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General equations of motion are introduced for the evaluation of spin dynamics in magnetic materials. The
theory uses the adiabatic separation of diagonal and off-diagonal components of the spin density matrix. This
adiabatic approach considers the orientation of the local magnetic moments to be slowly varying relative to
their magnitudes. The angles of the magnetization density are introducedllestive variables in density
functional theory. The equations and technique can be simultaneously combined with those of first-principles
molecular dynamics for the consistent treatment of spin-lattice interactions. Stochastic and deterministic ap-
proaches for treating finite temperature effects are introduced for such dynamics. The method is implemented
within the local density approximation and appliedd-e, a frustrated system where we obtain additional
low-energy magnetic configuratiosS0163-182606)04026-X]

INTRODUCTION within first-principles self-consistent-fieldSCBH theory.
Also, by combiningab initio SD and MD, simulations in-

The theoretical description of the properties of magnetolving spin-lattice interactions may be undertaken.
has a long history fraught with complexities. The difficulty ~ The physical picture underlying the SD formalism which
of reconciling experimental results which indicate local mag-We present is not completely new, although the general deri-
netic momentsMM’s) and bandlike itinerant electrons has vation of the EOM’s and their implementation with first-
been recounted numerous times. There have been a numtbgnciples techniques are of fundamental importance. In the
of theoretical approaches suggested and quite a number figst section the adlat_)atlc tlme-d_ependent density funqtlon_al
successek:® For highly correlated(nearly localizedl sys- apprqach for magnetic systems is presented. We beglm with
tems, the Hubbard model and its extensions have providel® time-dependent Paulthe spinor form of the Schro
considerable insight, although the parameters entering th&nged equation and obtain the desired EOM's for SD. The
model are frequently empirical or obtained by other theoreti¥asic assumption and physical arguments for the validity of
cal methods which better lend themselves to first-principle$h® EOM's are also presented. Specific formulas are given
calculations. Among these methods, the local spin densit}®r implementing the method within a standard multiple-
approximation(LSDA) to density functional(DF) theory‘ _scatterlng fqrmall_sm. In Seq. I relatl_vlst|c conS|derat|ons,
has proven accurate and popular for calculating ground-statécluding spin-orbiSO) coupling, are discussed, and in Sec.
static magnetic properties. Questions still abound concerninlj1 an orbital-dependent variant of the formalism is pre-
the high-temperature and excited-state properties, where I¢€nted, which is appropriate for adiabatic Hartree-Fock types
cal changes in the MM directions or magnitudes destroy th@f_ treatments _of the electronic struc;ure. Section IV de_als
periodicity which is so convenient for accurate electronicWith the inclusion of the temperature into the EOM's, while
structure calculations. Methods designed for disordered aS€c- V outlines the generalization required to simultaneously
loys have been utilized to gain insight into the average highun both MD and SD simulations. Section VI gives a brief
temperature magnetic structdrand different tight-binding descrlptl_on of the method employed for the_: calculation of the
(TB) and DF methods have been propdsé&do consider the el_ectronlc str_ucture. In _Sec. VIl we descr!be the results ob-
states with deviated directions of MM's fa=0: however, tained from implementing the SD formalism fgrFe and
there remain many open questions which we believe a morbi-Fe. Finally, we summarize the content of the paper and
general finite temperaturgb initio approach to spin dynam- discuss the prospects for future applications of SD.
ics (SD) can address.

We recently presented a brief description of a general
method for treating the motion of MM’'s in magnetic
materials’ The basic idea is to treat the angles defining the The theory of magnetism is fundamentally the theory of
MM directions as slow degrees of freeddfike the nuclear electronic structure. The most widely used and successful
coordinates in the Born-Oppenheimer adiabatic approach techniques to study the electronic structure of extended sol-
molecular dynamics(MD)]. The equations of motion ids are based on the DF formali$hThe equations to be
(EOM'’s) can be solved using forcéor torque techniques solved are familiar from SCF methods in which each elec-

I. ADIABATIC DENSITY FUNCTIONAL SPIN DYNAMICS
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tron moves in the average “charge” and “spin” SCHAr) cussion of the spin adiabatic approximation for one particle
andB(r) of the electrons and ions. Each one-electron state in an external magnetic field can be found in Refs. 11-13
is a solution of the Schainger-Pauli equation with the ef- and references thergin
fective Hamiltonian This approximation is motivated by the following obser-
vation. The interatomic exchange parameters among MM’s
H=H, —o-B, (e.g., theJ;; parameters in a Heisenberg Hamiltoniaare
(1) small (<100 me\j compared to the characteristic electronic
n(r') energies such as intraatomic exchange, bandwidth, etc. Thus
Ho=-V2+>, VfR+2J dr’ erch, the MM directions correspond to the slow degrees of free-
R dom within the adiabatic approximation while the evolution

where V, describes the interaction between the electron®f the magnitudes of the MM's is determined by the change
and the nuclear chargése use Ry units V,. andB are the of the electronic wave functiondast degrees of freedom

scalar and vector parts of the exchange-correlation potentiaSing the analogy with the Born-Oppenheimer approxima-
respectively, and the one-electron equation has the form tion, the moment directions correspond to 'the slo_w nucl_ear
motion, and the forces or torques governing their rotation

o arise from the rapid relaxation of the electronic system to the
i —=[H_—o B(r,t)]¥, (20  instantaneous directior{sr position$ of the moments.
Jt The starting point for this spin variant of the adiabatic
technique relies on the possibility of instantaneously diago-

here o : N :
W nalizing a time-dependent Hamiltonidh) whose time evo-

v lution is slow enough so that no level transition is induced by

4 . ; . .

\II:( ) the dynamics. Using the canonical transformation
S ¥ =Uy,>2Bwhere

is the electronic spinor. The fieBi(r, t), in general, has both 1 £

a time and space dependence for both magnitude and direc- U(g)=(1+|§|2)—1/2( P (4)

tion. Except for this time and space dependenceBipEq.
(2) is fairly standard. Below we show how the time depen-ang ¢=—exp(—ip)tan 62, the new diagonal(adiabatig
dence can be separated into an EOM for the local magnetiamiltonian can be rewritten as
zation(or local MM) and (with the adiabatic approximatipn
a standard single-particle electronic spin-polarized equation. ) d
For a derivation of the nonstationary ScHirmger equation in Hiag= — 0B, —1UT(&) gt u(é), 5
the framework of the DF approach, see, e.g., Ref. 10.

The full electronic dynamics of Eq2) can be equally where the diagonal for the second term is
well described by the dynamics of the one-particle density
matrix p(r,t) which can be expanded as

(e —gr &

e o,=i(1—cos)pa,. (6)

.. d
) U'(e) 5 (&)=
p(r,t)y=n(r,t)I/2+m(r,t)- o/2, (3)

This transformation depends on the atomic site and we intro-
wheren(r,t) is the charge density ana(r,t) is the magne- duce a site index to emphasize the different Igoalatomio
tization density. Among these four variables, two compo-coordinate axes. We write all equations in the local coordi-
nents,n andm,, are spin diagonal, whereas thg andm,  nate systeméwhich are slowly precessing in timeNow the

components are spin off-diagonal elements of the densityime-dependent electronic equations may be written as
matrix. Here we are considering a system with noncollinear

magnetic ordering among spatial regions surrounding the at- d .

omg. ° 9P ° ° P x(n= HL—Z 07 (B=Bg)z |x(r,t). (V)
We introduce global and local coordinate axes, so that the

local z axes, centered at atomic sites, are not necessarilyy arriving at this equation we neglected all spin-flip ele-

parallel. The starting point of our adiabatic approximation isments(proportional too, or &_), and all “magnetic” gra-

the assumption that the effective time scales for the evolutiogients involvingVé(r) or Ve(r) (see the discussion of the

of the diagonal(n and m,) and off-diagonal(m, andm,)  rigid-spin ~approximation beloy The term By(r)

density matrix components are different, with the dynamics=[1—cos#(r)]e(r) (Refs. 3 and 1lcan be dropped due to

of the diagonal elements being much faster compared to thahe presence ap(r). Finally, our equation fox, andy_ can

of the off-diagonal elements. In other words, we assume thage written as

on the time scale when the charge density andzthempo-

nent of the magnetization density are varied, the orientation  d [y, (r,t)

of the magnetization can be considered as fixed. The geomet- | 5; (X(r,t))

ric picture of this evolution can be thought as a slow rotation ®)

of the local coordinate axes in time. The physical idea of this

adiabatic separation in the electronic theory of magnetism idlow in the adiabatic limit one can define a set of instanta-

not new and has been discussed since the 1950s. Discussior®us eigenstates associated with the Hamiltonian evaluated

can be found in Refs. 1 and 2 and especially in Refdi3-  at timet by solving the time-independent equation

~ + ’t
:<HL_Ei UziBzi(r’t))();E:,t;)'
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(H,_—Ei 7B,

X+ (1) x+(r) is governed by quantum equations. Our approach thus makes

X(f)) :S(X(r))' (9 use of the standard LSDA, but in addition introduces the
angles of the magnetization density aslectivevariables.

