PHYSICAL REVIEW B VOLUME 54, NUMBER 2 1 JULY 1996-II

Quantum spin ladders at T=0 and at high temperatures studied by series expansions
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We have carried out extensive series studie$,-a0 and at high temperatures, of two-chain and three-chain
spin-half ladder systems with antiferromagnetic intrachain and both antiferromagnetic and ferromagnetic in-
terchain couplings. Our results confirm the existence of a gap in the two-chain Heisenberg ladders for all
nonzero values of the interchain couplings. Complete dispersion relations for the spin-wave excitations are
computed. For three-chain systems, our results are consistent with a gapless spectrum. We also calculate the
uniform magnetic susceptibility and specific heat as a function of temperature. We find that@&sfor the
two-chain system the uniform susceptibility goes rapidly to zero, whereas for the three-chain system it ap-
proaches a finite value. These results are compared in detail with previous studies of finite §y30diB3-
182996)06226-1

I. INTRODUCTION the density-matrix renormalization method to study the spin
gap. Watanablehas applied the numerical diagonalization
The magnetic properties of low dimensional systems havenethod to finite systems of two-chain ladders with ferromag-
been the subject of intense theoretical and experimental ravetic interchain coupling. Azzouet al1° developed a mean-
search in recent years. It is by now well established thafield theory and used the density-matrix renormalization
one-dimensional Heisenberg antiferromagnets with integegroup method to study two-chain ladders. Gopalan, Rice, and
spin have a gap in the excitation spectrum, whereas thosBigrist! presented a variational wave function for the ground
with half-integer spin have gapless excitations. The formestate of the two-leg ladder. The extension of the Lieb-Shultz-
have a finite correlation length, while for the latter it is infi- Mattis theorem to odd-chain ladders by Afflé&and Rojd*
nite with the spin-spin correlation function decaying to zeroimplies that spin ladders with odd numbers of legs have ei-
as a power law. In two dimensions, the unfrustrated squareher degenerate ground states or gapless excitations. Troyer
lattice Heisenberg model has long rangéeNerder in the  ©t al._14 have used improved versions of the quantum transfer-
ground state. It has gapless Goldstone modes as expected.Nigtrx algorithm to study the temperature dependence of the
recent years much interest has focused on systems with irfUSCeptibility, specific heat, correlation length, etc. of two-
termediate dimensionality and on questions of crossovers b&hain Iadi_)ers. Finite-size scaling was used by Hatano and
tweend=1 andd=2. One approach to this problem has leh%am for mu_ltlleg Ila71dders, and_recently Frischmuth
been to study a two-dimensional system where the couplin§t @~ and Sandviket al™* have applied quantum Monte
for the spins separated along thaxis is different from that arlo s_lmulatlon to compute th_e temperature dependence of
for those separated along tieaxis?! It has been suggested the unl_form susc_ept|b|llty and internal energy for spin lad-
that an alternative way to explore this issue is through théjers. with up to six Ie_gs. One clear result from all these stud-
Heisenberg spin ladders consisting of a finite number ofS 'S that ladders with an even numbe‘r‘ °f_'995 he}}’e an en-
chains coupled together, with a couplidgalong the chains €'Y 9ap. short range correlation and a “spin liquid” ground
andJ, between them. These systems have been the subje%tlate' On the other hand, ladders with an odd number of legs

of considerable recent theoretical and experimental interes{""“’e gapless excnatlpns, _quasi '009 range order,.and a
. - 1 _ _ power-law falloff of spin-spin correlations, similar to single
Experimentally, two-chairs= 3 ladders are realized in  cpains Experiments also confirm these features.

vanadyl pyrophosphatévO),P,0; (Ref. 2 and in the We have carried out extensive series studies of two-chain
strontium cuprate SrGiD 5, whereas three-cha®= 3 lad-  and three-chain ladder systems with both antiferromagnetic
ders are realized in the strontium cuprate SyOy.3 and ferromagnetic interchain couplidg , via Ising expan-

