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We have carried out extensive series studies, atT50 and at high temperatures, of two-chain and three-chain
spin-half ladder systems with antiferromagnetic intrachain and both antiferromagnetic and ferromagnetic in-
terchain couplings. Our results confirm the existence of a gap in the two-chain Heisenberg ladders for all
nonzero values of the interchain couplings. Complete dispersion relations for the spin-wave excitations are
computed. For three-chain systems, our results are consistent with a gapless spectrum. We also calculate the
uniform magnetic susceptibility and specific heat as a function of temperature. We find that asT→0, for the
two-chain system the uniform susceptibility goes rapidly to zero, whereas for the three-chain system it ap-
proaches a finite value. These results are compared in detail with previous studies of finite systems.@S0163-
1829~96!06226-1#

I. INTRODUCTION

The magnetic properties of low dimensional systems have
been the subject of intense theoretical and experimental re-
search in recent years. It is by now well established that
one-dimensional Heisenberg antiferromagnets with integer
spin have a gap in the excitation spectrum, whereas those
with half-integer spin have gapless excitations. The former
have a finite correlation length, while for the latter it is infi-
nite with the spin-spin correlation function decaying to zero
as a power law. In two dimensions, the unfrustrated square-
lattice Heisenberg model has long range Ne´el order in the
ground state. It has gapless Goldstone modes as expected. In
recent years much interest has focused on systems with in-
termediate dimensionality and on questions of crossovers be-
tween d51 and d52. One approach to this problem has
been to study a two-dimensional system where the coupling
for the spins separated along thex axis is different from that
for those separated along they axis.1 It has been suggested
that an alternative way to explore this issue is through the
Heisenberg spin ladders consisting of a finite number of
chains coupled together, with a couplingJi along the chains
andJ' between them. These systems have been the subject
of considerable recent theoretical and experimental interest.

Experimentally, two-chainS5 1
2 ladders are realized in

vanadyl pyrophosphate~VO! 2P2O7 ~Ref. 2! and in the

strontium cuprate SrCu2O3,
3 whereas three-chainS5 1

2 lad-
ders are realized in the strontium cuprate SrCu3O5.

3

Theoretically, a number of striking predictions have been
made for such systems. These have been recently reviewed
by Dagotto and Rice.4 Barneset al.5,6 carried out extensive
Monte Carlo studies of the excitation spectrum and the mag-
netic susceptibility for two-chain ladders with antiferromag-
netic interchain coupling. Whiteet al.7 and Hida8 have used

the density-matrix renormalization method to study the spin
gap. Watanabe9 has applied the numerical diagonalization
method to finite systems of two-chain ladders with ferromag-
netic interchain coupling. Azzouzet al.10 developed a mean-
field theory and used the density-matrix renormalization
group method to study two-chain ladders. Gopalan, Rice, and
Sigrist11 presented a variational wave function for the ground
state of the two-leg ladder. The extension of the Lieb-Shultz-
Mattis theorem to odd-chain ladders by Affleck12 and Rojo13

implies that spin ladders with odd numbers of legs have ei-
ther degenerate ground states or gapless excitations. Troyer
et al.14 have used improved versions of the quantum transfer-
matrix algorithm to study the temperature dependence of the
susceptibility, specific heat, correlation length, etc. of two-
chain ladders. Finite-size scaling was used by Hatano and
Nishiyama15 for multileg ladders, and recently Frischmuth
et al.16 and Sandviket al.17 have applied quantum Monte
Carlo simulation to compute the temperature dependence of
the uniform susceptibility and internal energy for spin lad-
ders with up to six legs. One clear result from all these stud-
ies is that ladders with an even number of legs have an en-
ergy gap, short range correlation and a ‘‘spin liquid’’ ground
state. On the other hand, ladders with an odd number of legs
have gapless excitations, quasi long range order, and a
power-law falloff of spin-spin correlations, similar to single
chains. Experiments also confirm these features.