Equation(9) is the standard problem of any spin-polarized We will assume that the last term in E¢LO) can be

DF method allowing for noncollinear local moment direc- omitted within the RSA, and for the spatially averaged mag-

tions in the stationary case. The dynamicsaf and x_ netization inside an atomic sphere one may write

determines the dynamics of the diagofiallocal axe$ com-

ponents ofp in the adiabatic limit forT=0.

We next obtain the EOM for the other componentp oft de 2
can be obtained by multiplication of E() by ¥* ¢ from at n exl, (13)
the left and adding the corresponding conjugate equation.
We obtain

wherel =—uB andM = pe. Equation(11) describes the pre-
cession of theM, of theith sphere under the action of inter-
nal and externaldue to intersite interactiondields. The
quantityl can be considered as an effective time-dependent
where c.c. is the complex conjugate amds the gyromag- spin splitting, and has units of energsee also Ref.)7 As
netic ratio. A modified Hamilton form of this equation was the moment direction changes, self-consistency will gener-
presented in Ref. Rhere the term with/ is the precession ally requirel and the potentials to change as well. Equations
term in Eq.(I0) while the term withV., is responsible for (11) and(9) are the basis of our quantum classical variant of
orbital- and coordinate-dependent interactjoriBhe struc- ab initio SD. These equations are useful under the following
ture of the second term in EL0) is complicated and con- approximations.
tains spatial derivatives of wave functions. Depending on the (i) It is possible to identify well-defined regions having
choice of the wave function, different forms of these gradientmore or less uniform distribution of spin direction, with the
terms can be obtainétlAmong the quantum effects arising spin density outside equal to zero. This implies the existence
from these terms are longitudinal spin fluctuatidis., the  of well-defined local MM’s(we assume here also a case of
change of amplitude of the local MM’s due to the appearanceeveral on-site rigid MM’s with different directionsThis
of electron-hole paijs Consideration of such processes isapproximation seems justified in metals of the Fe group, in
obviated by the reduction of the exact, nonstationary(Bg. strong-itinerant-electron magnets such as Heusler alloys, and
to the SD equations, where E@) allows for changes in the in rare-earth magnets, etc. The opposite limiting case is the
moment magnitude. We would like to stress that both theveak itinerant magnets like ZrZnSgln, or some magnetic
moment directions and moment amplitudesong with the impurities in metals of the Fe group. Here the magnetization
charge densityare time dependent in our approach, and, asarises because of specific narrow peaks in the electronic den-
we will see later, can be treated as functions of temperaturesity of statesDOS) at the Fermi level, fulfilling the Stoner
This is an important difference compared to previous modelsriteria. Under such circumstances the concept of the mo-
of classical SD. We now proceed with a detailed descriptiorments rotating nearly rigidly probably breaks down and the
of the quasiclassical spin approximation, which is also aexcitations can be more from electron-hole pairs than from
more suitable starting point for the inclusion of temperaturemoment rotations or magnons.
effects. (i) The adiabatic approximation is valid, which seems
In considering local magnetic properties it is common toquite reasonable for all magnets with local MM’s, because
assume that the magnetization density in the immediate vithe ratio between intersite exchange parameters and relevant
cinity of an atom has a uniform orientation. With this ansatzelectronic energies is small in this case. The concrete condi-
we gain an important reduction of E(0). Specifically, we tions for the validity of the adiabatic approximation are dif-
assume that space is divided into spheres or polyhedra, arierent for different magnetic systems. For magnetic dielec-
that within each such regiof}; we associate a unit vecter  trics or for rare-earth materials the criterion is simplesU
with the instantaneous magnetization direction. We call thigwhere U is the on-site Hubbard parameteand it holds
the “rigid”-spin approximation(RSA).” If such a region is  without any real restrictions. Indmagnets the situation is
associated with one particular atom then the momentather more complicated, since the magnetism may be deter-
M, =ue of this region is the average or “rigid” atomic mag- mined by a rather small group dfelectronic states near the
netic moment. By the term “rigid” we mean that in the time Fermi level(see paragraph aboyend the “adiabatic” con-
evolution of the orientation there is a simultanedaoisrigid) dition J<W (W is an effective bandwidjhis not necessarily
rotation of the magnetization density at each point inside theatisfied, sinca/ may correspond to the width of a DOS
atomic spheré¢or polyhedra by the same angle, whereas the peak rather than the total bandwiddee Ref. 15 However,
amplitude of the magnetization densitthe m,(r) compo- according to experiments in Fe, Co, and Withe local
nenfl changes its value according to E@). This approxi- MM'’'s are well defined(in the paramagnetic region ajso
mation of a uniform direction of the magnetization density This circumstance leads us to believe that the adiabatic ap-
surrounding an atom is a standard assumption in experimemroximation is qualitatively valid for most magnetic systems.
tal analysis of magnetic structures and has so far been used From the formal point of view, under “adiabatic approxi-
in band structure calculations for ordefehd disorderét®>  mation” we understand something analogous to the “static
magnets. We also refer to this as the quasiclassical approxapproximation” in the functional integral approach to the
mation when the spin direction is rotated and the magnitudélubbard modef, where the initial many-electron system is

) [ R
m(r,t)zym><8+§V(‘P*mV‘P—c.c.), (10
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mimicked by the system of classical MM'’s, when the direc-This expression is the time-dependent analog of the linear-
tions and amplitudes are determined self-consistently frommesponse technique used to accelerate self-consistency in
the requirement of minimizing the free energy. standard electronic structure methods.

For a practical implementation of SD, we must resortto a As an illustration, we show how the EOM, Ed.1), may
specific means for calculating the electronic structure to obbe solved in the case of small deviations from the ordered
tain the “forces,” i.e., the first variation of the total energy ground statee’ =e+ 8e), which corresponds to linear spin-
for a differential rotation of a local moment. The formalism wave excitations. In this case
of multiple-scattering theof§ together with the “force theo-
rem” generalized for noncollinear magnetic perturbatfdns @
offers a highly effective method for the implementation of dt
the RSA and the calculation bf=SE/Se=0E/de in Eq. (11). . .

We can define the orientation of the local moment by definBY , hoosing the local coordinate systerpiiz  and

=—%([5e><|]+[e><5l]). (19)

— + :
ing at each site a local axis for the spin density matrix. In  9Pi —Pide; we find
this case the “rotational” part of the inverse one-site scat-
tering matrix P can be represented as a vecfosing the Tﬁ:_E TiTj pj*lei (20)
decomposition of th& matrix into scalar and vector parts in i
spin spack from Eq.(17) and

P(e)=po: | +p- o=po- | +pe &, (12
Ti=—2 TipfTj (21)

wherep,=Tr,P/2 andp=Tr,(P-o)/2. Hereo is a vector of

Pauli matrices. And for the path operafbmatrix the same ) ) ) )
spin-space decomposition is required: which allows the linearized EOM E@11) to then be rewrit-

ten for the collinear state as
(e)=Ty-1+T-0=Ty- 1+ Te o, (13

2
To=Tr, 72, andT=Tr (7 )/2 (in generalp and T are not w-de =— > Jj(e]se] —efse]) (22)
paralle). On the level of time-dependent multiple-scattering Hil
formalism one can say thai, and T* are “fast” variables, with the effective exchange interactions given by
whereasl? andT* are “slow” variables. Then the variation
of the single-site scattering matrix is given by 1 (e ——
SP(e)=06p-o=p(c)de- o=p(e)(SpxXe)-o, (14

where d¢ is the rotation angle of the unit vecter(see Ref. ;Zlfs 1e§>)<pressmn fod;j is the same as the one obtained in

19). For a general orientation of MM'’s the effective spin

splitting may be written in vector notation as Equation(22) is the same form as the EOM of the phe-

nomenological Heisenberg model. Consequently, the disper-
2 (e sion laws of EQ.(22) are the same as for the Heisenberg
li=— J de Im Tr{T;pi}, (15  model. For example, from the Fourier transform of E2p)
m for a ferromagnet we obtain
where g; is the Fermi energy and () has the same spin
diregtion for any energy. The paramet?morresponding to wq- 5e+=3 [3(0)—J(q)]de! . (24)
rotations at a single site or to a collective mode such as a T u q
spin waveeg=gexgiQ-R;} may be calculated, and conse-
quently both real-spacéshort-rangg and reciprocal-space
(long-rangé spin splittings may be determined.
Within this multiple-scattering implementation an expres-
sion for updating the amplitude of the magnetic moments cal
also be found. If we use the relation

Thus the Heisenberg form for the dynamics of ferromagnons
emerges in a natural way as analytical solution of ourab
initio theory. It follows directly from the linearization of the
F_OM, Eq.(11), and the adiabatic, quasiclassical limit.