Theoretically, a number of striking predictions have beensions and dimer expansions Bt 0, and also by high tem-
made for such systems. These have been recently reviewgerature series expansions. Our results confirm the existence
by Dagotto and Ric&.Barneset al>® carried out extensive of a gap in the two-chain system and delineate the phase
Monte Carlo studies of the excitation spectrum and the magdiagram in the parameter space of Ising anisotropy and the
netic susceptibility for two-chain ladders with antiferromag- parameter ratial, /J;,. The complete spin-wave excitation
netic interchain coupling. Whitet al” and Hid& have used spectra are computed. For the three-chain system we are
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unable to exclude the possibility of a gap from a direct cal-The limitsx=0 andx=1 correspond to the Ising model, and
culation of the excitation spectra. However, several other calthe Heisenberg model respectively. The operéatgis taken
culations, such as the phase boundary with Ising anisotropas the unperturbed Hamiltonian, with the unperturbed ground
and uniform susceptibility, led us to the conclusion that thestate being the usual Westate for antiferromagnetic inter-
spectrum for the three-chain system is gapless. In additiorghain coupling, and a fully ordered collinear state for ferro-
we develop a high temperature series expansion for the unmagnetic interchain coupling. The operatoiis treated as a
form magnetic susceptibility and the specific heat for two-perturbation. It flips a pair of spins on neighboring sites. The
chain and three-chain systems with=J, ; the susceptibil- Ising expansion method has been previously reviewed in
ity of two-chain ladders is as expected for a system with aseveral articled®® and will not be repeated here. The cal-
spin gap while that of three-chain ladders appears to remaiculations involved a list of 9184 linked clusters of up to 16
finite in the zero-temperature limit, suggesting the absence dfites for the two-chain ladder, and 14 082 linked clusters of
a spin gap. We compare our results in detail with previousup to 12 sites for the three-chain ladder, together with their
calculations. lattice constants and embedding constants.
Series have been calculated for the ground state energy
Il. SERIES EXPANSIONS per siteEq/N, the staggered magnetizatidvh for y>0 (or
o collinear magnetizatioM for y<<0), the parallel staggered/
The Hamiltonian of a spin ladder with legs is given by  collinear susceptibilityy,, and the uniform perpendicular
susceptibility y per site for several ratio of couplings
y=%+0.1,+0.25+0.5,+0.75+1,+1.5,+2,+4,+8 up to
order x*6 for two-chain ladders, ang'? for three-chain lad-
ders(the series for uniform perpendicular susceptibiftys
where§ ; denotes thes5=1/2 spin at theith site of thelth  one order less in each caseThe resulting series for
chain.J, is the interaction between nearest neighbor sping/= +1 for the two-chain and three-chain systems are listed
along the chain and, is the interactions between nearestin Taples | and II; the series for other valueyoére available
neighbor spins along the rungs. We denote the ratio of cougn request.
plings asy, thatis,y=J, /J;. In the present paper the intra-  To analyze these series, we first performed a standard
chain coupling is taken to be antiferromagnettbat is, plog Padeanalysis of the magnetizatidv and parallel sus-
J;>0) whereas the interchain couplidg can be either an-  ceptibility y, series. We found that for two-chain ladders, the
tiferromagnetic or ferromagnetic. This includes the values okgries lead to a simple power-law singularityxat 1:
interest in the experimental systems discussed earlier where
J, ~J,. Without loss of generality, we can s&t=1 hereaf- M~(1=x/X)P,  xy~(1=x/x)"7?, 4

ter. with the indicesB and y close to 1/8 and 7/4, respectively.

We have carried out three different expansions for theI'his transition atx<<1, with criticality in the universality

system. The first is the expansion about the Ising limit atclass of the two-dimension&2D) Ising model, is strong evi-

zero temperature for both two- and three—_cham ladders. Wgence that in the Heisenberg limit the system has a disor-
haye computeq the ground state properties as well as th ered ground state with a spin gap, as is the case for the
spin-wave excitation spectra by this expansion. The S€CONEhin-1 chairf® In contrast, for the three-chain ladders, the

s the dimer expansion, again & 0. This expansion can be series analysis showed poor convergence and suggested a

done for the two-chain system with antiferromagnetic inter-". . AT -
chain coupling only. The third is the high temperature seriessmgu"'Jlrlty atx=1. This implies that for the three-chain lad

