasiclassical periodic trajectories!
provides a method which permits the system to explore clas-
sically forbidden regions and tunneling matrix elements for
the ground state53 as well as excited states in the imaginary-
time-dependent DF formalism41 in the cases of magnetic and
nonmagnetic systems.
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APPENDIX

Here we present a simple proof of the local force theorem
in the HFA. Taking into account the expression for the total
energy in the HFA,26

E5(
i
E dr c i* ~r !~2D1Vext!c i~r !

1E E dr dr 8
n~r 8!n~r !

ur2r 8u

2(
i j

ds is j
E E dr dr 8

c i* ~r !c i* ~r 8!c j~r 8!c j~r !

ur2r 8u
,

~A1!

wherei5(n i ,s i) are the orbital and spin quantum numbers,
the HF equation is

HHFc i~r !5~2D1Vext!c i~r !12E dr 8
n~r 8!

ur2r 8u
c i~r !

2(
j

ds is j
E dr 8

c j* ~r 8!c i~r 8!c j* ~r !

ur2r 8u

5« ic i~r !. ~A2!

FIG. 7. Orderings found in fcc Fe doped with 6% Ni. Shaded
circles indicate Ni atoms.~a! A configuration resembling the eight-
atom structure, favored at small lattice constants;~b! a configuration
essentially identical to the↑↑↓↓ structure, favored for intermediate
a.
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The total energy can be rewritten as

E5(
j

« j2EDC, ~A3!

where the energy of double-counting terms is given by

EDC5E dr dr 8
n~r 8!n~r !

ur2r 8u

2(
mn

ds is j
E dr dr 8

cm* ~r !cm* ~r 8!cn~r 8!cn~r !

ur2r 8u
.

~A4!

Let us assume that under rotations of the local coordinate
systems or other slow~quasistatic! perturbations of the sys-
tem the wave functions$ci% are changed bydci . Then, cal-
culating the variation ofEDC under such a perturbation, one
can show that

dEDC5(
i
E dr 8c i* ~r !d1ĤHFc i~r !5(

i
d1« i , ~A5!

whered1ĤHF is the variation of the HF Hamiltonian in~A1!,

d1ĤHF52E E dr dr 8
n~r 8!c i~r 8!

ur2r 8u
2(

j
ds is j

E E dr dr 8

3
@dc j* ~r 8!c i~r 8!1c j* ~r 8!dc i~r 8!#

ur2r 8u
c j~r !. ~A6!

The term ~A6! is exactly the variation of the sum of HF
energies due to variation of the potential under self-
consistency. Consequently, taking into account~A5! and
~A6! we have

dE5(
j

~d« j2d1« j !5(
j

d* « j , ~A7!

whered* is the variation for the potential being kept fixed.
Equation~A7! is the local force theorem in the HFA.
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