While on the topic of magnons we would like to conclude
this section by mentioning that, strictly speaking, the off-
diagonal components of the density matrix are not isolated

1 (e R
Mi=peg=—— f de Im Tr(7;0) (16 and this leads to the decay of spin waves everilfef (see
& Ref. 1). It is possible to develop expressions for slow and
and the sum rule for the collinear stat&2° fast relaxation terms within our formalism; however, in the

usual nonrelativistic spin DF formalishmany such effects
B | ! are prohibited, and we leave a treatment of relaxation effects
Oii = _21.: Tijop; T, (17 o a second papéP.For those wishing to optimize magnetic
ground-state structure@erhaps starting from a disordered
the expression for the change of amplitude of the MM’s cararray of moments we note that the convergence to a final
be written state may be aided in the nonrelativistic DF formalism by
postulating a “friction” force in the EOM’s and using these
equations to evolve the system to a minimum total energy

’ (18 configuration(see Secs. VI and VI

.2 (et :
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Il. RELATIVISTIC EFFECTS equations with the instantaneous moment directions. The
. . . . implementation of SO coupling using this approach for non-
For the modeling of some spin systems the inclusion O]Jcollinear magnets in the LSDA was presented in Ref. 9. In

magnetic anisotropy effech. IS necessary. Here we wil CONSther casesgsee Sec. Il beloyit may be necessary to let the
sider the influence of relativistic effects on precessional mo-

> : o on-site magnetic moment directiosg evolve with a sepa-
tion only and describe SD within the framework of the sec- :
ond order of perturbation theorgorder 1£%). The four- rate EOM and a separate forédg for each orbital state

component Dirac equation for the non-spin-polarized casL:(l’m)' In the LSDA such separate intra-atomic motion
P q ; pin-p ®annot be described because the potential does not depend on
can be transformed in the usual fastibto

the orbital. These issues will certainly have to be faced when
1 i 1 dealing with strongly correlated materidisxides ofd met-
H=—A+V—- 5 A%2— = 0 (VVXV)+ == AV, als,f systems, and so gnwhere the magnetism is frequently
c c 2c . : . :
(25) carried by challzed electrons_ not well described in the
LSDA. For this reason we consider Hartree-Fock approaches
where the three last terms in E@®5) represent the mass- in the next section.
velocity corrections, SO coupling, and Darwin term. The av-
eraged value of the SO operator can be treated as an addi-
tional field and we can substitute 11l. ORBITAL SPIN DYNAMICS IN THE ADIABATIC
TIME-DEPENDENT HARTREE-FOCK APPROXIMATION

B—B—(sL 26
(sb) (26) While the LSDA methods have been very successful in

where describing the magnetic properties for a wide variety of ma-
terials, there are some notable failures. For Mott insulators,

(';_L)= i f dr ld—V\P*(—irxV)\lf 27) for most materials containing partially occupiédorbitals,
c? rdr * * and for other strongly correlated systems it is often advanta-

is the average value of the product of the orbital atomicacous {o start from a Hartree-Fock type of description. Sev-

. : : eral hybrid or intermediate techniques have been proposed to
momentL ands, the SO interaction coupling parameter. . . . :
. . simultaneously treat systems which contain both localized
Then instead of Eq11) we may write

and itinerant electron orbitals. Techniques like the self-
interaction correctioff (SIC) and the LDA+U method$®

gt e= k4 [(1+1g0) X €] (28 are related to the spin-unrestricted Hartree-Fock approxima-
M tion (HFA),?® which we consider in this section.
wherelso=—M(sL) at each particular site. First of all, we write the equation for the nonstationary

Equation(28) corresponds to keeping terms to ordeg?l/ HFA:
in the relativistic EOM for the spin of a particle with no
anomalous magnetic momeitOne can ask how the expres-

sions for the exchange parameters presented above will M:(—A+V9Xt+2f dr’ n(r ?)z//w(r)
transform for the magnetic relativistic case. For collinear at r=r']

structures the expressions for the exchange parameters have

been described in Refs. 22 and 23, and for the generalization - 2 sz(r)z,//#(r) (30
to the relativistic noncollinear case, techniques are described i

in Ref. 20.

There are other terms to ordecitvhich arise in a many- whereV®!is an external potential, and v are orbital quan-
electron system such as “own spin—other orbit” and mag-tum numbersg=+ are spin indicesn(r)=3,,|1,,(r)|? and
netic dipole interactiongsee the discussion of Breit's equa-
tion in Ref. 2). The additional SO effects may be

incorporated intd s while the dipole interactions require the v (T (1)
SO K/.w:2 dr’' ————7— ¢, (1). (31

addition ofl 4, to Eq. (28), where Ir—r’|
2 e 3ri(e-rj . . . .
l4a=— —2 > il - ”(—é”) . (290  Let us introduce the explicit spin notation
C j<i I’ij I‘ij
In this equatiorr;; is a vector connecting the MM at atom V,,=— %(K;ﬁ K:,) (32)

with the one at atonj. The dipolar term is long range and
known to be important on the scale of magnetic domains.

We caution that the RSA for the spin magnetization isand
inconsistent with SO coupling since the orbital moment may
have a different orientation from the spin moment and induce
off-diagonal components in the spin magnetization density.

Within the approach presented above we have not intro-
duced a separate EOM for the orbital moment. In mady 3 then, by going to an arbitrary coordinate system with an
systems it may be sufficient to follow the spin magnetizationarbitrary direction of the quantized spin axis, E§0) will
with the orbital moment arising from solving the relativistic take the form

B,=3(K,,— KL (33
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peratures the extendesl and p electrons will “sample”

| (1) many locald moments pointing in various directions, and
that thes andp net moments could change with a different

( )

| IPyo(r)

ext
pr ( A+V +2f dr’

temperature dependence than the latahoments.
E V(D) (1) = 2 [o-BL.(N]gu(r). It is possible to consider intra-atomic noncollinear mag-
netic ordering even among the orbitals with the sdntoeit
(34 different m,. This can happen, for example, in systems

B,., is a vector of amplitudéB,,,| with the direction deter- where there is a large difference in bonding betwe@and

mined by spin orientations. To proceed to a derivation ofthé2 orbitals, a topic discussed some time ago by

orbital-dependent EOM we choose an alternative derivaﬂo@OOdenougﬁ) (see Ref. 16 for a discussion of how the
from that gf Sec. I. By defining variablgs=—y, /i, 2712 LDA +U method with arm,-dependent Hubbard might be

we obtain the set of equations implemented to.st_udy such effect&rom what. we have dis-
q cussed above it is clear that the assumptions for (Si@

¢ criteria for the RSA and adiabatic approximatiamay be
i —= T V-(y°.VE, )+2 Vi Wus(Vy—V,,) orbital dependent, in which case the formulation of a consis-
o Vo tent set of EOM'’s for SD will be more complicated than Eqs.
W (8) and(11).
+32 (dfﬂ ) v~ B &€ B (€, E)}
M v+

IV. FINITE TEMPERATURE DESCRIPTION

(39 .
A. Stochastic method

whereB*=B*+iBY.

The condition of neglecting the first term in the right-hand
side of Eq.(35) is the same as the one which has been dis-
cussed in Sec. (RSA). However, the matrix structure of the
other terms does not allow reduction to a coupled set 0cou led to a thermobath for the evaluation of equilibrium
equations for the, due to the presence of the, /i, term. P | ies. W th i q dei
Because of this, the separation of the slow spin dynamicg1erma properties. We use the same assumptions as made in

from the electronic variables is possible only in simplified >EC. | for the deter.mlnlsnc' EOM, but now there are addi-
versions of the HFA, where only diagon@t=2) terms in tional terms assoqated Wlth the th_ermob_ath. Several ap-
Eq. (85) are present ’namely the S(Ref. 24 and LDA+U proaches are available for introducing this bath, and the

; choice of bath will depend on which method drives the MM
(Ref. 25 methods. Then, instead of EQ.1) for the vector system to thermal equilibrium most efficiently. We first de-
+& g 1P

scribe a stochastic method based on Langevin-type dynamics
- 5, | 5, 5 similar to the approach used in MD. We spend more time
1+]¢ 1+ 1+]¢] and give more details for the second method, involving the
we immediately obtain deterministic approach, since at the present time we feel this
method has advantages for applications. First, we describe
) 2 the approach based on using the stochastic differential equa-
e,=——[eXl,] (36)  tions of Langevin typé? In this approach the interaction of
Ko the dynamical system with the thermobath is described by
with | ,=8E/de,, and whereu, is the value of the magnetic the addition to the EOM of a frictional force, and second,
moment for the given orbital state. In calculatihgit is  some random forces, describing the fluctuations. If we as-
convenient to use the local force theorem, which is valid nosume that the latter are the result of a large number of very
only in DFT but in the HFA as wel(see the Appendix ~ weak random events, then due to the central limit theorem
Thel, contains contributions not only from the spin interac- the fluctuations must be describable as a random Gaussian
tions between different sites, but also from the interaction oprocess. If in addition we assume that the durations of the
the different orbital stategor instanced andf ) at one site. random events and the intervals between them are much less
We also note that the approach using the varigphas been than the time scale of the movements of our chosen MM,
used as one of the possible ways to calculate nonadiabatiben the random processes are uncorrelated on this longer
corrections for the case of a single spin in an external magtime scale and constitute white noise. For spin systems the
netic field!? Langevin dynamics procedure has been described in Ref. 32.
The independent treatment of the SD for different orbitalWe write the corresponding EOM in a more general form,
states at one site we believe is important. This is particularly
true for materials containing rare-earth elements, where the d
4f moments can thermally disorder with increasing tempera- atsT [&xli]+Ri+g, (37)
ture faster than theddmomentge.g., in rare-earth—E&om-
pounds. We have discussed this phenomenon and its imporwhereR; is a relaxation term ang is a random force. In the
tance for magneto-optic application in Ref. 28. The extent tacase of magnetic noise the appearance of a random force
which such independent orbital polarizations are significantimplies an additional term in the Hamiltonian of the form
in the thermal properties of pured3magnetic materials is e-1;, wherel; is a random, rapidly fluctuating spin splitting
unknown; however, one can well imagine that at high tem-arising from the bath. The conditions of conservation of the