We have carried out extensive series studies of two-chain
and three-chain ladder systems with both antiferromagnetic
and ferromagnetic interchain couplingJ' , via Ising expan-
sions and dimer expansions atT50, and also by high tem-
perature series expansions. Our results confirm the existence
of a gap in the two-chain system and delineate the phase
diagram in the parameter space of Ising anisotropy and the
parameter ratioJ' /Ji. The complete spin-wave excitation
spectra are computed. For the three-chain system we are
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unable to exclude the possibility of a gap from a direct cal-
culation of the excitation spectra. However, several other cal-
culations, such as the phase boundary with Ising anisotropy
and uniform susceptibility, led us to the conclusion that the
spectrum for the three-chain system is gapless. In addition,
we develop a high temperature series expansion for the uni-
form magnetic susceptibility and the specific heat for two-
chain and three-chain systems withJi5J' ; the susceptibil-
ity of two-chain ladders is as expected for a system with a
spin gap while that of three-chain ladders appears to remain
finite in the zero-temperature limit, suggesting the absence of
a spin gap. We compare our results in detail with previous
calculations.

II. SERIES EXPANSIONS

The Hamiltonian of a spin ladder withnl legs is given by

H5Ji (
i ,l51

l5nl

Sl ,i•Sl ,i111J' (
i ,l51

l5nl21

Sl ,i•Sl11,i ~1!

whereSl ,i denotes theS51/2 spin at thei th site of thel th
chain. Ji is the interaction between nearest neighbor spins
along the chain andJ' is the interactions between nearest
neighbor spins along the rungs. We denote the ratio of cou-
plings asy, that is,y[J' /Ji. In the present paper the intra-
chain coupling is taken to be antiferromagnetic~that is,
Ji.0) whereas the interchain couplingJ' can be either an-
tiferromagnetic or ferromagnetic. This includes the values of
interest in the experimental systems discussed earlier where
J';Ji. Without loss of generality, we can setJi51 hereaf-
ter.

We have carried out three different expansions for the
system. The first is the expansion about the Ising limit at
zero temperature for both two- and three-chain ladders. We
have computed the ground state properties as well as the
spin-wave excitation spectra by this expansion. The second
is the dimer expansion, again atT50. This expansion can be
done for the two-chain system with antiferromagnetic inter-
chain coupling only. The third is the high temperature series
expansion for the uniform susceptibility of the two-chain and
three-chain ladders withy51.

A. Ising expansions

To perform an expansion about the Ising limit for this
system, we introduce an anisotropy parameterx, and write
the Hamiltonian in Eq.~1! as

H5H01xV ~2!

where

H05 (
i ,l51

l5nl

Sl ,i
z Sl ,i11

z 1y (
i ,l51

l5nl21

Sl ,i
z Sl11,i

z ,

V5 (
i ,l51

l5nl

~Sl ,i
x Sl ,i11

x 1Sl ,i
y Sl ,i11

y !

1y (
i ,l51

l5nl21

~Sl ,i
x Sl11,i

x 1Sl ,i
y Sl11,i

y !. ~3!

The limitsx50 andx51 correspond to the Ising model, and
the Heisenberg model respectively. The operatorH0 is taken
as the unperturbed Hamiltonian, with the unperturbed ground
state being the usual Ne´el state for antiferromagnetic inter-
chain coupling, and a fully ordered collinear state for ferro-
magnetic interchain coupling. The operatorV is treated as a
perturbation. It flips a pair of spins on neighboring sites. The
Ising expansion method has been previously reviewed in
several articles,18,19 and will not be repeated here. The cal-
culations involved a list of 9184 linked clusters of up to 16
sites for the two-chain ladder, and 14 082 linked clusters of
up to 12 sites for the three-chain ladder, together with their
lattice constants and embedding constants.

Series have been calculated for the ground state energy
per siteE0 /N, the staggered magnetizationM for y.0 ~or
collinear magnetizationM for y,0), the parallel staggered/
collinear susceptibilityx i, and the uniform perpendicular
susceptibility x per site for several ratio of couplings
y560.1,60.25,60.5,60.75,61,61.5,62,64,68 up to
orderx16 for two-chain ladders, andx12 for three-chain lad-
ders~the series for uniform perpendicular susceptibilityx is
one order less in each case!. The resulting series for
y561 for the two-chain and three-chain systems are listed
in Tables I and II; the series for other value ofy are available
on request.

