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The limiting configuration of theS-N-S8 junction in which theN-layer thickness is of the order of the
screening length in metals~'1–2 Å! may serve as a model for a cleanS-S8 interface. This configuration
supports oneN-layer-attached gap state~manifold!, with eigenenergy close to and less than the smaller
superconducting gap. This gap state is interpreted as the excitation associated with breakage of interface-
attached Cooper pairs, comprised of one electron from each side of the thin-N layer. The corresponding
junction’s current-phase~c! relation is calculated. The gap state is shown to contribute an appreciable
‘‘sin ~2c!’’ correction term to the ‘‘sin~c!’’ Josephson term. The corresponding maximum-current magnetic-
flux dependence of a two-junction configuration~SQUID! is predicted to have zeros shifted from their common
loci at half-integer flux quanta.@S0163-1829~96!03738-1#

I. INTRODUCTION

In the no-coupling limit between two abutting supercon-
ductors~realized, e.g., by a thick insulating buffer layer!, the
arbitrary, spatially constant order-parameter phases of the
two superconductors are obviously uncorrelated. As the
superconductor-superconductor coupling increases, yet is
‘‘weak,’’ i.e., the electron transmission coefficient through
the interface is small, Cooper-pairs tunneling becomes pos-
sible. The remarkable implication of such tunneling—the Jo-
sephson effect—is that the two superconductors’ phases in-
terlock such that theirdifference c across the buffer is
determined by the junction’s setup, e.g., the presence of an
external magnetic field or a voltage. In the opposite limit of
two ‘‘strongly’’ coupled superconductors~e.g., two abutting
superconductors without a buffer layer!, the combined sys-
tem can be regarded as a composite superconductor, and
hence cannot sustain a spatially varying phase. The objective
of this work is to analyze an intermediate system, i.e., the
coupling between the two superconductors is too strong to
render pairs transport as tunneling, yet not sufficiently strong
to eliminate a spatial phase variation. This physical regime is
the intermediate coupling regime. Specifically, we analyze
the S-dN-S8 junction, where ‘‘dN’’ denotes a thin buffer
layer, of thickness of order of the Thomas-Fermi screening
length in metals, i.e.,k F

21'1 Å. This particularS-N-S8 lim-
iting configuration may provide a model for a ‘‘clean’’S-S8
interface, which is relevant to current transport in granular
and layered superconductors.

When two dissimilar metals in equilibrium are brought
into intimate contact, the formation of adN layer is
unavoidable.1 To compensate for the two metals electron
densities difference, excess electrons migrate across the
metal-metal interface, thereby creating a thin depletion layer
of the type encountered in semiconductor junctions.2 This
depletion layer acts as abarrier against additional charge
flow between the two metals, and extends over a distance of
the order of the Thomas-Fermi screening length. When the
temperature of such a junction is sufficiently lowered, it
transforms into aS-dN-S8 junction. ThedN barrier can be
further augmented by judicious monolayer deposition during

fabrication. TheS andS8 superconductors in such a junction
are not weakly coupled since the buffer layer is atomically
thin, yet, for a suitabledN barrier~see Sec. III!, they are not
sufficiently strongly coupled to preclude a phase difference
at the interface.

This S-dN-S8 junction, and itsS-N-S8 parent junction,
were the subject of previous studies.3–6 For the latter, dis-
crete states in theN-layer with subgap energies were pre-
dicted by Andreev.3 These gap states arise from a ‘‘particle
in a box’’ situation in theN-layer, where a trapped electron
undergoes multiple Andreev reflections off the twoS-N
walls. As theN-layer thickness shrinks to ‘‘zero,’’ as in the
N→dN limiting configuration, theN-layer ‘‘box’’ is elimi-
nated, yetonesuch subgap state survives.5 This state is in-
terface attached, localized in the direction normal to the
junction’s interface, and has ac-dependent eigenenergy.
Since no confining ‘‘box’’ exists, this gap state is evanes-
cent. Similar states arise under special surface-specific con-
ditions. Examples are optical metal-air evanescent states,
metal-dielectric surface plasmons, and gap states in special-
ized semiconductor-semiconductor interfaces.7

The key result of this work is the calculation of the
S-dN-S8 current phase relationj ~c!, focusing on the gap
state contribution. At zero temperature~T50!, and within the
low incidence-angle approximation spelled out below,8,9 the
calculated current-phase relation is given to a good approxi-
mation by~see Sec. III!

j ~c;T50!

j depair~T50!
5a1sin~c!1a2sin~2c!, ~1.1!

where j depair is the depairing current and the coefficientsa1,
a2 depend on the junction’s parameters. For the parameter
range considered here,a1'0~.1! and a2/a1'1/321/4 ~see
Table I!. Expression~1.1! deviates from the standard Joseph-
son junction expression10a in two respects, i.e., the critical
current j c is a sizable fraction of the depairing current, and
the presence of a substantial second harmonic term sin~2c!.
This term is a consequence of the gap state~Sec. III!.