While the description of finite temperature effects in DF
theory has been develop&there we have in mind a some-
what different program whereby the MM’s and their interac-
pons as determined by electronic structure methods, can be

e=
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amplitude of the MM and the fluctuation-dissipation theoremwherea; is some function such that this term will drive the
set up additional limitations on the choice of relaxation andevolution of the amplitude of the magnetization density to its
random forces. In general, the relaxation term also contains equilibrium value. One can think about the system of
random part. If we would like to take into account the con-coupled Eqgs(41) and(39) as an analog of the Bloch equa-
servation of the amplitude explicitly for each term, we obtaintions used in magnetic resonancayhere the evolution of
the stochastic EOM in the forth My, M, andM, components of the total magnetization is
described with essentially different time scaldg and T,
d relaxation rates

Ga=- ~Mex(ixe)l, (39

2
e X (E li+g;
B. Deterministic method
where is the friction coefficient, and is a random force of

. : . ) . It is possible to describe the thermal properties of mag-
Gaussian white noise type having the precondition P brop g

netic systems in terms of a generalized MD which evolves at
_ S , constant temperature, rather than microcanonically at con-
(9)=0, (Gia(t)gjp(t"))=2d-5;8apd(t=t"), (39  gant energy. It was proven by Notat one can relate the

wherea and 8 are Cartesian indices, ands the intensity of canonical ensemble of a desired Hamiltonian to the microca-

h ise. | howhthat Eq. isfies f nqnical ense.rr_]ble of a new Hamiltonialj in a_phase space
:hg ?glljfaﬂgﬁatg ?ﬁes Gc?bb; gitstr?blg?:i%)nsda;is)\l'?'s V\%isg %5 with one additional degree of freedcthThis additional de-

gree of freedom can be interpreted as a dynamical realization
of a heat bath. Using a specific construction of the new
Hamiltonian with heat bath, one can evolve the microcanoni-
cal equations in this larger phase space. If the equations
evolve ergodically, then averages of observables along the
trajectory will converge to the microcanonical average. As a
consequence, the canonical ensemble is then obtained in the
subspace consisting of the original degrees of freedom. One
Pef{&})=C exf — E({Q})/T]H sing, (40)  of the main limitations is that No&construction requires a

J very specific coupling of the desired Hamiltonian to the heat
bath, which is not always ergodic. Shortly after, Hoover de-
veloped a more transparent and generalizable interpretation,
called the NosaHoover approacf® The NoseHoover equa-
fions can be obtained from Ndsemicrocanonical dynamics

the analog of the Einstein formula for rotational Brownian
motion.

The stochastic E(38) is equivalent to the Fokker-Planck
equation for the distribution functioR({g},t) as a function
of angles and time, which under conditi¢89) leads to the
equilibrium Gibbs distribution:

with the integrating elemertd de. It is generally accepted
that with an appropriate choice of the friction coefficient
such an approach describes not only the equilibrium stat

|tths§ Igvgmﬁzlﬁ%fqtl;aesfgﬁé“?Jrilllijt?:iuiaf?; r%lnetlc stage of through a coordinate transformation. This method has proved
equl Y . . extremely powerful and simple to implement, but has several

To reach proper equilibrium, the classical equations fo.rnotable limitations. An important aspect of the Nd$eover
electronic quantum equatidthe analog of the deterministic %quations Is the need for them to be strongly chaotic in the
q q 9 full phase space, which is not always the case. For example,

Eq. (8)]. Here we present the following quantum StOCh‘?‘St'Cthgey fail to describe the proper diffusion of a Brownian par-
I

Sv?tl;a:hoenatrzgniiijrébgfifg It;‘&g?'?ﬁgg?lg&%gﬁfﬂi ﬁ\sic:ﬁ'at‘ﬁ e, as_weII as t_he therma_l propert.ies of harmonig and near-
local coordinate systems z _harmonlc potentials. This is especially prqblematlc for pa_th
integral approaches to quantum mechanics, or to classical
systems at low temperature. To resolve these shortcomings, a
H — > t}z.Bz.)X(f,t)—i[ﬁHC(t)@])Ar,t), canonical dynamics was proposed which is, from the outset,
i A non-Hamiltoniart® The generality of this approach has al-
(41)  lowed its extension to general dynamical systems, Brownian
motion, and the Schrbinger equation, both in equilibrium
and far from equilibrium?’ Below we outline the application
to the classical-quantum hybrid scheme suggested above.
The method, termedlobal demong’8is a prescription
add dynamical fluctuations from any desired ensemble to a

R and & operators must satisfy the condition of normm con classical or quantum system, resulting in a time-reversal-
g op fy invariant dynamics. The approach allows for simulation of

servatl)Uon O(; thetw%ve funclflon(r ’lt)' qu{[‘."lt'on(fltﬁ ;or;r;é(l) . many physical types of boundary conditions, including con-

can be understood as a formal equation with 1ast relaxing,, temperature, constant pressure, and so forth. For the
terms, !ead.mg to the cqrrespondmg proper EOM for thesimulation of a heat bath, one uses a small number of new
adiabatic (diagonal density matrix at finite temperatures dynamical degrees of freedom, which can be coupled to the

wn\f;vconservatu:rr]} Of;h.e totzfiltrr]nagr;etlct_moment of_;}ysttem. physical degrees of freedom in ways which simulate any-
e propose the choice of the relaxation oper&idgthou thing from equilibrium or nonequilibrium steady states to

the noise termin a form very close to its classical analog, irreversible situations such as indentation and fractute.
the simulation of systems near phase transitions, the problem
ﬁi:kE (aip, —,B,), (42) of critical sloyving down, which hgmpers stochastic-based
i ' b approaches, is greatly reduced with global dem®nan-

- d
| a/\/(r,t)z

whereR is a friction operator ang is an operator of quan-
tum noise. For the choice of the random functioft), we
may require the same condition as in Eg89), but for dif-
ferent temperature ranges it should be done with some cay;
tion because the quantum noise is not whtt&he choice of
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other feature is that one does not need to know the equilib- K )
rium measure or nonequilibrium properties in order to simu- Wi=hT < [ﬁ R—3TR; }
late it (compare to Metropolis sampling which requires the ! :

use of a measujeThis is important in the study of staggered p2
fermions, where the measure is not known, only its szﬂ > ——nT|.
gradients’’ T m

Classic_al MD is based on the Hamiltoni&h(x), with x These dynamics will reproduce the ensemble
representing all Qegrees of freedom; for example(R,P) (R,PW,,W,)=ex —H (R,P)/T Jexp(—w 2/2T —w4/4T).
or X:(S).' The mmrocqnomcal dynamics of this system is 'I:he s,ame formulation, works for the noncanonical spin
then defined by a Poisson tensgy(x), and the brackets coordinates x=S. In this case the Poisson tensor is

{Xi,Xj}=J;j(x). The only formal difference between the
conjugate varlableéR P) and the spin degrees of freed@n Ji(S)=eijSc, so that we have for a generel(S)

is that the former are canonical, while the latter are nonca- . 9

nonical. When one formulates either the microcanonical or Si=Jij| 75~ 77 IWA(S) |,

the canonical dynamics fa# (x) through the Poisson tensor !

Jij(x), this distinction is unimportant. Hence we can treat all P 9H aA (47)

degrees of freedom on equal footing. The constant energy W= — J,J[Aj —=

(microcanonicagldynamics for the magnetic system have the nT ‘9Si ‘93

general form These dynamics will reproduce the ensemigéS,w)

= 5(S— Sp)exd —H(S)/Tlexp(—w?/2T), which includes the

=300 =X &H(X) (43) constraint over the magnitude of the sf@n The magnitude

of Sis set by the initial conditions.

