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Current-phase relation in an intermediately coupled superconductor-superconductor junction
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The limiting configuration of theS-N-S’ junction in which theN-layer thickness is of the order of the
screening length in metals=1-2 A) may serve as a model for a cle&S' interface. This configuration
supports oneN-layer-attached gap stai@nanifold), with eigenenergy close to and less than the smaller
superconducting gap. This gap state is interpreted as the excitation associated with breakage of interface-
attached Cooper pairs, comprised of one electron from each side of thdl tliper. The corresponding
junction’s current-phaséy) relation is calculated. The gap state is shown to contribute an appreciable
“sin(2¢)" correction term to the “siffy)” Josephson term. The corresponding maximum-current magnetic-
flux dependence of a two-junction configurati&QUID) is predicted to have zeros shifted from their common
loci at half-integer flux quantg50163-18206)03738-1

[. INTRODUCTION fabrication. TheS andS'’ superconductors in such a junction
are not weakly coupled since the buffer layer is atomically
In the no-coupling limit between two abutting supercon-thin, yet, for a suitableSN barrier(see Sec. I, they are not
ductors(realized, e.g., by a thick insulating buffer layethe  sufficiently strongly coupled to preclude a phase difference
arbitrary, spatially constant order-parameter phases of thet the interface.
two superconductors are obviously uncorrelated. As the This S-oN-S' junction, and itsS-N-S' parent junction,
superconductor-superconductor coupling increases, yet Were the subject of previous studis. For the latter, dis-
“weak,” i.e., the electron transmission coefficient through crete states in thé&l-layer with subgap energies were pre-
the interface is small, Cooper-pairs tunneling becomes poglicted by Andreev. These gap states arise from a “particle
sible. The remarkable implication of such tunneling—the Jodn @ box” situation in theN-layer, where a trapped electron
sephson effect—is that the two superconductors’ phases ittndergoes multiple Andreev reflections off the tvN
terlock such that theidifference ¢ across the buffer is Walls. As theN-layer thickness shrinks to “zero,” as in the
determined by the junction’s setup, e.g., the presence of aN— 6N limiting configuration, theN-layer “box™ is elimi-
external magnetic field or a voltage. In the opposite limit ofnated, yetone such subgap state surviveghis state is in-
two “Strong|y” Coup|ed Superconducto[(g_g_, two abutting terface attached, localized in the direction normal to the
superconductors without a buffer layethe combined sys- Jjunction’s interface, and has #dependent eigenenergy.
tem can be regarded as a composite superconductor, afice no confining “box” exists, this gap state is evanes-
hence cannot sustain a spatially varying phase. The objectiv&€nt. Similar states arise under special surface-specific con-
of this work is to analyze an intermediate system, i.e., thdlitions. Examples are optical metal-air evanescent states,
coupling between the two superconductors is too strong tghetal-dielectric surface plasmons, and gap states in special-
render pairs transport as tunneling, yet not sufficiently strongzed semiconductor-semiconductor interfates.
to eliminate a spatial phase variation. This physical regime is The key result of this work is the calculation of the
the intermediate coupling regime. Specifically, we analyzeS-oN-S' current phase relatiof(y), focusing on the gap
the S-6N-S' junction, where ‘SN” denotes a thin buffer ~State contribution. At zero temperatuiie=0), and within the
layer, of thickness of order of the Thomas-Fermi screenindoW incidence-angle approximation spelled out befithe
length in metals, i.ekF*~1 A. This particulars-N-S’ lim-  calculated current-phase relation is given to a good approxi-
iting configuration may provide a model for a “clear-S’ ~ Mation by(see Sec. Il
interface, which is relevant to current transport in granular
and layered superconductors. j(y,T=0)
. Wr_]en two dissimilar metals in Qquilibrium are brought j depaif T=0)
into intimate contact, the formation of &N layer is
unavoidablé. To compensate for the two metals electronwhere] g, IS the depairing current and the coefficieats
densities difference, excess electrons migrate across tle depend on the junction’s parameters. For the parameter
metal-metal interface, thereby creating a thin depletion layerange considered here,;~0(.1) and a,/a;~1/3—1/4 (see
of the type encountered in semiconductor junctibrithis  Table ). Expressior(1.1) deviates from the standard Joseph-
depletion layer acts as larrier against additional charge son junction expressidff in two respects, i.e., the critical
flow between the two metals, and extends over a distance @lurrentj. is a sizable fraction of the depairing current, and
the order of the Thomas-Fermi screening length. When théhe presence of a substantial second harmonic ter(2¢sin
temperature of such a junction is sufficiently lowered, itThis term is a consequence of the gap stStec. III).
transforms into &-S8N-S' junction. TheSN barrier can be Nonsinusoidal, intrinsic current-phase relations, such as is
further augmented by judicious monolayer deposition during1.1), are known for other types of junctions such as the