Nonsinusoidal, intrinsic current-phase relations, such as is
~1.1!, are known for other types of junctions such as the
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following. ~1! A long, bridge-type, ‘‘weak’’ link.11,12~a!,13 ~2!
A finite-thickness S-N-S, and probably theS-N-I -N
junctions,8,9 have been inferred to have ‘‘sin(nc)’’ terms
~‘‘ n’’ is an integer! in the current-phase relation.4 Given the
‘‘weak’’ link nature of these junctions, we speculate that the
higher harmonics terms in the current-phase relation are
small. ~3! A ‘‘nonweak’’ S-S8-S junctionnear Tc ~Ref. 14!
yields a current-phase relation reminiscent of~1.1! ~compare
Fig. 5 to Fig. 2 in Ref. 14!. All these examples, however,
differ either in the functional form or content from~1.1!. In
example ~1!, the nonsinusoidal current-phase relation is
qualitatively different than~1.1!. In example~2! the nonsi-
nusoidal terms originate from ‘‘particle-in-a-box’’ gap states,
which are qualitatively distinct from the evanescent state un-
derlying ~1.1!. With regard to example~3!, its current phase
relation has been interpreted in terms of the proximity
effect.14 There is no room for the proximity effect in the
S-dN-S8 junction ~self-consistency is discussed in the last
section!, and expression~1.1!, which is aT50 calculation, is
attributed to the gap state. Nonsinusoidal current-phase rela-
tions may also originate from extrinsic sources, such as
shorts and other junction imperfections. These, however, do
not correspond to the ‘‘clean’’ configuration under study.

The presence of the second term in~1.1! suggests an
experimental verification: the measurement of the inter-
ference of two suchS-dN-S8 junctions in a superconduct-
ing quantum interference device~SQUID! -ring configura-
tions.10~b! The corresponding maximum-current magnetic-
flux curves are calculated~Sec. IV!. These curves show a
characteristic distortion from the ‘‘canonical’’ SQUID
curves10~b!,12~b! which may serve as an experimental signa-
ture.

The paper is organized as follows. In preparation for the
current calculations, Sec. II introduces theS-dN-S8 junction

model, the gap state eigenenergy is succinctly derived in a
new representation and the gap state interpretation is dis-
cussed. Section III is devoted to the current-phase relation
calculations. In the last section we present results for a two-
junction ring configuration, or SQUID, discuss the validity
of our model, briefly compare it with related work, and sum-
marize the main results.

II. INTERFACE STATES

The analysis of theS-dN-S8 junction is carried out in
terms of the Fourier transformed Bogoliubov–de Gennes
equations.15 In the coordinate system defined in Fig. 1~a! and
in the absence of electromagnetic fields the equations take
the form

S 2
\2

2m

d2

dz2
2EF~q!2E1Ud~z!

uD~z!ue2 iw~z!

uD~z!ueiw~z!

\2

2m

d2

dz2
1EF~q!2E2Ud~z!D S u~z!

v~z! D5~0!, ~2.1!

where the symbols denote the following: The wave function
C~r ! in the Nambu representation and the Fermi energy as-
sociated withz-direction motion,EF(q), are

C~r !5S u~r !
v~r ! D5

1

2p E dq eiq•rS u~z;q!

v~z;q! D , r5~x,y!,

EF~q!5
\2kF

2~q!

2m
5EF2

\2q2

2m
5EFcos

2u>0, ~2.2!

and theq dependence ofu(z;q), v(z;q) in ~2.1! has been
suppressed. For simplicity, the bulk Fermi energy~and wave
vector! EF ~and kF! is assumed identical in theS and S8
superconductors@Fig. 1~b!#, q and u denote the lateral mo-
mentum and angle of incidence, respectively, Fig. 1~a!, and
the electron mass ism. The dN layer is modeled as a

‘‘ Ud(z)’’ barrier ~U of dimensions@El#!, since the Thomas-
Fermi screening length is considerably smaller than all other
length scales in the system.16,17,5 The gap function,
uD(z) uexp[iw(z)], is assumed to vary only in thez direction,
Fig. 1~b!, andE>0 is the excitation energy.

The boundary conditions across thedN interface atz50,
Fig. 1~b!, are the continuity of the wave function and discon-
tinuity of its first derivative

F ddz C~z;q!U
z5e

2
d

dz
C~z;q!U

z52e
G5

2mU

\2 C~z50;q!,

~2.3!

wheree→0. The system’s three dimensionality is reflected
by the need to solve~2.1! for all q vectors satisfying

FIG. 1. Coordinates system and notations.~a! The chosen coor-
dinates system and thedN buffer at z50. The circle on the left
represents the Fermi sphere, and the incidence-angleu satisfies
sin~u!'q/kF , whereq is the transverse momentum, Eq.~2.2!. ~b!
The energetics of theS-dN-S8 junction model. The common Fermi
energy,EF , the gapsuDLu, uDRu, and the ‘‘Ud(z)’’ potential are
schematically depicted.
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EF(q)>0. Except inEF(q), theq dependence is suppressed
hereafter for the sake of notational conciseness.