It is possible to recast this deterministic SD in a form
When the dynamics is ergodic, the classical trajectdty  similar to the stochastic dynamics presented previously. If
reproduces the constant-energy ensenapte-H), whereE e use one global demdnsually at least two are needed for

is determined from the initial conditions. Using global de- simple systems take A=Sx(SE/8S), g(w)=w, S=(u/2)e,
mons, the constant-temperatyoanonical dynamics, which  and define the “friction” \=«g(w)/nT, then
are non-Hamiltonian, are of the foff

Xj

2
—e=——[exIl]-\ex(IXe], (48
=300 20 gy, oo
where
0,0 ”A()—ﬁ (44) d
i %, G loT 2(| TV [ex(I1xe)], (49)

Here the heat bath is described by the global dempiso  which conserves the “length” of the MM. As we mentioned
denoted since it is inherently nonlocal, coupling globally toabove, it is no longer necessary to adjust the kinetic energy
all degrees of freedom is the number of degrees of free- for temperature control. Althougk has the appearance of a
dom, the coupling strengtk is typically ~n, and A;i(x) friction, it is not dissipative, but adds and removes energy
and g(w) are (arbitrary) functions which couple the heat from the spin in order to simulate the canonical distribution.
bath () to the physical coordinates In practice, a mini- We note that Eq(48) does not reduce to the classi¢alac-
mum of two global demons is needed. When the above equaoscopig equation of Landau and Lifshitz, but is rather a
tions are evolved, averages along a single trajectory will remicroscopic, quasiclassical EOM and is the rotational analog
produce the canonical ensemble given fyexd —H(x)/  of the Newtonian EOM in MD.

Tlexd —G(w)/T], with g(w)=dG/dw. The distinction For simultaneous MD and SQliscussed in the next sec-
between this method and the original approach by Nese tion), the equations are unchanged, except that the Hamil-
that this dynamics is canonical in the full space. tonian now depends explicitly on all degrees of freedom:
For a Hamiltonian written in terms of canonical variables,H(R,P,S). Because one can couple select spins to a heat bath
x=(R,P), and allow thermalization to occur through the interactions,
one can simulate many different situations, including thermal
P2 gradients. Such approaches have been used to extract trans-
H(R,P)=2 o>m T VAR, (45  port coefficients>* It follows that one can also thermalize
=1 ! different subsystems at different temperatures. It is important
one particular realization of the canonical dynamicg is to thermalize the electrons separately at a low temperature to

keep their wave functions in the ground state so that the DF
approach can be applié8As a result of the use of different

Ri=P;/m;,— e wlRi?’, (46)  temperatures, the coupling between slow and fast degrees of
nT freedom will generate heat flow from hot to cold reservoirs
and a net entropy production. If the coupling is strong, the
p—_ ﬂ_ K3 WP system will be driven to a nonequilibrium steady state, which
: JR; nT 21" is no longer characterized by the equilibrium canonical dis-
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tribution. If the coupling is weak, the averages of observ- (R ,g{’|0(t)|Ri’ &)
ables will be close to the canonical averages at appropriate
temperatures. _ ) ) [t
We are presently testing these various schemes for includ- - fRi(O)Rj"g(o)ferR(t) Dg(t)exp( ' deT L}
ing temperature with SD and will report on optimized strat- Ri(O=R.&(0=¢§
egies in a future paper. (54)

where the Lagrangian can be written as

s gi*.gi_gi-gi*
EEi 1+]§)°

V. SIMULTANEOUS MOLECULAR AND SPIN DYNAMICS

In this section we use the path integral formaftérto L=>
separate out the sloyadiabati¢ degrees of freedom for both i
MD and SD. The simultaneous treatment of both those dy-

namics is necessary for a consistent analysis of spin-lattice +U(R,§ &), (55

interactions, particularly at finite temperatures. We will be- ey ek
gin with a general guantum-mechanical formulation of theWhere U(R,&,&7)=Eo(R,§;,&7) is the energy of the

problem and then discuss the transition to the classical equg_round statey, of the electronic subsystem which depends

tions. A quite different derivation of these equations has™" slow variables as parameters. In E5p).

m;R2 .
'2 “+ > AR+
1

been presented in Ref. 41 where a more physically transpar- _:
ent time-dependent WKB approach was used. A=i{xol Vrlxo), (56
We choose the Hamiltonian in the form so thats=1/2, and we assume for simplicity that on each
atom there is one electron. If on each atom there is an integer
H=Hr+H{R,& (50) numbern of magnetic electrons with the same direction of

spin, then after summation over all electrons we can substi-
whereHp, is the Hamiltonian of the nuclear subsystgsee tute s=n/2 for s=1/2 in Eq.(55).
Eqg. (47)], andH,, the electronic Hamiltonian, depends on  The first term in Eq(55) is the normal kinetic energy of
the nuclear coordinates and the unit vectors of magnetizatiotihe nuclei, whereas the second one arises from the geometric
a=a(&) (see Sec. I)l. We assume that the RSA is valid and phasé” for the adiabatic variableR; ,*> and the third term
that both variables andR are slow variable$i.e., the adia- corresponds to the geometric phase for the spin variables and
batic approximation is valid for these variables is the analog of the kinetic energy for the spin variables.

Let us introduce the basis statf(t)) for the nuclear Equation(55) contains all quantum effects for tHR,¢) sub-

motion and spin coherent statggt)) (see Ref. 48 Atthe  system.
initial time t=0 the nuclear and spin coordinates &eand For the case of magnetic dielectrics the above quablity
fi, , respectively, and the final coordinates ﬂé and fl can be presented similarly to the Heisenberg model represen-

Then the evolution operator of slow variables will take thetatlon'
form

) ) U(Ri.&,&)=Uo(R)—22 J;({Rhe-¢g, (57)

(RLENUOIR], &) =Tr(R{, & [exp —iH)|R/.&]), ,
(51) where J;; are exchange parameters depending only on
nuclear coordinates. Then the path intedBl) corresponds

where Tr means the trace over the fast electronic coordinateto the Schrdinger equation
The electronic propagator within the adiabatic approximation .
can be expressed through the spectrum and eigenfunctions of Heix=¢x, (58
stationary levels depending on tRe and & as parameters: with

t .
jri(o)_ri,Dr(t)eXp( ! JodT L(r,r,R,g)} Heti= 2 % [Pi—Ai(R)12+ Uo({R})

rm=r/ i
2 .
= gt () exd —IEf({RELD], (52 -2 2 3(RDES (59

whereL is the electronic Lagrangian corresponding to theWhereP‘: ~1V; ands is the spin operator Witﬁzzs.'(s.Jr 1),
HamiltonianH. ({R.£}), and g (r) is a solution of the equa- s:p/Z. Thus we have an.exact quantum description of the
tion AN n lattice (phonon and the spinfmagnon degrees of freedom.
For metals, however, a corresponding quantum descrip-
tion of the spin subsystem in the adiabatic approximation is
H ({R, &) ¢n(r {R, &) =E,({R. N ¥n(r {R.E}). (53)  not possible. First of alln is not an integer, and second, the
spin part of the Hamiltonian does not have a simple form as
Choosing the ground state=0 and performing calcula- in Eq. (59); and also there is no simple way to treat the unit
tions according to Ref. 42 in the adiabatic approximation wevectorse as operators. We can, nevertheless, utilize a qua-
have siclassical set of equations for the MD and SD. These equa-
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tions can be obtained by using the saddle point approximaerbit perL channel has the schematic form
tion for the path integral in Eq54). We obtain

. ) H=(\)g+(\)1S+c.c4+S(\)»,S+Vy7zS. (68)
mR=-V3iU+RX g, (60
Here the quantitief\) are matrices diagonal in the site-
) oU momentum representation and constructed from the potential
e=—2/ex—|. (61 parameteré® The structure constan&connecting neighbor-
ing sites are diagonal in the spin index S is the energy
where derivative ofS. The overlap matrix has the same structure,
except thaVyr,—1.
B=VrXA. (62) The LMTO basis is constructed starting from atom-

It is worthwhile to note that the teriRX B is determined by ~ centered Hankel functionisually of energy ) which are
the geometric phase.lt can be important near degeneracy then replaced“augmented”) by numerical solutions of the
points in electronic spectf4. Equations(60)—(62) are the ~wave equation inside the augmentation spheres.Vijpe'S
basis for the simultaneous description of spin and nucleaterm is the integral of the original Hankel functions through
(moleculaj dynamics. all space in a constant potentM,;, . The remaining terms
The interactions at finite temperatures can be describedrise from replacing integrals of products of two Hankel
through using either the Langevin equation, or the globafunctions with the numerical functions in the various
demon thermobath. To be precise, we write in explicit formspheres. Thé\), term arises from two orbitals centered on
the Langevin type of dynamidshe global demon equations the same site, and one is augmenting the orbitals in the
can be easily written following the discussion in Sec) IV sphere where they are centered. ThgS terms arise when
) ] ) only one orbital is centered at the augmentation site; the
mR=—VgU+RX B— yRXfT, (63)  three-centelS(\),S terms arise when neither is centered at
the augmentation site.
To formulate the noncollinear problem, we assume that
' 64 the axis of spin quantization is fixed within each augmenta-
o o tion sphere, and that the spin is negligible outside each
where y and \ are the friction coefficients for the nuclear sphere. Thus we use a single potential in the interstitial re-
motions and spin rotations, agdandf are the corresponding  gion for both spin components. This approximation is ad-
random forces with the conditions equate fod andf shell magnetism, since the local moments
, , are well localized within the augmentation spheres. It is
(f)=0, (fia(OFjp(t"))=27T) §ijSupdlt—t"), (65) clearly not adequate when the mggnetization ig not well lo-
calized, as is the case in some molecules. Now the axis of