=aysin(¢)+a,sin(2), (1.9
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following. (1) A long, bridge-type, “weak” link!}143:13 (2)
A finite-thickness S-N-S, and probably theS-N-1-N
junctions®® have been inferred to have “sin¢)” terms
(*n” is an integey in the current-phase relatidrGiven the
“weak” link nature of these junctions, we speculate that the
higher harmonics terms in the current-phase relation are
small. (3) A “nonweak” S-S'-S junctionnear T, (Ref. 14
yields a current-phase relation reminiscentbfl) (compare sin § = ﬁ'; \
Fig. 5 to Fig. 2 in Ref. 14 All these examples, however, w ® z
differ either in the functional form or content frofi.1). In @ ®
example (1), the nonsinusoidal current-phase relation is
qualitatively different thar(1.1). In example(2) the nonsi- FIG. 1. Coordinates system and notatiofe.The chosen coor-
nusoidal terms originate from “particle-in-a-box” gap states, dinates system and théN buffer atz=0. The circle on the left
which are qualitatively distinct from the evanescent state unrepresents the Fermi sphere, and the incidence-afigiatisfies
derlying (1.1). With regard to examplé3), its current phase sin(6)~q/kg , whereq is the transverse momentum, Eg.2). (b)
relation has been interpreted in terms of the proximityThe energetics of the- SN-S’ junction model. The common Fermi
effect’* There is no room for the proximity effect in the energy,Eg, the gaps|A,|, |Ag|, and the ‘Ué(z)" potential are
S-6N-S' junction (self-consistency is discussed in the lastschematically depicted.
section, and expressiofil.1), which is aT=0 calculation, is
attributed to the gap state. Nonsinusoidal current-phase relanodel, the gap state eigenenergy is succinctly derived in a
tions may also originate from extrinsic sources, such asew representation and the gap state interpretation is dis-
shorts and other junction imperfections. These, however, doussed. Section Ill is devoted to the current-phase relation
not correspond to the “clean” configuration under study. calculations. In the last section we present results for a two-

The presence of the second term (thl) suggests an junction ring configuration, or SQUID, discuss the validity
experimental verification: the measurement of the inter-of our model, briefly compare it with related work, and sum-
ference of two sucl8-8N-S' junctions in a superconduct- marize the main results.
ing quantum interference devid®QUID) -ring configura-
tions1®® The corresponding maximum-current magnetic- I INTERFACE STATES
flux curves are calculate(Sec. IV). These curves show a
characteristic distortion from the ‘“canonical” SQUID The analysis of thes-SN-S' junction is carried out in
curves®129 \which may serve as an experimental signa-terms of the Fourier transformed Bogoliubov—de Gennes
ture. equations? In the coordinate system defined in Figajland

The paper is organized as follows. In preparation for thein the absence of electromagnetic fields the equations take
current calculations, Sec. Il introduces tBaSN-S’ junction  the form

52 g2 £ () E+US(2) |A(z)|e'¢? o
_Z_F_ F - 52 g2 ( ): |
) ZIA(Z)|e*“P<Z) o g7 FER@-E-Ud2) | v(2) (0), 2.1

where the symbols denote the following: The wave function“ U §(z)" barrier (U of dimensiongEl]), since the Thomas-
W¥(r) in the Nambu representation and the Fermi energy as~ermi screening length is considerably smaller than all other

sociated withz-direction motion,E¢(q), are length scales in the systeffi’® The gap function,
|A(2)lexpli ¢(2)], is assumed to vary only in thedirection,

u(r) 1 iq.ol U(Z:Q) Fig. 4(b), andE=0 is the excitation energy.
\If(r)=(v(r)) ~on J dq e' P<U(Z;q)), p=(x.y), The boundary conditions across thN interface atz=0,

Fig. 1(b), are the continuity of the wave function and discon-

ﬁzk'2: Q) 7202 tinuity of its first derivative
Er(q)=—— =EF—W=EFCO§0>0, (2.2

2mu
}: 7 ¥ (z=0;0),
e 2.3

d d
and theq dependence ofi(z;q), v(z;q) in (2.1) has been {d_z ‘I’(Z;Q)‘ 4z Y(z9)
suppressed. For simplicity, the bulk Fermi enefayd wave z=¢

vecto Er (and kg) is assumed identical in th8 and S'

superconductorfFig. 1(b)], g and # denote the lateral mo-

mentum and angle of incidence, respectively, Fi@),land where e—0. The system’s three dimensionality is reflected
the electron mass isn. The 6N layer is modeled as a by the need to solvg2.1l) for all q vectors satisfying
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Er(q)=0. Except inEL(q), theq dependence is suppressed gap states eigenenergies are obtained from the solutions of
hereafter for the sake of notational conciseness. the following two coupled equations fe and ¢g:

To complete the model, the gap functidz) profile has
to be specified. The assumed profile iz-aoordinate step ~ ~ o~ o~
function, F|g _‘(b), COS( l/f)zcoi ¢L)COS(¢R)_ VK(q)SHK¢L)S|r1(¢R):

A(2)=06(—2)|AL[e'-+ 6(2)|Agl€' R, 2.4

~ ~ ~ T ~ v

where, and ¢y are the spatially-constant, arbitrary, phases cosd)=ocosdr). dLr=IdLr, 2 =hr=7
of the S and S’ superconductors, respectivél§.Note that (2.8
the ¢, and¢g phases are assumed constartiath the z and
y (transversgdirections. The legitimacy dR.4) is discussed where the ‘L,R” indices refer to the “left” (S) and
in the last section. The latter assumption implies a “small” “right” (S’) sides of the junction, respectively; see Fi¢h)1
junction.lz(c) All in all the S-6N-S' model is characterized The limiting cases wherd5K)=(1,1), (1,K), and (5,1
by three parameters, (Refs. 5 and Bfollow trivially from (2.8).2°

The structure_of2.8) implies several propertiega) For
each solution{¢, ,¢g} there is a degenerate solution
{— &, ,— ¢g}. Each state is a manifold: thedependence of
K(q) implies that the eigenenergies formcantinuum ex-
tending from the eigenenergy corresponding toKhkeK (0)
up to the bulk quasiparticle continuum threshold endrgy
(see below The ensuing gap reduction is a manifestation of
the “weakened” superconductivity in proximity to théN
buffer. (b) The ¢— — transformation leaves the eigenen-
ergy invariant(c) SinceK(q)=1 and|cog)|<1, manipula-
tions of (2.8 show that¢,__and ¢ have the same sign.
Consequently, ca@g)—[cos(# )]¥6<0 and it follows that

solutions to(2.8) exist only when

Ar
AL

y=er—¢., 0=

1 [Uke(q) T

B [“ 2 ( Er(a) ) |
(2.5
Without loss of generality onlyy>1 cases are considered
[Fig. 1b)], m==¢=—= since the¢'s phases are specified
modulus 2r, andK(q)=1. According to the small incidence
angle approximation discussed below, the latter’depen-
dence is neglected, i.&€,(q) ~K(0)=K.

The solutions of2.1) are expanded in the following un-
normalized “electronlike”(¥(®) and “holelike” (¥M) ba-
sis functiond®1®

*Ifi‘*)k<+)(z>=(e'q;w)efik”)z, 1
cog )< 5 (2.9
D) 1o <k
‘Pik(_)(z)z(e_i‘/’""!’ e ' (2.6 Thus, barring theS=1 singular case, &nite ¢ (i.e., a finite

] ) current or magnetic fie)ds a prerequisite for the gap states

where the amplitudes are expressed in terms of the unorthgg exist.
dox auxiliary variableg: Although (2.8) can be solved in a closed form, its solu-
tions are best discussed numerically. Figui® 2hows theK
variation of the gap state energy f6+2 and Fig. 2b) is the
S variation of the gap state fd€ =40 (theK-parameter range
is discussed in the next sectios K increases, i.e., théN
barrier becomes less transparent, the eigenenergy is pushed
up rapidly toward the quasiparticle continuum |Af|, yet

2m never reaches it. This trend is plausible, since in Khex
k*)(q)= iT\/_ VEER(q) = Q. limit when the barrier decouples the two superconductors, no

gap state exists.

For an eigenenergy larger than the géh7a implies ¢ real The K variation in Fig. Za) mocks theq variation of
and positive, while an eigenenergy in the gap implies & (q) in (2.8). From (2.5 and Fig. 1a), this variation is
purely imaginary¢. The “+" signs in front of the square depicted in Fig. 3. This plot implies two properties: since
root symbol in (2.7 are chosen such thaRgk™]=0, only the #~=/2 angles(grazing angle incidengeare ex-
{im[k?]=0, Im[k~)]<0}), as required by the boundary con- cluded in the low incidence angle approximafidfisee text
ditions at |z|— «. Note that for E>|A| extended states, preceding(2.11), below, the ratio\(K(q)/K(0)) can attain
k(*)>kF(q) and kH<kF(q), in keeping with the basis arbitrarily large values. Hence a continuum of curves such as
wave function(2.6) interpretation as “electron” and “hole” in Fig. 2(a) coexist. Secondly, the approximatiod(q)
states. The added quotes signs around, e.g., “electron,” is & K(0) is reasonable for a good fraction of incidence angles

E 3 Q B
m—cosf{qﬁ), m—

VE?—|A|?=sinh(¢) (2.79

and the momenta™ are®1°

(2.7

reminder that the electron and hole component&i6) are
always admixed to some degree.