To analyze these series, we first performed a standard
Dlog Pade´ analysis of the magnetizationM and parallel sus-
ceptibility x i series. We found that for two-chain ladders, the
series lead to a simple power-law singularity atx,1:

M;~12x/xc!
b, x i;~12x/xc!

2g, ~4!

with the indicesb andg close to 1/8 and 7/4, respectively.
This transition atx,1, with criticality in the universality
class of the two-dimensional~2D! Ising model, is strong evi-
dence that in the Heisenberg limit the system has a disor-
dered ground state with a spin gap, as is the case for the
spin-1 chain.20 In contrast, for the three-chain ladders, the
series analysis showed poor convergence and suggested a
singularity atx>1. This implies that for the three-chain lad-
ders, the system is analogous to the spin-half chain, with
gapless spectra and power-law correlations in the Heisenberg
limit.

Figure 1 shows the phase boundary for two-chain ladders
as a function ofy. It is interesting to note the different be-
havior for y.0 and for y,0: for antiferromagnetically
coupled two-chain ladders (y.0), xc decreases asy in-
creases, and in the limit ofy→`, xc will approach 0. But for
ferromagnetically coupled two-chain ladders (y,0), xc first
decreases as the absolute value ofy increases from zero, but
then the trend reverses and it, once again, approaches 1 as
y→2`. To understand this behavior, we can map the sys-
tem for large negativey to a spin-1 chain with on-site
~single-ion! anisotropy:

H5
1

2 (
i

@Si ,tot•Si11, tot1y~12x!~Si ,tot
z !2# ~5!

whereSi ,tot denotes theS5 1 spin at thei th site of the chain.
We can get the asymptotic behavior of the phase boundary in
the limit of y→2` by studying the following spin-1 chain
with on-site anisotropy:
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H5
1

2(i @Si ,tot
z Si11,tot

z 2c~Si , tot
z !2

1x8~Si ,tot
x Si11,tot

x 1Si ,tot
y Si11, tot

y !#. ~6!

For this model, we have carried out series expansions inx8
to orderx814 ~i.e., 14 sites! for staggered magnetizationM
for several different values ofc: c50.275,0.29,0.3,0.325,
and performed a standard Dlog Pade´ analysis to find the
critical valuec8 which gives the singularity ofM at x851.
We getc850.29(1). Hence, the asymptotic behavior of the
phase boundary in the limity→2` is given by

xc5110.29/y ~7!

which is also shown in Fig. 1 as a bold line near
y/(11uyu)521.

Figure 2 gives the results of the ground state energy per
site E0 /N versusy for both two-chain and three-chain lad-
ders at the Heisenberg pointx51. Our results for the ground
state energy agree extremely well with the recent quantum
Monte Carlo simulation.16 In Fig. 3, we present the uniform
perpendicular susceptibility atT50.

We also performed the Ising expansion for the triplet
spin-wave excitation spectrum of two-chain and three-chain
ladders using Gelfand’s method.21 To overcome a possible
singularity atx,1 in the two-chain ladders, and to get a
better convergent series in the Heisenberg limit, we add the
following staggered field term to the Hamiltonian in Eq.~2!:

TABLE I. Series coefficients for the ground state energy per siteE0 /N, the staggered/collinear magnetizationM , and staggered parallel
susceptibilityx i . Coefficients ofxn are listed for both the spin-1/2 two-chain and three-chain ladders withy561.

n E0 /N M x i

Two-chain ladders withy521
0 23/8 1/2 0
2 21.25000000000031021 21.25000000000031021 2.50000000000031021

4 21.56250000000031022 26.94444444444431022 4.13194444444431021

6 2.44321469907431023 1.39847366898131023 9.96445352687831022

8 23.39105400430831023 24.29358411163631022 6.56170413520331021

10 23.08392945943131024 29.45998349752731023 2.59240287521231021

12 25.75872581396431024 22.51778828614631022 8.63336755124331021

14 23.50860932965931024 21.29081952374131022 5.19424103953031021

16 23.65833125782731024 22.22048967307131022 1.197591274920

Two-chain ladders withy51
0 23/8 1/2 0
2 21.87500000000031021 21.87500000000031021 3.75000000000031021

4 29.11458333333331023 21.17621527777831021 9.75115740740731021

6 26.56467013888931023 21.29825544946031021 2.225074548290
8 21.01119178803431022 22.56776806448131021 6.466470614293
10 24.43891890865531023 23.30856731026131021 1.4360495947553101