29 N2V
e=—-2/eX e gl |—A|eXx Ee

(9)=0, (Gia(D)gjp(t"))=2\Ts: 5;j5op0(t—t"), (66  SPin quantization may rotate at each site. Bare rotated
by Ug,, diagonal in the site-momentum representation and
£(D0 (1)) =0. 6 unitary in o, and the Hamiltonian may be written schemati-
(fialDGp(1) 61 e

Equations (63)-(67) can be used in the case when the

“spin” temperatureTy is not equal to the lattice temperature + + +

T,. The concept of spin and lattice temperature has been H:( _> +( _) U'Su+c.c.

extensively discussed in the magnetic resonance and physical 0 !

kinetics literature(see, for instance, Ref. 45 N
Equations(63)—(67) (or their analog using global de- +U'su

mong provide a basis for the description of problems asso-

ciated with the interaction of the spin and lattice degrees offhe potential parameter arrays are shown explicitly with

freedom(e.g., the Invar probleff). The equations can be their spin-up, spin-down components. For a SS of wave vec-

used not only for magnetically ordered systems, but also fofor q,Ug, is 1, butS is*’

paramagnetic systems with local MM’s above the ordering

temperature. Another example one can consider is the prob-

lem of the description of ESR spectra in liquids or polymer S(k,q,6)=S(k—-a/2)

molecules in external magnetic fields. Here the characteristic

frequencies for the motion of atontghe bending motion of

polymer molecules, diffusion in liquids, etare comparable

with the spin frequencies, so the simultaneous description of ) ) ) .
spin and lattice degrees of freedom is necessary. Here 6 is a rotation of the spins from theaxis before rota-

tion of each unit cell byg relative to its neighbors. A super-
position of general noncollinear rotations and the SS has the
same form as Eq69), but with S(k) replaced withS(k,q, 6).

We employ a tight-binding version of the linear muffin-tin The order of rotation is, then, first a rotation of all spins from
orbital method LMTO) method, using the atomic sphere ap- the z axis by 6, then a rotation of each unit cell fwyrelative
proximation (ASA) and the “combined correction” terdf  to its neighbor, and finally a rotation of each site within the
In the collinear case, the ASA Hamiltonian with a single cell by Uy, .

J’_

UTSU+Vyu,UTSU. (69
2

cog(6/2) —(sinb)/2
—(sing)/2  sirf(6/2)

SirP(6/2)  (sing)/2
(sind)/2  cog(6/2)

+S(k+0a/2) . (70

VI. METHOD OF CALCULATION
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Some quite general spin configurations are possible. Fawith some spin splittings; (with local z components defined
example, consider a two-atom cell of length 2, with the at-by DOS moment®), generating a potential consistent with
oms stacked along the axis. A SS alongz with q=1/2, the input energy moments and the corresponding potential
0=0, and with site rotations); andU, defined by the Euler parameters, making the output moments from eigenstates of
angles(0,7/2,0) and (7#/2,71/2,0), respectively, leads to a pe- H, Eq. (71), mixing the input and output energy moments,
riodic arrangement of spins rotated just as in a singptl/2  and repeating the procedure until self-consistency is reached.
SS: (1—|+). When insteadd==/2 andU,; and U, are  When the total energy is minimized with respect to the local
defined by Euler anglef,0,0 and (7/2,0,0, the arrange- magnetic moment angles, the ground state is found when the
ment of spins becomdg« | ). angular forces vanish simultaneously with self-consistency

In the nonmagnetic case, the energy moments of the outn the charge. The postulatéith nonrelativistic theorymag-
put density accumulated inside sph&drom eigenvectoz  netic “friction” force as we relax the system to a minimum

have the form energy structure was chosen to be proportional to the differ-
. _— 2t 2 , encel —1*, where the quasiequilibrium spin splitting is
QkL=(prLPrLT PRLPRU (8 —ERrD', (71)  proportional toe [e is the direction of the atomic MM'’s

obtained from Eq(9)]. In this case the total magnetic mo-
ment of the system is not conserved. When SD simulations
are evolved, and also in the determination of minimum en-

where

pri= > (1+0VASg rii VA ZRr 1, ergy structures, it is necessary to move the angles slowly
R'L enough that deviations from self-consistency are small. In
(72 dynamical simulations, we found that time steps of order
1-5 a.u. were small enough to keep the electron density near
PéL: E \/Fl\/KSRL,R’L’ \/KZR’L’ ) g P y

self-consistency.

It is known that the local density approximation underes-
andEgy, Og., VAr,, andpj, are the potential parameters timates the lattice constants of the transition metals, espe-
defined in the usual way. cially for the 3d series. The gradient corrections dramatically

The collinear magnetic case is identical to the nonmagreduce the errofthough they tend to overestimate the MM’s
netic case, except that there are two spin channels uncouple§ about 10% Since gradient-corrected calculations are
from one another. The noncollinear case is also identicalprobably better predictors of the ground state, we show re-
except that now the two spin channels are coupled®i  sults of simulations using a local DF, and corresponding
rotated intoU'SU with separate spin quantization axes for simulations for the gradient-corrected functional of Perdew
each site. The momen@,, _, , are no longer diagonal ia:  and Wangd?®
suppressing th&L index, theQ take the form For the sake of computational efficiency, these simula-

tions were performed with aspd basis. As we shall show,
i 1t 1 ot 2 : the magnetic ground state is extremely sensitive to the lattice
Q]rm':s%c (PP PGPy ) (2= EBrD) (73 constant; the neglect df orbitals leads to a small error, but
one that is nevertheless significant for fcc Fe. Additional

The Q,_, correspond to the charge density in the usualerrors arising from the ASA approximation to the LDA func-
way; theQ,..,» are used in the generation of the magnetictional are also considered.
forces[for the torque expression through the noncollingar
general moments of the DOS, see Refs. 20 and.48is
well known that the above formulas only approximate the

interstitial contribution to the Hamiltonian. Because the AS a concrete examp|e’ let us consider face-centered cu-
method only has a provision for representing the charge demic (fcc) iron (y-Fe) at T=0 K. This and related systems
sity inside augmentation spheres, there is no way to represe(Nj-Fe, Fe-Mn have been studied for many ye¥ras part of

the interstitial density. Accordingly, the moments are renorthe “Invar”’ problem. It also serves as a prototype model for
malized by requiring that the total charge inside all sphereg, frustrated magnetic system. Earlier “static” calculatitins
accumulated from each eigenvector is unity. For closefor fcc Fe have shown a dependence of the magnetic order-
packed systems, the renormalization is srftgfically 0.98.  ing on volume. Near the equilibrium volume fcc Fe was
Similarly, the forces calculated from the moments in thisfound to be nonmagnetic, but with increasing volume the
way use only the ASA part of the Hamiltonian. Extensive antiferromagneti¢AFM) state first becomes stable, and then
testing on Fe and other close-packdebonded systems g spin-spiral(SS state, and finally ferromagneti&M) or-
shows that the force formula is accurate, whether or not thgering appear’ With our SD formalism we allow the spin
combined correction is used. system much more freedom to choose an equilibrium struc-

In the ASA where only the spherical parts of the chargetyre and we considered a unit cell consisting of 32 atoms.

density and potential are taken, the first three DOS moments The evolution of the spins for two different lattice

Q%L QL andQ%__ ..., are sufficient to com- constantsa=3.59 and 3.73 A, has been calculated within

pletely specify the potential inside sphd®eThis is because the local density approximation using the functional of von
the method has only two kinds of orbitals pet. channel, Barth and Hedid.For thea=3.59 A simulation, the energy
and thus only three possible kinds of wave-function prod-dropped smoothly and the spins ordered into the four atoms
ucts. Consequently, there is only one potential consisterpier cell “triple-k” (3k) structure(all spins oriented along
with these moments. Thus the method proceeds by starting=1 =1 =1] directiong, with the MM about 1.G.

R'L’

VII. NUMERICAL RESULTS
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v FIG. 2. Total energies as a function affor several configura-

v CD tions. The global minimum energy structure is thig | configura-
X tion. For smalla, the eight-atom configuration is lowest in energy;
Y for largea, the FM configuration is lowest, as discussed in the text.