To complete the model, the gap functionD(z) profile has
to be specified. The assumed profile is az-coordinate step
function, Fig. 1~b!,

D~z!5u~2z!uDLueiwL1u~z!uDRueiwR, ~2.4!

wherewL andwR are the spatially-constant, arbitrary, phases
of the S andS8 superconductors, respectively.5,6 Note that
thewL andwR phases are assumed constant inboth thez and
y ~transverse! directions. The legitimacy of~2.4! is discussed
in the last section. The latter assumption implies a ‘‘small’’
junction.12~c! All in all the S-dN-S8 model is characterized
by three parameters,

c5wR2wL , d5UDR

DL
U, K~q!5F11

1

2 SUkF~q!

EF~q! D 2G2.
~2.5!

Without loss of generality onlyd.1 cases are considered
@Fig. 1~b!#, p>c>2p since thew’s phases are specified
modulus 2p, andK(q)>1. According to the small incidence
angle approximation discussed below, the latter’sq depen-
dence is neglected, i.e.,K(q)'K(0)[K.

The solutions of~2.1! are expanded in the following un-
normalized ‘‘electronlike’’~C(e)! and ‘‘holelike’’ ~C(h)! ba-
sis functions18,19

C6k~1 !
~e!

~z!5S eiw1f

1 De6 ik~1 !z,

C6k~2 !
~h!

~z!5S 1
e2 iw1f De6 ik~2 !z, ~2.6!

where the amplitudes are expressed in terms of the unortho-
dox auxiliary variablef:

E

uDu
5cosh~f!,

V

uDu
5AE22uDu25sinh~f! ~2.7a!

and the momentak~6! are16,19

k~6 !~q!56
A2m

\
AEF~q!6V. ~2.7b!

For an eigenenergy larger than the gap,~2.7a! impliesf real
and positive, while an eigenenergy in the gap implies a
purely imaginaryf. The ‘‘6’’ signs in front of the square
root symbol in ~2.7b! are chosen such that~Re@k~6!#>0,
$Im@k~1!#>0, Im@k~2!#<0%!, as required by the boundary con-
ditions at uzu→ `. Note that for E.uDu extended states,
k(1).kF(q) and k(2),kF(q), in keeping with the basis
wave function~2.6! interpretation as ‘‘electron’’ and ‘‘hole’’
states. The added quotes signs around, e.g., ‘‘electron,’’ is a
reminder that the electron and hole components in~2.6! are
always admixed to some degree.

The method for solving~2.1! is outlined in Appendix
A.4,5,18 Two eigenfunction classes are obtained: extended
states, whereE>uDLu ~since by assumptiond.1! and local-
ized gap states, withE,uDLu. In the representation~2.7a! the

gap states eigenenergies are obtained from the solutions of
the following two coupled equations forfL andfR :

cos~c!5cos~f̃L!cos~f̃R!2AK~q!sin~f̃L!sin~f̃R!,

cos~f̃L!5d cos~f̃R!, fL,R5 i f̃L,R , 2
p

2
<f̃L,R<

p

2
,

~2.8!

where the ‘‘L,R’’ indices refer to the ‘‘left’’ (S) and
‘‘right’’ ~S8! sides of the junction, respectively; see Fig. 1~b!.
The limiting cases where~d,K!5~1,1!, ~1,K!, and ~d,1!
~Refs. 5 and 6! follow trivially from ~2.8!.20

The structure of~2.8! implies several properties.~a! For
each solution $f̃L ,f̃R% there is a degenerate solution
$2f̄L ,2f̃R%. Each state is a manifold: theq dependence of
K(q) implies that the eigenenergies form acontinuum, ex-
tending from the eigenenergy corresponding to theK5K(0)
up to the bulk quasiparticle continuum threshold energyuDLu
~see below!. The ensuing gap reduction is a manifestation of
the ‘‘weakened’’ superconductivity in proximity to thedN
buffer. ~b! The c→2c transformation leaves the eigenen-
ergy invariant.~c! SinceK(q)>1 anducos~c!u<1, manipula-
tions of ~2.8! show thatf̃L and f̃R have the same sign.
Consequently, cos~c!2@cos(f̃L)#

2/d<0 and it follows that
solutions to~2.8! exist only when5

cos~c!<
1

d
. ~2.9!

Thus, barring thed51 singular case, afinite c ~i.e., a finite
current or magnetic field! is a prerequisite for the gap states
to exist.

Although ~2.8! can be solved in a closed form, its solu-
tions are best discussed numerically. Figure 2~a! shows theK
variation of the gap state energy ford52 and Fig. 2~b! is the
d variation of the gap state forK540 ~theK-parameter range
is discussed in the next section!. As K increases, i.e., thedN
barrier becomes less transparent, the eigenenergy is pushed
up rapidly toward the quasiparticle continuum atuDLu, yet
never reaches it. This trend is plausible, since in theK→`
limit when the barrier decouples the two superconductors, no
gap state exists.

The K variation in Fig. 2~a! mocks theq variation of
K(q) in ~2.8!. From ~2.5! and Fig. 1~a!, this variation is
depicted in Fig. 3. This plot implies two properties: since
only the u'p/2 angles~grazing angle incidence! are ex-
cluded in the low incidence angle approximation8,9 @see text
preceding~2.11!, below#, the ratioA„K(q)/K(0)… can attain
arbitrarily large values. Hence a continuum of curves such as
in Fig. 2~a! coexist. Secondly, the approximationK(q)
'K(0) is reasonable for a good fraction of incidence angles
u, as assumed in the small incidence angle approximation.