12 21.14904573640431022 26.75483872934731021 3.6616348312903101

14 29.01453865767731023 21.059678748481 8.2361612723823101

16 21.86042477234131022 22.087462804052 1.9624590132573102

Three-chain ladders withy521
0 25/12 1/2 0
2 21.11111111111131021 21.01851851851931021 1.91358024691431021

4 29.12698412698431023 22.76551608297631022 1.23545149511931021

6 23.43000774375331023 22.22900286111231022 1.70259193632131021

8 24.47984021737331024 26.77801639759231023 9.22896019287231022

10 21.15088817420531023 21.34855257903931022 1.81445204694031021

12 25.49398782859031024 29.54972522263931023 1.78568089210731021

Three-chain ladders withy51
0 25/12 1/2 0
2 21.77777777777831021 21.55185185185231021 2.76691358024731021

4 2.09935332157631023 23.01063501395131022 2.52079207994831021

6 25.48629104071131023 24.56713848581131022 4.78160266462531021

8 29.77023225775831024 22.67653461400931022 5.28912561175331021

10 28.54022231736431024 22.41311083017431022 6.37103243238431021

12 27.96388742693231024 23.02610562506531022 1.024475965994
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DH5t~12x!(
i

~21! iSi
z. ~8!

DH vanishes atx51. We adjust the coefficientt to get the
smoothest terms in the series, with a typical value being
t52. We computed the Ising expansion for the triplet spin-
wave excitation spectrume(k) up to orderx15 for two-chain
ladders, and up to orderx11 for three-chain ladders. These
series are too long to be listed here, but are available on
request.

These series have been analyzed by using integrated first-
order inhomogeneous differential approximants.22 For the
two-chain ladder, there are two bands of excitations; Fig. 4
shows the dispersione(k), with ky5p, for antiferromag-
netic interchain coupling. The other band withky50 is re-
lated to this bye(kx ,0)5e(p2kx ,p). This is simply due to
the staggered field, which doubles the spectrum. As a com-

parison, the dispersion relation of a single chain~that is, the
case ofy50) is also shown. It can be seen from the graph
that in the limit y→0, the dispersion relation has a simple
cosine function with a period of 2p, and in the limit
y→`, the dispersion relation also has a simple cosine form
with a period of 4p, and a gap in the spectrum. Barnes and
Riera6 argued that the dispersion, for ally, can be fitted by
combining these two functions into the following form:

FIG. 1. The phase boundary for two-chain ladder. The asymp-
totic behavior asy→2` predicted by a spin-1 single chain system
with on-site anisotropy is also shown by the bold line.

FIG. 2. The ground state energy per siteE0 /N as function of
y for two-chain and three-chain ladders. The results for a two-chain
ladder withy>1 are from the dimer expansions, and the rest of the
results are from the Ising expansions. The error bars are much
smaller than the symbols.

TABLE II. Series coefficients for the perpendicular susceptibilityx' . Coefficients ofxn are listed for two-chain and three-chain ladders
with y561.

n Two-chainy521 Two-chainy51 Three-chainy521 Three-chainy51

0 1/3 1/3 11/36 11/36
1 22/9 21/2 21/6 213/30
2 1.48148148148131022 5.66666666666731021 1.26653439153431022 4.65222663139331021

3 5.30864197530931023 27.14351851851931021 21.11213466868231022 25.16047496570631021

4 22.12000293944731022 7.54492063492131021 1.13433158041731022 5.43419182689631021

5 7.28305250238031022 29.20387699987431021 22.78797167635831022 26.03787052756531021

6 26.50751940616731022 9.54244324038431021 3.58883181593231022 6.19264327408831021

7 29.85051512471131023 21.220670122297 23.49651671078531022 26.53854895972031021

8 23.32164236529831023 1.243330662897 3.36195612766831022 6.83689845209931021

9 3.22530315148931022 21.570424359869 24.58394531728731022 27.20796378076831021

10 22.16431981162531022 1.612928972471 4.08488556107631022 7.44641524632331021

11 22.22916487994331022 22.181953857121 24.49510904357031022 27.94490922069731021

12 28.38660726666331023 2.245984866808
13 1.98051334101131022 23.034629087270
14 21.12843984008231022 3.158070079722
15 21.62581872334731022 24.546560413718
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e~kx ,p!25e~0,p!2cos2~kx/2!1e~p,p!2sin2~kx/2!