The method for solving2.1) is outlined in Appendix
A.*> Two eigenfunction classes are obtained:
states, wher&=|A | (since by assumptioA>1) and local-
ized gap states, witE<|A | |. In the representatiof2.73 the

0, as assumed in the small incidence angle approximation.
To gain insight into the content of the gap sta{@s3),
consider for simplicity the&K=1 limit, where noSN barrier

extendeexists. Following Appendix A, the corresponding two, un-

normalized, degenerate gap states wave functiopandV,,
are
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GAP STATE ENERGY

K = 40.0

(@) (b)

FIG. 2. Examples of calculated gap state eigenenergy(ZE8§), as a function of in its allowed domain, Eg2.9). (a) TheK variation
for a fixed =2 case. The curves designation &5,B,C,D)=(K=1, K=20,K=40, K=80). (b) The § variation for a fixedk =40 case.
The curves designation iA(B,C,D)=(6=1, §=2, §=4, 6=8).

ei[7W+;L(1)+~¢R(1)] " energies are,_r_espectively, aboye and below the gap, it may
~ e kL 2 for z<O, not be surprising that an admixed state energy, such as
gll—er(D)+¢r(1)] (2.10, falls in the gap.
V4(2): Further insight into the gap stat¢8.10 is obtained by
1 _ik), considering the corresponding decay length, embodied in the
ol erL+ r1)] | € for z>0. k=) momenta(2.7h. For this purpose, the square root in
(2.7b is customarily expanded to the zero order in the
small parameter »=|A|/(Eg cos?d)<1. Since typically
1 |A/[Ef~107% 1072 in low and high temperature supercon-
( - )eikl(_)z for z<0 ductors, respectively, such an expansion is valid provided the
gll=eL2+6.(2)] ' #~mx/2 incidence angles are excluded. This expansion is con-
V,(2): - sistent with theK(q)~K(0)=K approximation. The corre-
gil¥+ L2+ dr(2)] ) sponding complex momentd™ (2.7b) are
etowiaan |7 O - [sin )
(2.10 k(L,iFgESgr(%,R)kF(CI)ii m
The‘;f1 state is “electronlik.e” on the left and “hc_)lelike” on _ 7%ke(q)  %%ke(q=0)
the right side of the junction’s interface and vice versa for m&_r(Q;T=0)= mAL A mAL A =mé r(T=0),

the W, state. This structure also follows for t&eN-S’ junc-
tion gap stated* The latter, which areN-layer Andreev-
reflected standing waves, fall into two classes: the first is
comprised of a right-bound “electron” and left-bound K =K(0) = 40

(2.11

“hole” in the N layer, and correspondingly &®/-bank de-

caying “electron” tail and anS-bank decaying “hole” tail. 20~

In the second class of gap states, the “electron” and “hole” —_

roles are interchanged. As tid-layer thickness shrinks to s— 15~

zero, theN-layer portion of the wave functions is eliminated =

while the remaining decaying tails in the superconductors %’10‘

banks have precisely the struct(@10. Thus these states

owe their existence to an interface rather than to the presence 5+

of a well. Such evanescent states are encountered, e.g., in a

metallic-dielectric interfacdsurface plasmonsand special- 03 0E1 0'.2 0.'3 0f4

ized semiconductor interfacés.
The wave function(2.10 haveequalamounts of electron 9/75

and hole componenisi(z) andv(z) components have equal

magnitudg. This electron-hole admixture originates in the  FIG. 3. The variation oK(q), Eq.(2.5), with incidence angl®,

thin SN barrier and is distinct from that invoked by the bulk Fig. 1(a). The plotted curve isK(q)/K(0)]¥?=[1+((K(0))—1)/

pairing interaction. Since bulk “electron” and “hole” states (cod6)?T¥%(K(0))*2
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GAP STATE PHASES

where § r(T=0) is the T=0 coherence length at the left 5=20 K=400

and right sides of the junctiot?® ¢ r are the solutions of
(2.8) and ke(q)/ke(0)=cos6. Consequently, the gap state
decay lengtH'~#&T=0)/|sin(¢)| is of the order of the co-
herence length, unledsin(¢)|<1. (The latter is the case B
when the gap state is about to submerge into the bulk quasi- 0.2}
particle continuum). This is interpreted to imply that the gap lﬁ
states are associated with interface-attacGedper pairs
Such pairs are comprised of one electron from each side of -
the interface and hence, by a phase-space argument, are ex- -\ dL
pected to be “fragile” in comparison to bulk Cooper pairs o
(with binding energy|A, | or |Ag|). This interpretation clari- ' ' ' !
fies the prerequisite of a thin buffer layéconsiderably ) )
smaller than the coherence lengtto allow the formation of V/r
interface-attached “mixed” Cooper pairs. In stand&d-S
andS-N-S junctions the buffer layer is too thick to meet this  F|G. 4. An example of the calculatdd, , ¢!, Eq. (2.8). The
prerequisite. This interpretation is also consistent withparameters are given in the heading.
(2.9: it takes a finite current to break the mixed pairs.