To gain insight into the content of the gap states~2.8!,
consider for simplicity theK51 limit, where nodN barrier
exists. Following Appendix A, the corresponding two, un-
normalized, degenerate gap states wave functionsC1 andC2
are
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C1~z!:

S ei @2C1f̃L~1!1f̃R~1!#

ei @2wR~1!1f̃R~1!#
D e2 ikL

~1 !z for z,0,

S 1

ei @2wR~1!1f̃R~1!#D e2 ikR
~2 !z for z.0.

C2~z!:

S 1

ei @2wL~2!1f̃L~2!#D eikL~2 !z for z,0,

S ei @c1f̃L~2!1f̃R~2!#

ei @2wL~2!1f̃L~2!#
D eikR~1 !z for z.0.

~2.10!

TheC1 state is ‘‘electronlike’’ on the left and ‘‘holelike’’ on
the right side of the junction’s interface and vice versa for
theC2 state. This structure also follows for theS-N-S8 junc-
tion gap states.3,4 The latter, which areN-layer Andreev-
reflected standing waves, fall into two classes: the first is
comprised of a right-bound ‘‘electron’’ and left-bound
‘‘hole’’ in the N layer, and correspondingly anS8-bank de-
caying ‘‘electron’’ tail and anS-bank decaying ‘‘hole’’ tail.
In the second class of gap states, the ‘‘electron’’ and ‘‘hole’’
roles are interchanged. As theN-layer thickness shrinks to
zero, theN-layer portion of the wave functions is eliminated
while the remaining decaying tails in the superconductors
banks have precisely the structure~2.10!. Thus these states
owe their existence to an interface rather than to the presence
of a well. Such evanescent states are encountered, e.g., in a
metallic-dielectric interface~surface plasmons! and special-
ized semiconductor interfaces.7

The wave function~2.10! haveequalamounts of electron
and hole components@u(z) andv(z) components have equal
magnitude#. This electron-hole admixture originates in the
thin dN barrier and is distinct from that invoked by the bulk
pairing interaction. Since bulk ‘‘electron’’ and ‘‘hole’’ states

energies are, respectively, above and below the gap, it may
not be surprising that an admixed state energy, such as
~2.10!, falls in the gap.

Further insight into the gap states~2.10! is obtained by
considering the corresponding decay length, embodied in the
k~6! momenta~2.7b!. For this purpose, the square root in
~2.7b! is customarily expanded to the zero order in the
small parameter h5uDu/~EF cos

2u!!1. Since typically
uDu/EF'1024, 1022 in low and high temperature supercon-
ductors, respectively, such an expansion is valid provided the
u'p/2 incidence angles are excluded. This expansion is con-
sistent with theK(q)'K(0)5K approximation. The corre-
sponding complex momentak~6! ~2.7b! are

kL,R
~6 !>sgn~f̃L,R!kF~q!6 i

usin~f̃L,R!u
pjL,R~q,T50!

,

pjL,R~q;T50!5
\2kF~q!

muDL,Ru
;

\2kF~q50!

muDL,Ru
5pjL,R~T50!,

~2.11!

FIG. 2. Examples of calculated gap state eigenenergy, Eq.~2.8!, as a function ofc in its allowed domain, Eq.~2.9!. ~a! TheK variation
for a fixedd52 case. The curves designation is (A,B,C,D)5(K51, K520, K540, K580). ~b! Thed variation for a fixedK540 case.
The curves designation is (A,B,C,D)5(d51, d52, d54, d58).

FIG. 3. The variation ofK(q), Eq.~2.5!, with incidence angleu,
Fig. 1~a!. The plotted curve is [K(q)/K(0)]1/25†11~@„K~0!…21#/
„cos~u!2…‡1/2/„K~0!…1/2.
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where jL,R(T50) is theT50 coherence length at the left
and right sides of the junction,10~c! f̃L,R are the solutions of
~2.8! and kF(q)/kF(0)5cosu. Consequently, the gap state
decay lengthG'pj~T50!/usin(f̃) u is of the order of the co-
herence length, unlessusin(f̃) u!1. ~The latter is the case
when the gap state is about to submerge into the bulk quasi-
particle continuum.! This is interpreted to imply that the gap
states are associated with interface-attachedCooper pairs.
Such pairs are comprised of one electron from each side of
the interface and hence, by a phase-space argument, are ex-
pected to be ‘‘fragile’’ in comparison to bulk Cooper pairs
~with binding energyuDLu or uDRu!. This interpretation clari-
fies the prerequisite of a thin buffer layer~considerably
smaller than the coherence length!, to allow the formation of
interface-attached ‘‘mixed’’ Cooper pairs. In standardS-I -S
andS-N-S junctions the buffer layer is too thick to meet this
prerequisite. This interpretation is also consistent with
~2.9!: it takes a finite current to break the mixed pairs.

Figure 4 shows the calculatedf̃ ’s corresponding to one of
the cases in Fig. 2~a!. In conjunction with~2.11!, this figure
demonstrates that while the gap state energy varies by a rela-
tively small amount, its decay lengthG'pj~T50!/usin(f̃) u
attains largec-modulated variations.