1c0sin
2~kx!. ~9!

For y51, the Ising expansions give an energy gap of
e(p,p)50.44(7). A more precise estimate is obtained by

the dimer expansions, which givee(p,p)50.504(7). We
will discuss the dimer expansions later.

For ferromagnetic interchain coupling, the two bands of
spectra are independent, but each band is a simple cosine
function with a gap at the minimum and symmetric about
kx5p/2, as shown in Figs. 5 and 6. As noted in Fig. 4, it is
clear that the spin gap decreases smoothly asy is reduced,
and vanishes aty50. These results agree well with previous
calculations.6

For the three-chain system, there are three bands. In the
Ising limit, two bands have initial excitations located in the
side rows, and the third band has it in the middle row. Fig-
ures 7 and 12 show the spectrum of the three bands for
ferromagnetic and antiferromagnetic interchain couplings.
From these graphs, we can see that all of the dispersion
relations have a simple cosine function~except for the
middle row band with largey) with a minumum located at
kx50 ~or kx5p by symmetry!; where two of these three
bands have a definite gap, the third band~the symmetric
excitations for the outer chains! is consistent with a gapless
spectrum. The estimate for the gap in the third band for all
y values is 0.2(3)@except for the case ofy50 where we got
0.08~10!#. We note here that we have rather large uncertain-
ties in the gap due to the fact that one class of approximants
give values very close to zero, whereas another class of ap-
proximants give a much larger value. Hence we cannot ex-
clude the possibility of a finite gap simply from these calcu-
lations. But given our earlier results on the phase boundary
with Ising anisotropy, we believe the spectra are gapless.

FIG. 3. The uniform susceptibilityx at T50 as a function of
y for the three-chain ladder.

FIG. 4. The dispersions of the spin-triplet excitated states of the
two-chain ladder with antiferromagnetic interchain couplingy52,
1.5, 1, 0.75, 0.5, 0.25, 0.1, and 0~shown in the figure from the top
to the bottom, respectively!, for ky5p; the results fory>1 are
from the dimer expansion, and the results fory,1 are from the
Ising expansion.

FIG. 5. Theky50 dispersions of the spin-triplet excitated states
of the two-chain ladder with ferromagnetic interchain couplings
y50, 20.25,20.5,20.75,21, 21.5,22, and24. For the data
shown,e(p/2) decreases monotonically with increasingy.
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B. Dimer expansions

For two-chain ladders, with antiferromagnetic coupling
between the chains, there is an alternativeT50 expansion
that can be developed. In the limit that the exchange cou-
pling along the rungsJ' is much larger than the coupling
Ji along the chains, that is,y@1, the rungs interact only
weakly with each other, and the dominant configuration in
the ground state is the product state with the spin on each
rung forming a spin singlet, so the Hamiltonian in Eq.~1!
can be rewritten as

H/J'5H01~1/y!V ~10!

where

H05 (
i ,l51

l5nl21

Sl ,i•Sl11,i , V5 (
i ,l51

l5nl

Sl ,i•Sl ,i11 . ~11!

We can treat the operatorH0 as the unperturbed Hamil-
tonian. The eigenstates of a single pair of spins, or dimers,
consist of one singlet state with totalS50 and eigenenergy
Es523/4:

uC&s5
1

A2
~ u↑↓&2u↓↑&) ~12!

and three triplet states with totalS51 and eigenenergy
Et51/4:

FIG. 6. The dispersions of the spin-triplet excitated states of the
two-chain ladder with ferromagnetic interchain couplingy522,
21.5,21, 20.75,20.5,20.25,20.1, and 0, forky5p.

FIG. 7. The dispersions of the spin-triplet excitated states of the
three-chain ladder with antiferromagnetic interchain coupling
y51.5, 1, 0.75, 0.5, 0.25, and 0, for symmetric excitations in the
outer chains.