Note the two distinct energy-volume curves for the FM configura-

FIG. 1. Magnetic moment arrangement of eight-atom cell foundtion, corresponding to a low-spin and a high-spin state.
by the simulationH marks the high-spin momentk; marks the
low-spin moments. All moments are oriented in the plane. For  1/q evolves slowly from~6a at a=3.44 A to ~5a at
small a,H lie along thex axis. For increasing>3.50 A, theH a=3.55 A in both the R and X configurations. Ata=3.55
spins rotate smoothly in the-z plane, increasing to an orientation A the % +SS overtakes thek3-SS. Fora>3.61 A, ML
where all NN angles are approximately 0, 60°, or 120°. [001] is the most stable structure; it is in turn overtaken by

FM ordering fora>3.73 A. Remarkably, the simpk®,09)

Fora=3.73 A, the evolution of the spins was more complex,SS is never the most stable structure, though=a8.59 A it
relaxing into a nearly stable structure of 16 atoms/cell, ands only 1 meV higher in energy than th& 2SS and{1]]
then finding a slightly more stable configuration with spinsstructures.
ordered in &' 1| ] pattern alond001] and a moment of about When the local functional of Vosko was used in place of
2.3ug (see Fig. 1 in Ref. P the von Barth—Hedin functional, essentially similar results

Subsequent static calculations for thie, Bk, FM, and  were obtained. Corresponding calculations with the gradient
111l magnetic configurations, and similar configurationscorrection of Perdew and Wang shared some features in
with a SS superimposed, showed that the energetically mosbmmon with local density results, namely, a very strong
favorable configuration exhibited a complex volume dependependence of magnetic moment on lattice constant and the
dence. Considering first only cases with no(@Sno SS was favoring of complex noncollinear orderings at small lattice
accessible to the simulatipnve find the system to be mag- constants, thé?|| ordering at intermediate lattice constants,
netically ordered at the theoretical equilibrium volurte and FM ordering at large lattice constants. Apart from these
=3.44 A), in a X structure with small MM(0.8ug). At that  general tendencies, gradient corrections dramatically change
volume the & is nearly degenerate with nhonmagnetic Fe,the results. Simulations with gradient corrections were per-
being only 0.9 meV/atom more stable. Thie B also very formed ata=3.57, 3.61, and 3.65 A. The latter two evolved
close in energy, lying only 1.2 meV above th&.3Vith  to the17]| configuration, although the evolution td| | for
increasing lattice constant the lowest-energy structure is=3.65 A was rather tortuous, owing to the existence of
overtaken by the mixed FM/AFM1|| [001] structure for  other nearly degenerate orderings. Ew3.57 A simulation
a>3.59 A, and is in turn overtaken by FM ordering for evolved to the noncollinear eight-atom configuration shown
a>3.73 A. Including SO coupling increased the binding en-in Fig. 1. This AFM configuration has two inequivalent at-
ergy by approximately 5 meV/atom, but did not alter theoms(a low-spin state marked and a high-spin state marked
relative energies of the various magnetic configurations. H), and may be viewed as a four-atom structure with a com-

We considered various magnetic configurations with amensurate(0,1/2,0 SS superimposed. Fa<3.48 A, the
(0,009) SS superimpose@vithout SO coupling and the R, angle ¢ between NN in Fig. 1 ist/2, so that all spins are
2k, and FM structures were further stabilized by an incom-aligned at(0, 90°, or 180§. For increasinga>3.48 A, ¢
mensurate SS with 4~ (5-6)a. The equilibrium configu- smoothly decreases to a value where every angle is approxi-
ration is a &+SS ata=3.44 A and 1¢~6a, the SS stabiliz- mately (60° or 1209. This configuration is the most stable
ing the normal R structure by 1.8 meV; this is 2.0 meV we found fora<3.54 A(Fig. 2). For 3.54a<3.65 A, which
lower than nonmagnetic Fe at its own equilibrium latticeincludes the global minimum energy a+3.61 A, the( ||
constant (3.43 A). With increasing volume the optimal is the most stable. Fa>3.65 A, fcc Fe ordered ferromag-
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TABLE |. Pair exchange parametefis mRy) according to the

N
o

40 [ i model Hamiltonian Eq(74).

20 S8 .
= 0- . Bilinear Biquadratic Bicubic
& > 8-atom JMN\J ] a (a.u) RE NN 32 e 32
z ]
m40' 3.59 -0.22 189 039 -049 -015 -0.17
QT . 3.65 —-265 142 022 -058 -0.12 -0.04
A +4--

20 N\J\\—\— 3.72 -434 116 014 -060 -0.17  0.01

20 fm aligned ferromagnetically in the plane. The coupling may be
- decomposed as a Fourier series of the rotation asgtep;
0_1 08 -06 04 -02 0 02 04 between planesandj. To determining the coupling param-

eters, we consider a cell of four independent planes. By con-
sidering a continual rotation starting from a FM+++)
lculated , A q configuration to the AFM(+—+—), and another from the
_FIG. 3._C?hcu§ges DOS tshpe[r:atomlmtei.i_ss .Ap;o_notl;}nce_ 1M to the ++—— configuration, the total energy may be
minimum in fhe near the Fermi leve' 1s present in the €ig “"decomposed into a Fourier series for either rotation. Thus for
atom and(1]| structures, suggesting that the low-energy structures . . .
" . each Fourier component, there are two independent quanti-
are stabilized by the formation of a pseudogap. : . - .
ties and sufficient information to extract two parameters,
namely, the first- and second-neighbor couplidgsand J?

netically. Once again, the SS was never the stable structur@more-distant-neighbor coupling is neglectetiVe assume
though it is nearly degenerate with the eight-atom configuzp effective exchange Hamiltonian

ration (Fig. 2). The corresponding DOS'’s and MM’s as func-
tion of structure are shown on Figs. 3 and 4.

The low-energy magnetic configurations are generally dif- He= E (Jﬁ0032wk<pl+JEcos Zrkes). (74)
ferent stacking sequences alof@91] planes, with all spins k=123
lying perpendicular to the stacking. Moreover, with the ex- . .
ception of the eight-atom structures, the remaining structures V/hile the modelH;; does not reproduce all magnetic
had all spins within a plane ferromagnetically aligned. Toconfigurations exactly, it does by_constructlon fit the FM-
investigate the effective exchange coupling parameters, weFM and FM{++——) energy differences exactly, and
consider an effective planar Hamiltonian coupling neighbor-90€S reasonably well for other configurations such as the SS,

ing planes along thEo01] direction, with spins in each plane and is thus sufficient for the qualitative description we seek.
’ The J values for the bilinear, biquadratic, and bicubic terms

are listed in Table I. It is seen that the nearest-neiglikdl)
bilinear coupling rapidly evolves from nearly zeroaat 3.59

Energy (Ry)

E%g =g ' " A to a large negative value. Near the point where it becomes
241782 §\ B 3.65 comparable to the 2NN bilinear term, there is a transition
- | N Sﬁs s et e from the AFM (+ —+ —) configuration to the FM. The rather
2F  3.5% 3.55&%%5%\:5\: 3.61 large (and more slowly varying2NN bilinear term accounts
] . _\ D/‘”“D*ﬂ:: :\Dj\ﬂ-% for configurations favoring AFM second neighbors. When
: \ 7/ /D—{‘\ﬂ:\\\ﬂ\ pt = the first NN bilinear term is very small, higher-order terms
= L6 \{ 7 \\:\\\\: such as the biquadratic become relatively important, explain-
“E’ - / / S~ = ing why noncollinear ordering is found there.
S 121 353 / ﬁ’%&&aiﬁ::- We next turn to an investigation of errors associated with
= L A5 t;F /] \uzgiﬁ_—_ the ASA and also the neglect dforbitals in the basis. We
0 SE@( / i I‘F‘ | - 1 investigated both of these errors by comparing to full-
Tr-—d 3.46 345 544 potential spin-polarized calculations. Our implementation of
- ,' T 1 a full-potential program is essentially similar to that dis-
0.4F ﬁ/ipj:dj ] cussed in Ref. 51, but using the local functional of von Barth
- P {(// . and Hedin(BH), with a gradient correction of Langreth and
== 1 Mehl (LM). The BH+LM and Voskot+Perdew-WandPW)
02 04 06 08 1 functionals produce similar results—a detailed comparison
q of the two functionals for spin-polarized systems will be pre-

sented elsewhere—but for our present purpose, we only seek
FIG. 4. Magnetic moment as a function gfanda for the Ss {0 establish the validity of the ASA for fcc Fe.
state. A split between a high-spin and a low-spin configuration can Figure 5 compares several ASA calculations of FM fcc Fe
be seen foa=3.53 A. Atq=0, the high-spin configuration is very and a full-potential calculation, and thus offers a basis for
weakly dependent oa, while the low-spin state is extremely sen- comparing the relative importance of the various approxima-
sitive toa. The transition from low spin to high spin is much milder tions. All the data show a low-spin and high-spin magnetic
for q=1. configuration, with similar moments and a transition from
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T T T T T T T T T T 524 F T T T T —
-5.00 % . - T
| PW’ Spd i —5.26 - n
-5.20 . ~ -5.28 -
W e |
ST ' 5 530 -
g PW, spdf
Eﬁ =540} °P 7 i _|_+ 1
& -5.32 + 4
=3 i
5.60 -5.34}F .
[ | | | 1 L]
3.5 3.6 3.7
lattice constant (A)
-5.80 LM, Spdf
L | L L — FIG. 6. Energies as in Fig. 3, but withorbitals included.