III. CURRENT CALCULATIONS

The gap states~2.8! qualitatively distinguish the excita-
tion spectrum of theS-dN-S8 junction from that of anS-I -S
junction, where such states are absent. Calculating the corre-
sponding modified current-phase relation10~a! is the object of
this section.

The calculation employs the Green function approach.21,18

For the geometry of Fig. 1 and aD(z) profile, the current
flows in thez direction. The corresponding expression is

j z5C0E
0

EF
dEF~q!ImH (

vn52`

` E
0

`

dz1E
2`

0

dz2D~z1!D* ~z2!

3Gv
~0!~z12z2!G2v~z1 ,z2!J ,

C052
2ueumkBT

p\3 ,

Gv~z,z8!5\ (
Ea.0

Fua~z!ua* ~z8!

i\v2Ea
1
va* ~z!va~z8!

i\v1Ea
G ,

~3.1!

wherekB andT are the Boltzmann constant and temperature,
respectively,vn5(2n11)pkBT/\, n50,61,62,... are the
Matsubara frequencies, andG v

(0)(z2z8) andGv(z,z8) are
the diagonal and full Green functions, respectively, associ-
ated with ~2.1! whereE→E1 ivn . The former is given in
Appendix B while the latter is evaluated in terms of its spec-
tral representation. By virtue of the Green functions symme-
try properties

@Gv~z1 ,z2!#*5G2v~z2 ,z1!,

@Gv
~0!~z1 ,z2!#*5G2v

~0! ~z2 ,z1!5G2v
~0! ~z1 ,z2!, ~3.2!

and the symmetrical distribution of thevn frequencies
aroundv50, simple manipulations of~3.1! yield that j z(c)
52 j z(2c), as it should. In the ‘‘Born’’ approximation,
whenGv(z,z8)'G v

(0)(z2z8) and where the gap profile is
~2.4!, the Josephson relationj z5 j c sin~c! @Refs. 10~a! and
21# follows. In the intermediate coupling regime, however,
when higher order contributions become important, deviation
from this simple current-phase relation is expected.

To simplify the calculation of~3.1!, two approximations
are introduced. First, we limit ourselves to theT→0 limit,
where thevn summation is well approximated by an integral.
Secondly, the Green function and wave functions are calcu-
lated in the small incidence-angle approximation, i.e., the
q-dependent quantitiesK(q) @Eq. ~2.5!# and k(6)(q) @Eq.
~2.11!# are replaced by theirq50 values.8,9 This approxima-
tion is expected to yield anupper limit to the current for the
following reason. The contribution to thez-directed current
from u.0 scattering events is expected to be smaller than
that of theu50 scattering event. Hence, in the approximation
where all scattering events~designated byq! are treated as a
u50 scattering event, the summed result is obviously an
overestimate. Also, since grazing-angle scattering events~u
'p/2! are primarily specular reflection, their contribution to
the z-directed current is expected to be small, in support of
the above approximation. While only a full calculation can
quantitatively assess the validity of these arguments, the ad-
ditional weak u dependence ofK(q), Fig. 3, and
kF(q)/kF(0)5cosu ~sinu'q/kF! further support the
small-u approximation.

Applying the above approximations and employing the
calculated wave functions~Appendix A! in ~3.1! yields a
current expression of the form

j z~c,d,K;T50!

j depair~T50!
5r B~c,d,K !1r S~c,d,K !,

j depair~T50!52
2

3p2

mueuEFAuDLDRu
\3 , ~3.3!

where the complicated, dimensionless,r B and r S terms de-
note the contributions of the gap~localized! and scattering

FIG. 4. An example of the calculated$f̃L ,f̃R%, Eq. ~2.8!. The
parameters are given in the heading.
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~delocalized! excited states to the current, andj depair~T50! is
the geometrical mean of theS and S8 depairing currents
densities.10~d! The latter follows since the bulk depairing cur-
rent is j depair

~bulk! (T50)52ueunevS(T50) with ne5k F
3/~3p2!

and vS5D(T50)/(\kF). Since the two superconducting
banks are assumed to have the sameEF , Fig. 1~b!, expres-
sion ~3.3! for j depair ~T50! ensues.

Before presenting the results, consider the ‘‘realistic’’
range of theK ~or U! parameter. For this purpose, the
‘‘ Ud(z)’’ barrier in ~2.1! is estimated by equating it to the
barrier of a clean metal-metal interface. In the latter, the
barrier is determined by difference in the electrostatics, ex-
change and correlation energies across the dissimilar metals
interface. Lang and Kohn1 calculations for a metallic surface
indicate that the effective single electron potential extends
over half a Fermi wavelength from the surface, and is of the
order of 1 eV. Assuming, as a rough estimate, that the pres-
ence of another metal only slightly alters these quantities,U
can be extracted from the calculations in Ref. 1. We find that
U58.3r s

21 eV Å, wheren54pr S
3/3 is the electron density

~for dissimilar metals interface, the smaller of the twoU
values should be chosen!. In particular, for a Pb/Al interface
this givesU'7.5 eV Å. Combining this with typical metallic
values,22 kF'1.7 Å21, EF'10 eV yields form~2.5! K5K~0!
53.3. This is a lower limit estimate, since deviation from an
ideally clean interface augments the barrier. Note also that
K(q).U4, and isq dependent; see Fig. 3. The latter prop-
erty and uncertainties inU imply that typical values of theK
parameter are considerably larger. Unequal Fermi energies of
S andS8 superconductors will further augment the effective
K value.