FIG. 8. The dispersions of the spin-triplet excitated states of the
three-chain ladder with antiferromagnetic interchain coupling
y52, 1.5, 1, 0.75, 0.5, 0.25, 0.1, and 0, for antisymmetric excita-
tions in the outer chains.
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FIG. 9. The dispersions of the spin-triplet excitated states of the
three-chain ladder with antiferromagnetic interchain coupling
y52, 1.5, 1, 0.75, 0.5, 0.25, 0.1, and 0, for excitations in the middle
chain.

FIG. 10. The dispersions of the spin-triplet excitated states of
the three-chain ladder with ferromagnetic interchain coupling
y50, 20.5, 21, and22 for symmetric excitations in the outer
chains. For the data showne(p/2) decreases monotonically with
increasingy.

FIG. 11. The dispersions of the spin-triplet excitated states of
the three-chain ladder with ferromagnetic interchain coupling
y522,21.5,21,20.75,20.5,20.25,20.1, and 0, for antisym-
metric excitations in the outer chains.

FIG. 12. The dispersions of the spin-triplet excitated states of
the three-chain ladder with ferromagnetic interchain coupling
y522, 21.5,21, 20.75,20.5,20.25,20.1, and 0, for excita-
tions in the middle chain.
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uC& t5F 1

A2
~ u↑↓&1u↓↑&),u↑↑&,u↓↓&G . ~13!

The operatorV is treated as a perturbation. It can cause ex-
citations on a pair of neighboring dimers. Details of the
dimer expansions and the matrix elements ofV are given in
Ref. 19, and will not be repeated here.

We have carried out the dimer expansion for the ground
state energy to order (1/y)9 and for the lowest lying triplet
excitations to order (1/y)8. The series for the ground state
energy per siteE0 /N is

E0 /N5J'@23/823/~16y2!23/~32y3!13/~256y4!

145/~512y5!1159/~2048y6!2879/~32 768y7!

24527/~32 768y8!2248 391/~2 097 152y9!#

~14!

and the series for the excitation spectrum are listed in Table
III. Again, we use the integrated first-order inhomogeneous

differential approximants22 to extrapolate the series. For the
ground state energy, we getE0 /N520.5785(5) fory51,
which agrees very well with the recent quantum Monte Carlo
~QMC! result, E0 /N520.5780(2), of Frischmuthet al.16

For the excitation spectrum, the dimer expansions give much
better results than the Ising expansions for the case of
y.1. For y;1 the dimer expansions also appear to con-
verge better. The overall spectra determined from the com-
bined study of dimer and Ising expansions are shown in Fig.
4.

C. High temperature series expansions

We now turn to the thermodynamic properties of the lad-
der system at finite temperatures. We have developed high
temperature series expansions for the uniform magnetic sus-
ceptibility x(T) and the specific heatC(T), for two-chain
and three-chain system withJ'5Ji,

x~T!5
b

N(
i

(
j

TrSi
zSj

ze2bH

Tre2bH , C~T!5
]U

]T
, ~15!

TABLE III. Series coefficients for the dimer expansion of the two-chain triplet spin-wave excitation spectrum
e(kx ,ky5p)5y(n,man,m(1/y)

ncos(mkx). Nonzero coefficientsan,m up to ordern58 are listed.

(n,m) an,m (n,m) an,m (n,m) an,m (n,m) an,m

~0, 0! 1.000000000 ~5, 1! 22.03125000031021 ~3, 3! 1.25000000031021 ~5, 5! 5.46875000031022

~2, 0! 7.50000000031021 ~6, 1! 9.37500000031022 ~4, 3! 1.25000000031021 ~6, 5! 7.81250000031022

~3, 0! 3.75000000031021 ~7, 1! 3.29345703131021 ~5, 3! 29.37500000031022 ~7, 5! 26.04248046931022

~4, 0! 22.03125000031021 ~8, 1! 2.55584716831021 ~6, 3! 23.16406250031021 ~8, 5! 22.65716552731021

~5, 0! 26.25000000031021 ~2, 2! 22.50000000031021 ~7, 3! 22.22290039131021 ~6, 6! 24.10156250031022

~6, 0! 25.00000000031021 ~3, 2! 22.50000000031021 ~8, 3! 2.75268554731021 ~7, 6! 26.83593750031022