. . - . ders, the system is analogous to the spin-half chain, with
expansion for the uniform susceptibility of the two-chain and | lati in th .
three-chain ladders witg=1. gapless spectra and power-law correlations in the Heisenberg

limit.
) ) Figure 1 shows the phase boundary for two-chain ladders
A. Ising expansions as a function ofy. It is interesting to note the different be-
To perform an expansion about the Ising limit for this havior for y>0 and for y<0: for antiferromagnetically
system, we introduce an anisotropy parameteand write ~ coupled two-chain laddersy&0), x. decreases ag in-
the Hamiltonian in Eq(1) as creases, and in the limit gf—, x. will approach 0. But for
ferromagnetically coupled two-chain laddess<(0), X, first
H=Hy+xV 2 decreases as the absolute valug aficreases from zero, but
then the trend reverses and it, once again, approaches 1 as
y— —o. To understand this behavior, we can map the sys-
I=n I=n -1 tem for large negativey to a spin-1 chain with on-site

Hoznzzl SIZ’iSZ'HlJFy ”2:1 SIZ,iSIZ+1,iv (single-ion anisotropy:

1 4 2
I=n HZEZ [S ot S+1, tot Y(I=X)(S] o0 7] 5
V= ( X ox 1 gVgy )
il=1 AiFit HiFien wheres§ i denotes th& = 1 spin at theth site of the chain.
I=n—1 We can get the asymptotic behavior of the phase boundary in
n XX ) 3 the limit of y— — o by studying the following spin-1 chain
Y i,lzzl (SLiSH #5iS 1) ® with on-site anisotropy:

I:n| I:n|—1

H=J, ”2:1 S Sitd HZZI S, St (1)

where
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TABLE I. Series coefficients for the ground state energy perBjtéN, the staggered/collinear magnetizatidn and staggered parallel
susceptibilityy, . Coefficients ofx" are listed for both the spin-1/2 two-chain and three-chain laddersywith: 1.

n Eo/N M X
Two-chain ladders witly=—1
0 —3/8 1/2 0
2 —1.25000000000R 10" * —1.250000000000 10 * 2.500000000000 101
4 —1.562500000008 102 —6.944444444444 10 2 4.13194444444410°1
6 2.44321469907410 3 1.39847366898% 10 ° 9.964453526878 10" 2
8 —3.391054004308 103 —4.293584111638 10 2 6.56170413520810 *
10 —3.08392945943% 10" * —9.45998349752% 10 3 2.592402875212 10 *
12 —5.758725813964 10" * —2.517788286148 102 8.63336755124810 *
14 —3.508609329659 10 * —1.29081952374% 102 5.19424103953R10 *
16 —3.65833125782% 10 * —2.22048967307% 102 1.197591274920
Two-chain ladders wittly=1
0 —3/8 1/2 0
2 —1.8750000000080 101 —1.875000000000 10 ¢ 3.750000000000 101
4 —9.114583333338 10 3 —1.17621527777810°* 9.75115740740% 10 *
6 —6.56467013888910 3 —1.29825544946810 1 2.225074548290
8 —1.011191788034 102 —2.56776806448% 10 * 6.466470614293
10 —4.438918908658 103 —3.30856731026% 10 ¢ 1.436049594758 10"
12 —1.149045736404 102 —6.75483872934% 10 ¢ 3.661634831298 10"
14 —9.01453865767% 103 —1.059678748481 8.2361612723820"
16 —1.86042477234% 102 —2.087462804052 1.9624590132510
Three-chain ladders with=—1
0 —-5/12 1/2 0
2 —1.11111111111% 102 —1.01851851851210* 1.913580246914 10 *
4 —9.126984126984 103 —2.765516082978 102 1.23545149511910 ¢
6 —3.43000774375810° 3 —2.229002861112 102 1.70259193632% 10 *
8 —4.47984021737310 4 —6.778016397592 103 9.228960192872 102
10 —1.150888174208 103 —1.348552579039 102 1.814452046940 101
12 —5.49398782859R 104 —9.54972522263910°3 1.78568089210% 10~ *
Three-chain ladders with=1
0 —-5/12 1/2 0
2 —1.77777777777810°* —1.55185185185210 1 2.76691358024% 10 *
4 2.09935332157610 3 —3.01063501395% 102 2.520792079948 10 *
6 —5.48629104071% 103 —4.56713848581% 10 2 4.781602664628 10 *
8 —9.770232257758 10" * —2.676534614009 10 2 5.28912561175810 1
10 —8.540222317364 10 ¢ —2.413110830174 102 6.371032432384 101
12 —7.963887426932 10 ¢ —3.02610562506%8 10" 2 1.024475965994
1 which is also shown in Fig. 1 as a bold line near
H= EZ [S 1S+ 1100 C(SF o)’ yl(1+]y])=—-1.
Figure 2 gives the results of the ground state energy per
X (S oS 1tott S 10+ 1, 100 - (6)  site Eo/N versusy for both two-chain and three-chain lad-