Representative results of the calculations are shown in
Fig. 5. In the relevantc domain, ther B~c! component isnot
negligible, andr S~c! and r B~c! are qualitatively distinct:
while r S~c! has no nodes, reminiscent of a ‘‘sin~c!’’ curve,
the r B~c! component has one node, reminiscent of a
‘‘sin ~2c!’’ curve. The opposite sign ofr B~c! andr S~c! terms
reflects the depletion of the scattering states strength by the

gap state. Other characteristics are the large magnitude of the
junction’s critical current—a sizable fraction of the depairing
current, the asymmetry with respect toc/p520.5, and the
approximate overall down-scaling asK21/2 with the barrier
strength parameterK. The sizable critical current reflects the
intermediate coupling regime in the system under study. On
the other hand, a ‘‘large’’ critical current may imply non-
negligible self-consistency gap corrections. This important
point is discussed in the next section. The current down-
scaling trend with increasingK reflects the approach to the
weak coupling regime as the barrier height increases.

The above results and the expectation of a ‘‘sin~nc! har-
monics’’ in S-N-S8 suggests the following parametrization
of ~3.3! @Eq. ~1.1!#:

j ~c,d,K;T50!

j dapair~T50!
5a1sin~c!1a2sin~2c!1a3sin~3c!,

~3.4!

where the coefficients are fitted to the calculated curves.
Table I shows the results for several representative examples.
The corresponding fits, not shown here, are excellent. As
Table I shows, the dominant correction to the leading
‘‘sin c’’ term is a ‘‘sin~2c!’’ component, with an appreciable
amplitudea2/a1'0.2520.3 for all the examples considered.
In view of the r B~c! curve’s shape in Fig. 5, the ‘‘sin~2c!’’
term in ~3.4! originates primarily from the gap state.

IV. DISCUSSION AND SUMMARY

The appreciable ‘‘sin~2c!’’ term in the current-phase re-
lation ~3.4! can be tested experimentally by measuring the
interference of two such junctions in a ring configuration,
i.e., a generic SQUID device.10~b!,12~b!,23 The characteristics
of the corresponding maximum-current-density magnetic-
flux dependence can be assessed by the following argument.
Consider two types of SQUIDS, i.e., a standard SQUID
where only the ‘‘sin~c!’’ term contributes, and a hypothetical
SQUID where only the ‘‘sin~2c!’’ term contributes. The cor-
responding maximum-current-density magnetic-flux curves,
denoted byj max

~1! ~F! and j max
~2! ~F!, are10~b!

jmax
~1! ~F!

2 j c
5UcosS pF

F0
D U, jmax

~2! ~F!

2 j c
5UcosS 2pF

F0
D U,

~4.1!

where F is the magnetic flux through the ring and
F05p\c/ueu51630~eV Å!1/2 is the flux quantum. Note that
j max

~1! ~F! and j max
~2! ~F! vanish atF/F0560.5,61.5,... and at

F/F0560.25,60.75,61.25,..., respectively. Consequently,
for a current-phase relation which is a mixture of the above

FIG. 5. Variation of the relative current withK, Eq. ~3.3!. The
broken line, thin solid line, and a bold solid line denoter B , r S , and
their sum, respectively. Ther B contribution exists only forc values
satisfying ~2.9!. As discussed in the text, the approximations in-
voked imply that this calculation overestimates the current.

TABLE I. Total relative-current best fit@Eq. ~3.3!#.

d K a1 a2 a3

2 20 0.39 0.13 20.026
2 40 0.28 0.087 20.012
2 80 0.21 0.056 20.006
1.2 100 0.24 20.001 0.010
4 80 0.18 0.053 20.010
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two c dependencies, as~3.4! is, the ensuingjmax~F! curve is
a coherent mixture ofj max

~1! ~F! and j max
~2! ~F!.

Utilizing the parametrization~3.4!, the calculation for two
cases of Table I are presented in Fig. 6. As the above con-
sideration indicates, the curve’s zero is shifted from the con-
ventional location atF/F050.5, with distortions on both
sides of theF/F050.5 point. These signatures may be ame-
nable to an experimental measurement. At higher tempera-
tures we conjecture that the bound state contribution will be
smeared out, and a sinusoidal current phase relation ensues.
Consequently, the distortions calculated in Fig. 6 will disap-
pear.