Figure 4 shows the calculatefls corresponding to one of
the cases in Fig.(2). In conjunction with(2.11), this figure
demonstrates that while the gap state energy varies by a reland the symmetrical distribution of they,, frequencies
tively small amount, its decay lengf~m&(T=0)/|sin($)|  aroundw=0, simple manipulations of3.1) yield thatj,(1)

£ — 5.4
[ —— — o o SEC,

03l [

0.1

attains largej-modulated variations. =—j,(—), as it should. In the “Born” approximation,
when G, (z,2')~G9(z—2z') and where the gap profile is
Ill. CURRENT CALCULATIONS (2.4), the Josephson relatio=j sin(#) [Refs. 10a) and

o o ) ) 21] follows. In the intermediate coupling regime, however,
~ The gap state$2.8) qualitatively distinguish the excita- \yhen higher order contributions become important, deviation
tion spectrum of th&S-5N-S' junction from that of ars-1-S from this simple current-phase relation is expected.
junction, where such states are absent. Calculating the corre- 1 simplify the calculation of3.1), two approximations
sponding modified current-phase relafi¥f is the object of are introduced. First, we limit ourselves to tfie~0 limit,
this section. _ where thew, summation is well approximated by an integral.

The calculation employs the Green function approzcti. Secondly, the Green function and wave functions are calcu-
For the geometry of Fig. 1 and &(z) profile, the current  |5teq in the small incidence-angle approximation, i.e., the
flows in thez direction. The corresponding expression is g-dependent quantitie(q) [Eq. (2.5] and k*)(q) [Eq.

i . . (2.11)] are replaced by they=0 values>® This approxima-
. F * * tion is expected to yield anpper limitto the current for the
JZ_COJ’O dEF(q)|m| wnZix Jo dzlj,mdzzA(zl)A (z2) following reason. The contribution to thedirected current
from 6>0 scattering events is expected to be smaller than
0) that of the#=0 scattering event. Hence, in the approximation
XG, (21=2)G - (21,22) where all scattering eventdesignated by) are treated as a
#=0 scattering event, the summed result is obviously an
overestimate. Also, since grazing-angle scattering evehts

0=— w ~q/2) are primarily specular reflection, their contribution to
(A i i i
™ the z-directed current is expected to be small, in support of
the above approximation. While only a full calculation can
S Ul (2Ug(Z") v (2)v(2') quantitatively assess the validity of these arguments, the ad-
Gu(zz )_ﬁEa>o iho—E, ihwtE, | ditonal weak 6 dependence ofK(g), Fig. 3, and

3.0  ke(a)/ke(0)=coséd (siné~a/kg) further support the
small-# approximation.

wherekg andT are the Boltzmann constant and temperature, Applying the above approximations and employing the

respectively,w,=(2n+1)wkgT/%, n=0,£1,£2,... are the calculated wave functiongAppendix A in (3.1 yields a

Matsubara frequencies, af@'”)(z—z') and G,(z,z') are  current expression of the form

the diagonal and full Green functions, respectively, associ-

ated with(2.1) whereE—E+iw, . The former is given in i, 6,K;T=0)
Appendix B while the latter is evaluated in terms of its spec- e T=0) re(¢,6,K)+rg(¢,6,K),
tral representation. By virtue of the Green functions symme- epal
try properties . 2 m|e|EF |A|_AR|
Jdepa T=0)=—3— ———5—, 3.3

[Gw(zl’ZZ)]*:G—w(ZZYZl)I
© © © where the complicated, dimensionlesg,andrg terms de-
[G, (21,22)]* =GT(22,21) =GT(21,22), (3.2  note the contributions of the gajocalized and scattering
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SUPERCURRENT V-DEPENDENCE TABLE |. Total relative-current best fitEg. (3.3)].

o2 s ~_K=20 o K a, a, az

ol so-m— =X K=40 2 20 0.39 0.13 ~0.026
2 40 0.28 0.087 —0.012
2 80 0.21 0.056 —0.006
1.2 100 0.24 —0.001 0.010
4 80 0.18 0.053 —0.010

gap state. Other characteristics are the large magnitude of the
junction’s critical current—a sizable fraction of the depairing
current, the asymmetry with respect gér=—0.5, and the
approximate overall down-scaling & Y2 with the barrier
strength parametd€. The sizable critical current reflects the
intermediate coupling regime in the system under study. On
the other hand, a “large” critical current may imply non-
negligible self-consistency gap corrections. This important
point is discussed in the next section. The current down-
scaling trend with increasing reflects the approach to the
weak coupling regime as the barrier height increases.