L | i
3.4 3.5 3.6 3.7 3.8

lattice constant (A) atom configuration and the SS, which both have minima near
a=3.49 A (Fig. 6). It is remarkable that such different mag-
FIG. 5. Total energy for FM fcc Fe calculated in various ap- netic orderings are so close in energy. The SS and the
proximations. “PW" signifies the Vosk&PW functional, “LM" 3k+SS each have a MM of approximately Aglat the mini-
signifies the BH-LM functional, “FP” signifies a full-potential mum lattice constant while the eight-atom configuration has
calculation, spdf an ASA calculation with orbitals included, and two inequivalent atoms, with MM’s of 0; and 1.Gug,
spd and ASA calculation withotft orbitals. respectively.

It is difficult to compare our results directly with experi-
the low-spin to the high-spin configurationat3.55 A. The  mental data. Some spin-density-wave-like states have been
dark squares show ASA results withorbitals included, us- observed® We do find spin-density-wave-like magnetic
ing the BH+LM functional. Apart from a small, approxi- configurations, such as th&3SS, but it is clear that the
mately constant shift of 100 meV, they compare very closelyelative orderings of these energies will be affected by lattice
to corresponding full-potential results using the same funcgjstortions which we have not taken into account. Neverthe-
tional (open squargs This shift may be attributed within the |ess, it is interesting that the addition of gradient corrections
ASA approximation to the electrostatic double-countingsignificantly affects the magnetic ordering in fcc Fe and
terms: for example, the muffin-tin correction to the ASA therefore suggests the importance of searching for a more
electrostatic energy is about 200 meV. This error is almosgdequate exchange-correlation potential.
completely independent of magnetic configuration, so we e have conducted a preliminary investigation of alloy-
may safely conclude that the ASA functional introduces aing fcc Fe with Ni. Dynamical simulations were performed
negligible error to the relative magnetic orderings for fcc Fe.with the 32-atom cell as mentioned above, but with two of

The dark diamonds in the figure show ASA results for thethe Ni atoms substitute% Ni) and and also with eight
Vosko+PW functional, again withf orbitals included. The atoms substituted in an bhrrangemen¢25% Ni). The 25%
two functions produce rather similar resu{@part from an  case exhibited a strong tendency to order ferromagnetically.
approximately constant shift of 400 mg\the Voske-PW  simulations for the 6% case were mad@at3.57, 3.61, and
functional favoring a slightly larger lattice constant. The 3=3.65 A. The magnetic configurations ordered very much
open diamonds are results for the Vosk®W functional  along the lines of bulk fcc Fe. For small lattice constants, the
with f orbitals neglected. Here one sees that the neglett of most stable configuration resembled the eight-atom configu-
orbitals introduces a small, approximately linear term in theration shown in Fig. 7 and for intermediate lattice constants
total energy and thus leads to a slight overestimate of thg resembled the'1|| structure; see Fig. 7. In this structure
lattice constant. the magnetization of the Ni was almost completely sup-

Addition of f orbitals affected all the noncollinear mag- pressed, although in the lower-symmetry struct{iFég.
netic configurations in approximately the same way, largelyz(a)], the Ni moment was approximately @4. Again, the
preserving the MM’s and relative energies of differing con-global minimum appeared to be thé¢| |-like structure. We

figurations for a given lattice constant, but adding a smalljefer a more detailed study of the Ni-Fe alloy to future work.
linear shift that reduced the position of the minimum energy

for e_-ach (_;onfigur:_atior_]. Figure 6 sh0\_/vs th(_a same magnetic VIIl. CONCLUSIONS

configurations as in Fig. 2, but now withorbitals included.

Because the minima occur at a smaller lattice constant, the We have presented an approach for treating spin dynam-
3k+SS structure is the most stable, with a minimum energycs in magnetic materials. Our approach goes beyond the
at 3.49 A. It is nearly degenerate, however, with the eightstandard Heisenberg model Hamiltonians with fixed spins in
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methods, the task is manageable now for modest system
sizes. For example, recent implementation of the basic SD
r equations on the Intel Paragon at Oak Rifges been com-
f& ﬁ pleted for a system con'taining 512 in'd'ependent atoms. We
‘} J expect that the introduction of an empirical TB approach for
SD will greatly facilitate the expansion of feasible system
f’f ﬁ sizes to thousands of atoms, and combined with TBMD it
will be a cost-effective means of exploring the full dynamics
(®) of many large systems. An example of great current interest
where lattice relaxation and thermal spin exitations play a
v : role is in the determination of the temperature-dependent
electrical conductivity in materials exhibiting giant or colos-

FIG. 7. Orderings found in fcc Fe doped with 6% Ni. ShadedSal magnetoresistance.
circles indicate Ni atomga) A configuration resembling the eight-  Finally, we would also like to mention that the quasiclas-
atom structure, favored at small lattice constafitsa configuration ~ sical approximation used in the derivation of the SD EOM’s
essentially identical to théT| | structure, favored for intermediate forms a natural basis for studying aspects of quantum tun-
a. neling in magnetic systems. The imaginary-time formalism
(a method for following quasiclassical periodic trajectories

that the moments and their interactions are obtained from thgrowdes a method which permits the system to explore clas-

electronic structure using band theory. The moments are fre cally forbidden regions and “?””e”“g mgtrix e'.emef.“s for
the ground staté as well as excited states in the imaginary-

to change their directions and magnitudes during a simula: S AL :
tion in response to temperature, changes in the local SpiHme-dependent DF formalisthin the cases of magnetic and

environment, or lattice motion. nonmagnetic systems.
In order to arrive at a set of equations of motion for spin
dynamics we have had to make use of ideas appropriate for ACKNOWLEDGMENTS

the adiabatic evolution of the electronic system. In principle, \we would like to thank S. Tretiakov and V. Heine for

one would prefer a more direct quantum-mechanical apysefyl communications. This work was partially carried out
proach such as modern quantum Monte Carlo techniqueg the Ames Laboratory, which is operated for the U.S. De-
provide; however, even with foreseeable increases in CO”Rartment of Energy by lowa State University under Contract
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testing the physical picture and accuracy of the SD equations

we propose. Another more basic approach than the SD equa-
tions is to solve the time-dependent nonadiabatic spin DF
equations directly. There would be no need to separate the Here we present a simple proof of the local force theorem
SD (momenj equations from the electronic ones. Such anin the HFA. Taking into account the expression for the total
approach could certainly be implemented for larger systemenergy in the HFA®
than would be feasible with the quantum Monte Carlo ap-
proach, but there would still be trouble treating finite tem-
perature, defects, alloys, and the nonuniform systems we
seek to study.

While the aforementioned more fundamental and precise +f f dr dr’ n(r’)n(r)
theoretical methods for treating electron dynamics will even- Ir—r’|
tually be used to study SD, the utility of the approach to SD . . )
which we propose will first be assessed by comparison to S s J’ f dr dr’ P (D7 (F) (') i (r)
experiment. The ability to realistically calculaBéq,w) as a T [r—r’|
function of temperaturéeven aboveT,) offers a means of
directly comparing theory with neutron and magnetic x-ray (A1)
scattering results. These comparisons will be the initial testg/herei = (v, ,0,) are the orbital and spin quantum numbers,
of ab initio SD. There are many materials where our formal-the HF equation is
ism should be applicable; and even in those systems with
strong correlations, some hybrid scheme such as the ox , n(r’)
LDA +U approach may be suitable. The extension of these HHe#i()=(—A+V t)‘ﬂi(r)J“zf dr r=r] ¢i(r)
ideas to the simultaneous treatment of MD and SD offers an
even greater range of problems and physical systems for ex- ) () ()
ploration. Such simulations will be very demanding on com- _; 5rriv,f dr lr—r']
puter resources; however, with the advent of massively par-
allel computers and the concomitant development of oktler- =g;y;(r). (A2)

v
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The total energy can be rewritten as

E=Zj &;— Epc, (A3)

where the energy of double-counting terms is given by

)n(r)

_r’l

() (1 )t/fy(r)
_MEV 5<Ti<f,f dr dr

[r=r'|

(Ad)

V. P. ANTROPOVet al.

where&lﬁHF is the variation of the HF Hamiltonian ifA1),

81H = ZJJd dr’ ———— ( W'(r) ;a”JJdrdr

[5¢, (r)g(r" )+ (r") dys(r')]

r=r’|

pi(r).  (AB)

The term (A6) is exactly the variation of the sum of HF
energies due to variation of the potential under self-
consistency. Consequently, taking into acco@Ab) and
(A6) we have

Let us assume that under rotations of the local coordinate

systems or other sloquasistatig perturbations of the sys-
tem the wave function§y;} are changed by . Then, cal-
culating the variation oEp under such a perturbation, one
can show that

5EDC:Ei fdr,¢r(r)5lﬁHF¢i(r):Ei b18i, (A5)

SE=2, (8e;— 618)=2, &*¢;, (A7)
J J

where & is the variation for the potential being kept fixed.
Equation(A7) is the local force theorem in the HFA.
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