Next consider the validity of the present model and ap-
proximations. The assumed phase profile~2.4! implies a con-
stant@in the x,y axes, Fig. 1~a!# phase discontinuityc. The
latter corresponds to a ‘‘small’’ junction assumption,12~c! i.e.,
L,lJ , whereL is the junction’s transverse dimension and
lJ is the Josephson penetration length. In this limit the lon-
gitudinal current nonuniformity is minimal, i.e.,c is a con-
stant. To realize this situation in the intermediate coupling
regime, note that10~e! lJ5@~cF0!/„8~p2!j c(2lL1d)…#1/2,
where j c is the junction’s critical current density,lL is the
London penetration depth, and ‘‘d’’ is the dN layer thick-
ness. Adopting the valueslL'1000 Å,d'0 Å, from Fig. 5
j c(T50)'0.1j depair~T50!, EF51 eV, DL'DR50.002 eV,
\c51970 eV Å it follows from ~3.3! that
j c(T50)'2.03107 A/cm2 and lJ'2000 Å. Thus, with
modern deposition techniques, making a ‘‘small’’S-dN-S8
junction is feasible, as well as enhancing thedN barrier with
judicious monolayer deposition.

As Fig. 5 shows, the critical current is a sizable fraction of
the depairing current, which raises the consistency question
of the of the assumed steplike gap profile~2.4!. Self-
consistent gap calculations have been carried out for the re-
latedS-N,8,9,19,24,25S-I ,25 andS-N-S configurations.26 These
studies show that the self-consistent gap profile is rounded at

the interface. ForS-N at T50,8 however, the rounding is
minimal. At a finite temperatureT/Tc'0.5, the extension of
the rounding increases and is of the order of theN-layer
thickness.25,26 These calculations imply that in our case, of
anatomicallythick N layer and atT50, the step-shaped gap
profile ~2.4! is a reasonable approximation. In a related con-
sideration, our calculations invoke the small-incidence angle
approximation@u in Fig. 1~a!#. As noted in Sec. II, this im-
plies that the calculated current is an overestimate. There-
fore, the ‘‘true’’ currents are probably smaller than calcu-
lated here, which lends additional support to the validity of
the steplike gap profile~2.4!. A quantitative examination of
this issue is deferred to another publication.

The present work complements other microscopic calcu-
lations of theS-N-S andS-Sm-S junctions ~Sm denotes a
semiconductor! ~Refs. 17 and 27! and related configura-
tions.28 The former focuses on configurations where the two
banks have the same gap@d51, Eq. ~2.5!# and the ‘‘N’’ or
‘‘Sm’’ width is finite and delineated by twod barriers. All
temperatures are considered. By comparison, this work con-
siders an asymmetric configuration, containing oned barrier
and onlyT50. One consequence of the difference in con-
figurations is that here only a ‘‘single,’’ evanescent state ex-
ists ~disregarding the lateral momentum dependence; see
Sec. II! provided thatc is largeandd.1 @Eq. ~2.9! and Fig.
2~b!#. By comparison, the gap states in Refs. 3, 4, 27, and 28
form sequence, which exists for allc values. As Fig. 5
shows, ford.1 the current curve is skewed toward angles
c,up/2u since at these angles the bound state does not con-
tribute while at larger angles it suppresses the scattering
states contribution. In the limit whend51, where the bound
state exists for allc values@Fig. 2~b!#, the ensuing current
curve is a flattened, symmetric ‘‘sin’’ curve~not shown!.
These results are qualitatively different from those in Ref.
27, where the current curve is skewed toward anglesc.
up/2u.

FIG. 6. Two examples of SQUID calculations; see Table I. The solid line isujmax~F!/~2 j depair!u, where j ~c! is given by the fitted form
~3.4! and the extremum calculation follows Ref. 10~b!. The fluxesF andF0 are defined in text; see after Eq.~4.1!. The broken line is the
standard Josephson junction result,ucos~pF/F0!u, normalized to coincide with the solid line atF50. The parameters of each example are
indicated in the headings.
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It is instructive to briefly compare theS-dN-S8 gap states,
Eq. ~2.8!, to other gap states in superconductor layered struc-
tures. As mentioned above, unlike ‘‘particle-in-a-box’’ gap
states in theS-N-S8 junction, the present gap states are eva-
nescent states of Cooper pairs, of the type encountered, e.g.,
in optics. Gap states were recently predicted for a high tem-
perature superconductors junction with adx22y2 gap
symmetry,29 in superconductor-ferromagnetic and in
superconductor-paramagnetic junctions.30 These gap states
have a different origin; the former emanates from the gap’s
sign change along nodal lines and the latter invokes a spin
flip mechanism. Both these aspects are absent in the model
considered above.

In summary, we discussed the gap state manifold in an
S-dN-S8 junction model, where ‘‘dN’’ is an atomically thin
interface layer modeled by a ‘‘Ud(z)’’ barrier. This barrier
represents all atomically-thick impediments at a ‘‘clean’’ in-
terface, such as the electronic depletion layer. The electron
transmission coefficient across this thin barrier is large,
hence the coupling between theS andS8 banks is ‘‘interme-
diate’’ ~nonweak!. For the sake of simplicity, the Fermi en-
ergies of theS and S8 banks are assumed equal. Unequal
Fermi energies have the effect of augmenting the effective
interface barrier.

The gap state represent a broken ‘‘mixed’’ Cooper pair,
i.e., a pair where each electron resides on either side of the
thin buffer layer. The gap state manifold are localized in the
direction normal to the interface plane, with ac-dependent
decay length that exceeds the coherence length under certain
conditions.