The above results and the expectation of a (isify har-
(delocalized excited states to the current, ang,;(T=0)is  monics” in S-N-S’ suggests the following parametrization
the geometrical mean of th8 and S’ depairing currents of (3.3) [Eq. (1.1)]:
densities'®® The latter follows since the bulk depairing cur-

FIG. 5. Variation of the relative current witk, Eq. (3.3). The
broken line, thin solid line, and a bold solid line denoge rg, and
their sum, respectively. The; contribution exists only fog values
satisfying (2.9). As discussed in the text, the approximations in-
voked imply that this calculation overestimates the current.

rent is j e (T=0)=—|e[nev (T=0) with n.=k /(379 j(,6K;T=0) . .
and vg=A(T=0)/(fkg). Since the two superconducting j dapai T=0) = aySIn()) +3;SIN(2¢) + agsin(3y)),
banks are assumed to have the sdfpe Fig. 1(b), expres- (3.9

sion (3.3) for j gepair (T=0) ensues.

: : w1 .. ,where the coefficients are fitted to the calculated curves.
Before presenting the results, consider the “realistic

i Table | shows the results for several representative examples.
range of theK (or U) parameter. For this purpose, the . .
. " R . . L The corresponding fits, not shown here, are excellent. As
US(2)” barrier in (2.1) is estimated by equating it to the : . .
barrier of a clean metal-metal interface. In the latter, th Jable | shows, the dominant correction to the leading
X » Meain Y termis a ““sin(2¢)” component, with an appreciable

barrier is determlne(_j by dlffer_ence in the eleqtro_stgtlcs, eXE?mpIitudeaZ/alwo.ZS—0.3 for all the examples considered.
change and correlation energies across the dissimilar meta]s

interface. Lang and KoHrtalculations for a metallic surface tgr\r/r;eivr;/ (%f Atf)h g:iBgr(f:'):l tgl;rvfi;;nﬁ pf? olrr:l I;I% Séthsetatsggl/’)
indicate that the effective single electron potential extends ' 9 P y gap '
over half a Fermi wavelength from the surface, and is of the

order of 1 eV. Assuming, as a rough estimate, that the pres- IV. DISCUSSION AND SUMMARY

ence of another metal only slightly alters these quantities, The appreciable “sif2)” term in the current-phase re-
can be e3<1tracted from the calculé':\tpns in Ref. 1. We find thafaion (3.4) can be tested experimentally by measuring the
U=8.3 ;" eV A, wheren=4mry3 is the electron density interference of two such junctions in a ring configuration,
(for dissimilar metals interface, the smaller of the thb  jo 4 generic SQUID devid@?12D.23 The characteristics
values should be choserin particular, for a Pb/Alinterface  of the corresponding maximum-current-density magnetic-
this givesU~7.5 eV A. Combining this with typical metallic  fiyx dependence can be assessed by the following argument.
values; |§F§1-7A , Ep=10 eVyields form(2.5 K=K(0)  consider two types of SQUIDS, i.e., a standard SQUID
=33. This is a lower limit estimate, since QeV|at|on from anyhere only the “siriy%)” term contributes, and a hypothetical
ideally clean interface augments the barrier. Note also thagQU“) where only the “sif2y)” term contributes. The cor-

K(gq)=U* and isq dependent; see Fig. 3. The latter prop-yesponding maximum—current—densit%/ magnetic-flux curves,
erty and uncertainties il imply that typical values of th&  genoted byj ) () andj 2, (®), are™®

parameter are considerably larger. Unequal Fermi energies of

SandS’ superconductors will further augment the effective (1) (@) md i P) 27®
K value. o =‘ s((}ﬁ) , T cos( D ) ,
Representative results of the calculations are shown in le 0 le 0 @.1)

Fig. 5. In the relevanty domain, the g() component isiot

negligible, andrg(y) and rg(y) are qualitatively distinct: where @ is the magnetic flux through the ring and
while r¢(¥) has no nodes, reminiscent of a “6i#)” curve, ®,=mhcl|e|=1630(eV A)Y?is the flux quantum. Note that
the rg(y) component has one node, reminiscent of aj D (@) and j 2, (@) vanish at®/®y==+0.5+1.5,... and at
“sin (24" curve. The opposite sign afg() andr g(¥) terms  ®/Py=+0.25+0.75+1.25,..., respectively. Consequently,

reflects the depletion of the scattering states strength by ther a current-phase relation which is a mixture of the above
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SQUID'S RELATIVE CURRENT
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FIG. 6. Two examples of SQUID calculations; see Table I. The solid liNgis(®)/(2] gepaidl, Wherej () is given by the fitted form
(3.4) and the extremum calculation follows Ref.(bp The fluxes® and @, are defined in text; see after E@.1). The broken line is the
standard Josephson junction res|dog 7®/®,)|, normalized to coincide with the solid line dt=0. The parameters of each example are
indicated in the headings.