~7, 0! 2.96630859431021 ~4, 2! 23.12500000031022 ~4, 4! 27.81250000031022 ~8, 6! 4.95758056631022

~8, 0! 1.120300293 ~5, 2! 2.03125000031021 ~5, 4! 29.37500000031022 ~7, 7! 3.22265625031022

~1, 1! 1.000000000 ~6, 2! 1.71875000031021 ~6, 4! 7.12890625031022 ~8, 7! 6.15234375031022

~3, 1! 22.50000000031021 ~7, 2! 21.72851562531021 ~7, 4! 2.69042968831021 ~8, 8! 22.61840820331022

~4, 1! 23.12500000031021 ~8, 2! 25.04745483431021 ~8, 4! 1.69052124031021

TABLE IV. Series coefficients for high temperature series expansion of the uniform susceptibilityx(T)5b( icib
i /(nl2

i14i !), and the
specific heatC(T)5b2( icib

i /(nl2
i15i !). Coefficientsci are listed for two-chain and three-chain ladders withy51.

i x(T) for two-chain x(T) for three-chain C(T) for two-chain C(T) for three-chain

0 8 12 36 60
1 212 220 72 120
2 12 28 2270 2522
3 6 220 22640 25040
4 220 4 90 3270
5 2162 2160 141876 318780
6 2630 21052 580797 1075767
7 9991 17298 210663200 228792032
8 88228 80468 2118074186 2291518730
9 2779322 21467200 946669020 3061122900
10 213957358 212792822 26078160405 76820424879
11 55717397 165603440 242521155560 2195632449272
12 2827957594 2955180058 26789937647207 222502126499801
13 4867299659 224526691326
14 2687967034169 2924449102836
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whereN is the number of sites andb51/(kBT), and the
internal energyU is defined by

U5
TrHe2bH

Tre2bH . ~16!

The series were computed to orderb14. The number of con-
tributing graphs, with up to 14 bonds, was 4545 for the two-
chain ladders and 5580 for the three-chain ladders. The series
are listed in Table IV. We use integrated first-order inhomo-
geneous differential approximants22 to extrapolate the series.
The resulting estimates are shown in Figs. 13 and 14. For the
susceptibility, as a comparison, the recent quantum Monte
Carlo ~QMC! results of Frischmuthet al.16 and the results
from our T 5 0 Ising expansion for three chains are also
shown. It can be seen that our results agree very well with
the QMC results except for the three-chain system at very
low temperatures. Given the recent findings that for the spin-
half chain theT50 value is reached from finite temperatures
with infinite slope,23 one might expect theT→0 behavior for
these three-chain systems to be equally complex, making it
very difficult to explore numerically. For the specific heat,
our results showed good convergence up to the peak, but
poor convergence below it. The results for the two-chain
ladder are consistent with recent quantum transfer-matrix
calculations by Troyeret al.14

III. CONCLUSIONS

We have studied the two- and three-chain Heisenberg-
Ising ladders by a variety of different series expansions. Our
results confirm the existence of a gap in the excitation spec-
trum of two-chain systems, with either ferromagnetic or an-
tiferromagnetic interchain interactions. For three-chain sys-
tems, a direct calculation of the excitation spectra leads to
rather large uncertainties near the minimum and on that basis
the possibility of a gap cannot be ruled out. However, given
our other results on the phase diagram with Ising anisotropy
and the uniform susceptibility, we are led to the conclusion
that the spectra are gapless. TheT50 phase diagram as well
as the temperature dependence of the uniform susceptibility
and the specific heat are also calculated. Overall, our results
are in reasonable agreement with previous numerical studies
of these systems.
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FIG. 13. Susceptibility as a function of temperature for two-
chain and three-chain ladders from the high temperature series ex-
pansion, and the Ising expansion atT50 ~for three-chain ladder
only!. Several different integrated differential approximants to the
high temperature series are shown. Also shown are the QMC results
of Frischmuthet al. ~Ref. 16! as the filled symbols~for two-chain
ladder! and open symbols~for three-chain ladder! for comparison.

FIG. 14. The specific heat as a function of temperature for two-
chain and three-chain ladders from the high temperature series ex-
pansion. Several different integrated differential approximants are
shown.
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