Two implications of the gap state presence are calculated,
i.e., the junction’s supercurrent-phase relationj ~c!, and the
maximum-current magnetic-flux dependence in a ring
~SQUID! configuration, comprised of two, parallelS-dN-S8
junctions. Thej ~c! functional dependence deviates from the
Josephson junction expression,j5 j c sin~c!, by the presence
of an appreciable ‘‘sin~2c!’’ term, and j c is a fraction of the
depairing current. The former is a direct consequence of the
gap states while the latter manifests the intermediate cou-
pling regime. For a two, parallelS-dN-S8 ring configuration
~SQUID! we find that the maximum-current flux dependence
deviates from the standard twoS-I -S ring configuration de-
pendence by a shift in the curve’s zeros and its skewness.
This prediction calls for an experimental test.
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APPENDIX A: OUTLINE OF SOLUTION OF „2.1…

For each eigenenergy there are four degenerate states.18,19

These correspond to an ‘‘electron’’ or ‘‘hole’’ approaching
from the left and the right sides of the junction. In terms of
~2.6!, the corresponding wave functions are

~e⇒ !:
z,0
z.0

~C~e!!k
L
~1 !1A~C~e!!2k

L
~1 !1B~C~h!!k

L
~2 !,

C~C~e!!k
R
~1 !1D~C~h!!2k

R
~2 !,

~h⇒ !:
z,0
z.0

~C~h!!2k
L
~2 !1A~C~e!!2k

L
~1 !1B~C~h!!k

L
~2 !,

C~C~e!!k
R
~1 !1D~C~h!!2k

R
~2 !,

~A1!

~⇒e!:
z,0
z.0

A~C~e!!2k
L
~1 !1B~C~h!!k

L
~2 !,

~C~e!!2k
R
~1 !1C~C~e!!k

R
~1 !1D~C~h!!2k

L
~2 !,

~⇐h!:
z,0
z.0

A~C~e!!2k
L
~1 !1B~C~h!!k

L
~2 !,

~C~h!!k
R
~2 !1C~C~e!!k

R
~1 !1D~C~h!!2k

R
~2 !,

with self-explanatory notation. The coefficients are obtained
by matching the wave functions and first derivatives,@Eq.
~2.3!#, at the interface. Similarly, the gap states are obtained
by omitting the source term in~A1!.

Considering the gap states in theU50 limit is instructive.
Lengthy algebra yields the exact dispersion relation

~kL
~1 !2kR

~2 !!~kL
~2 !2kR

~1 !!~12e2fL!~12e2fR!

1~kL
~1 !1kL

~2 !!~kR
~1 !1kR

~2 !!~12e2 ic1fL1fR!

3~12eic1fL1fR!50, ~A2!

where the symbols are defined in~2.5! and ~2.7!. The
k~6!-dependent factors in the two terms in~A2! differ vastly
whenh5uDu/[2EF(q)]!1: according to~2.11!, thek~6! mo-
menta difference is of the order [KF(q)uDu]/EF(q) while the
k~6! momenta sum is of the order 2kF(q). Thus the ratio of
the k~6! factors in the two terms in~A2! is of the order
h5„uDu/[2EF(q)] …

2. Hence, to the orderh2, the second term
in ~A2! must vanish, i.e., thek~6!-independent factors must
be set to zero. This yields Eq.~2.8!. To the lowest order ofh,
the scattering states~e⇒! and ~⇐h! entailA5D50, while
the ~h⇒!, ~⇐e! states entailB5C50.

APPENDIX B: UNPERTURBED GREEN FUNCTION
FOR d POTENTIAL

The Matsubara Green function pertaining to the diagonal
parts of~2.1!, G v

(0)(z,z8), satisfies

F \2

2m

d2

dz2
2Ud~z!1EF~q!1 i\vGGv

~0!~z,z8!5\d~z2z8!,

~B1!

with the boundary conditions of decaying atuz2z8u→`.
Equation~B1! is readily solved by summation of the corre-
sponding Dyson series

Gv
05gv

~0!1gv
~0!Vgv

~0!1gv
~0!Vgv

~0!Vgv
~0!1••• , ~B2!

where
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gv
~0!~z2z8!5F2

im

\kv
Geikvuz2z8u, V5Ud~z!,

kv56S 2m\2 @EF~q!1 i\v# D 1/2
>sgn~v!kF~q!1 i uvuS m

2EF~q! D
1/2

. ~B3!

The ‘‘6’’ sign in ~B3! is chosen such that Im~kv!.0, to
abide by the boundary conditions at infinity. The closed form
summation of~B2! is

Gv
~0!~z,z8!5gv

~0!~z2z8!1Rvgv
~0!~z!gv

~0!~z8!,

Rv5
U/\

12gv
~0!~0!~U/\!

. ~B4!

The relevant section of~B4! under the integral sign in
~3.1! is of the form

Gv
~0!~z1,0,z2.0!5

gv
~0!~z12z2!

12ev
, ~B5!

ev52
sgn~v!imU

\A2mEF~q!
,

which manifestly shows thatG v
(0)(z1 ,z2)→0 asU→`, i.e.,

the inability of current to cross an infinite strengthd
barrier.21
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