two ¢ dependencies, &8.4) is, the ensuing ,,.(®) curve is  the interface. FoiS-N at T=02 however, the rounding is
a coherent mixture of L, (@) and j 2,(P). minimal. At a finite temperatur&/T,~0.5, the extension of
Utilizing the parametrizatioi3.4), the calculation for two  the rounding increases and is of the order of Mwayer
cases of Table | are presented in Fig. 6. As the above conhickness>?® These calculations imply that in our case, of
sideration indicates, the curve’s zero is shifted from the conan atomicallythick N layer and aff =0, the step-shaped gap
ventional location atd/®,=0.5, with distortions on both profile (2.4) is a reasonable approximation. In a related con-
sides of theP/®,=0.5 point. These signatures may be ame-sideration, our calculations invoke the small-incidence angle
nable to an experimental measurement. At higher temperagpproximation[¢ in Fig. 1(a)]. As noted in Sec. Il, this im-
tures we conjecture that the bound state contribution will bgjies that the calculated current is an overestimate. There-
smeared out, and a sinusoidal current phase relation ensuggre, the “true” currents are probably smaller than calcu-
Consequently, the distortions calculated in Fig. 6 will disap-jated here, which lends additional support to the validity of

pear. the steplike gap profilé2.4). A quantitative examination of
Next consider the validity of the present model and ap-his issue is deferred to another publication.
proximations. The assumed phase praf2e) implies a con- The present work complements other microscopic calcu-

stant[in the x,y axes, Fig. 1a)] phase discontinuitys. The  |ations of theS-N-S and S-Sm-S junctions (Sm denotes a
latter corresponds to a “small” junction assumptibi?) i.e.,  semiconductor (Refs. 17 and 27 and related configura-
L<X;, whereL is the junction’s transverse dimension and tions2® The former focuses on configurations where the two
\; is the Josephson penetration length. In this limit the lonhanks have the same ghf=1, Eq.(2.5] and the ‘N” or
gitudinal current nonuniformity is minimal, i.ei is a con-  “sm” width is finite and delineated by twas barriers. All
stant. To realize this situation in the intermediate couplingtemperatures are considered. By comparison, this work con-
regime, note thal® \;=[(cP)/(8(m)jc(2\ +d))]*2  siders an asymmetric configuration, containing @rtearrier
wherej, is the junction’s critical current density, is the  and only T=0. One consequence of the difference in con-
London penetration depth, andd” is the SN layer thick-  figurations is that here only a “single,” evanescent state ex-
ness. Adopting the valueg ~1000 A,d~0 A, from Fig. 5 sts (disregarding the lateral momentum dependence; see
Jo(T=0)~0.1 4epai T=0), Ep=1 eV, A| ~Ar=0.002 eV,  Sec. I) provided thaty is largeand 5>1 [Eq. (2.9) and Fig.
hc=1970 eVA it follows from (3.3 that 2(b)]. By comparison, the gap states in Refs. 3, 4, 27, and 28
jo(T=0)~2.0x10" A/lcm? and \;~2000 A. Thus, with form sequence, which exists for a# values. As Fig. 5
modern deposition techniques, making a “sma#-sN-S' shows, foré>1 the current curve is skewed toward angles
junction is feasible, as well as enhancing #i¢ barrier with  <|w/2| since at these angles the bound state does not con-
judicious monolayer deposition. tribute while at larger angles it suppresses the scattering
As Fig. 5 shows, the critical current is a sizable fraction ofstates contribution. In the limit whef=1, where the bound
the depairing current, which raises the consistency questiostate exists for ally values[Fig. 2(b)], the ensuing current
of the of the assumed steplike gap profi@.4). Self- curve is a flattened, symmetric “sin” curvénot shown.
consistent gap calculations have been carried out for the réhese results are qualitatively different from those in Ref.
latedS-N 291924255 | 253ndS-N-S configurations® These 27, where the current curve is skewed toward angtes
studies show that the self-consistent gap profile is rounded #tr/2).
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It is instructive to briefly compare th&- SN-S’ gap states,
Eq.(2.8), to other gap states in superconductor layered struc- (e=):
tures. As mentioned above, unlike “particle-in-a-box” gap
states in thes-N-S’ junction, the present gap states are eva-
nescent states of Cooper pairs, of the type encountered, e.g.,
in optics. Gap states were recently predicted for a high tem{h=):
perature superconductors junction with @2 2 gap
symmetry?® in superconductor-ferromagnetic and in
superconductor-paramagnetic junctidisThese gap states
have a different origin; the former emanates from the gap’s
sign change along nodal lines and the latter invokes a spifi=e):
flip mechanism. Both these aspects are absent in the model
considered above.
In summary, we discussed the gap state manifold in an

S-6N-S’ junction model, where $N” is an atomically thin (<h):

CURRENT-PHASE RELATION IN AN INTERMEDIATELY . ..

10 119

(e) (e) (h)y
z<0 (¥ )k(L+>+A(\If ),k<L+)—I—B(‘P )k(L ),

z>0 C(\If<e))k(R+)+ D(\Iﬂh)),kg),
7<0 (P F AP 0+ BT M),
z>0 C(~Ir<6>)k:;>+ D(\W))_kg),

(AL)
7<0 A(P®) 0+ BT M),
z>0 (\If(e))_k;?+>+C(‘If(e))kg>+D(\I'(h))_k(L—>,

z<0 AP+ B(‘l’(h))kf%

interface layer modeled by al's(z)” barrier. This barrier z>0 (W) +C(W ) +D(T M)y,

represents all atomically-thick impediments at a “clean” in-
terface, such as the electronic depletion layer. The electrowith self-explanatory notation. The coefficients are obtained
transmission coefficient across this thin barrier is largepy matching the wave functions and first derivativesg.
hence the coupling between tBeandS' banks is “interme-  (2.3)], at the interface. Similarly, the gap states are obtained
diate” (nonweal. For the sake of simplicity, the Fermi en- by omitting the source term ifAl).
ergies of theS and S’ banks are assumed equal. Unequal Considering the gap states in the=0 limit is instructive.
Fermi energies have the effect of augmenting the effectivé-engthy algebra yields the exact dispersion relation
interface barrier.

The gap state represent a broken “mixed” Cooper pair,(k(*)— ki) (k{ ™' — k") (1—e??L)(1—e??r)
i.e., a pair where each electron resides on either side of the
thin buffer layer. The gap state manifold are localized in the
direction normal to the interface plane, withyadependent
decay length that exceeds the coherence length under certain

conditions. here the symbols are defined 2.5 and (2.7). The

: Two implicg tions of the gap state presence are CalcuI""te%{i)—dependent factors in the two terms(#2) differ vastly
i.e., the junction’s supercurrent-phase relatjér), and the when 7=|A[/[2E£(q)] <1: according to2.11), thek™ mo-

maX|mum-cur_rent _magnetlc-flux dependence in a NG anta difference is of the ordeK[(q)| A|]/Ex(q) while the
(SQUID) configuration, comprised of two, paralltsN-S' =) omenta sum is of the ordekg(q). Thus the ratio of
junctions. Thej () functional dependence deviates from the e k*) factors in the two terms iA2) is of the order
Josephson junction expressigr; j . sin(y), by the presence n=(Al/[2E£(q)])% Hence, to the order?, the second term
of an appreciable “sif2¢)" term, andj; is a fraction of the jn (A2) must vanish, i.e., th&-independent factors must
depairing current. The former is a direct consequence of thge set to zero. This yields E€R.8). To the lowest order of,
gap states while the latter manifests the intermediate coluthe scattering state®=) and (<=h) entail A=D=0, while
pling regime. For a two, parall&- SN-S’ ring configuration  the (h=), (<e) states entaiB=C=0.

(SQUID) we find that the maximum-current flux dependence
deviates from the standard tw#|-S ring configuration de-
pendence by a shift in the curve’s zeros and its skewness.
This prediction calls for an experimental test.

+ (kAR (RS +KS ) (1—e 1ALt oR)

X (1—eV+oter) =0, (A2)

APPENDIX B: UNPERTURBED GREEN FUNCTION
FOR 6 POTENTIAL

The Matsubara Green function pertaining to the diagonal
parts of(2.1), G 9(z,z'), satisfies
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with the boundary conditions of decaying gt—z'|—c.
Equation(B1) is readily solved by summation of the corre-

APPENDIX A: OUTLINE OF SOLUTION OF (2.1 sponding Dyson series

For each eigenenergy there are four degenerate Stdtes.
These correspond to an “electron” or “hole” approaching
from the left and the right sides of the junction. In terms of
(2.6), the corresponding wave functions are

Go=0.+90Va) +g0vgdvg)+--, (B2)

where
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R,= bl BZ
"~ 1=gP O UlR) o

ekl v=Us(2),

im
SA)O)(Z—Z'):{—W

The relevant section ofB4) under the integral sign in
(3.1) is of the form

k (Zm[Em ih ])m
w=F 77 q)tinw
h? ] 95[?)(21_22)

0
m o \12 G(2,<02,>0)= 1—< , (B5)
. w
ESQW@)&(QHWM(m) : (B3)
o (83) o h that i) sgnw)imU
The “=” sign in (B3) is chosen such that Ifk,)>0, to €=" T ————,
abide by the boundary conditions at infinity. The closed form h2mEg(q)
summation of(B2) is which manifestly shows tha® (?(z;,2,)—0 asU—», i.e.,
the inability of current to cross an infinite strengi®
G(z,2)=9(z-2")+R, 9 (209 (2)), barrier?!
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