ders at the Heisenberg poixt 1. Our results for the ground
For this model, we have carried out series expansions in state energy agree extremely well with the recent quantum
to orderx’ (i.e., 14 site} for staggered magnetizatidd ~ Monte Carlo simulatiort® In Fig. 3, we present the uniform
for several different values of: ¢=0.275,0.29,0.3,0.325, perpendicular susceptibility at=0.
and performed a standard Dlog Padealysis to find the We also performed the Ising expansion for the triplet
critical valuec’ which gives the singularity oM atx’=1.  spin-wave excitation spectrum of two-chain and three-chain
We getc’=0.291). Hence, the asymptotic behavior of the |adders using Gelfand’s meth84To overcome a possible
phase boundary in the limjt— —c is given by singularity atx<1 in the two-chain ladders, and to get a

better convergent series in the Heisenberg limit, we add the

X.=1+0.29% (7)  following staggered field term to the Hamiltonian in Eg):
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TABLE IlI. Series coefficients for the perpendicular susceptibility. Coefficients ofx" are listed for two-chain and three-chain ladders

with y==*1.

n Two-chainy=—1 Two-chainy=1 Three-chairy=-1 Three-chairy=1

0 1/3 1/3 11/36 11/36

1 -2/9 -1/2 -1/6 —13/30

2 1.48148148148110 2 5.66666666666% 10 * 1.266534391534 102 4.652226631398 10 *
3 5.30864197530910°° —7.14351851851910° % —1.112134668682 102 —5.160474965708 10~ *
4 —2.12000293944% 102 7.54492063492% 1071 1.13433158041% 102 5.434191826898 10 *
5 7.28305250238010 2 —9.203876999874 10~ * —2.787971676358 10 2 —6.037870527568 101
6 —6.50751940616% 102 9.542443240384 10 * 3.588831815932 10 2 6.19264327408810*
7 —9.85051512471% 1078 —1.220670122297 —3.496516710788 1072 —6.538548959720 107 %
8 —3.321642365298 10~ 1.243330662897 3.3619561276680 2 6.836898452099 101
9 3.22530315148910 2 —1.570424359869 —4.58394531728% 102 —7.207963780768 10" *
10 —2.16431981162810 2 1.612928972471 4.0848855610760 2 7.446415246328 1071
11 —2.229164879948 102 —2.181953857121 —4.49510904357R 102 —7.94490922069% 10~ 1
12 —8.3866072666638 103 2.245984866808

13 1.98051334101210 2 —3.034629087270

14 —1.128439840082 102 3.158070079722

15 —1.62581872334% 1072 —4.546560413718

AH=t(1-x)>, (-1)'S.

)

AH vanishes ak=1. We adjust the coefficieritto get the ! v | - !
smoothest terms in the series, with a typical value being/—>. the dispersion relation also has a simple cosine form
t=2. We computed the Ising expansion for the triplet spin-With a period of 47, and a gap in the spectrum. Barnes and
wave excitation spectrura(k) up to orderx® for two-chain 4 . ) .
ladders, and up to order! for three-chain ladders. These combining these two functions into the following form:
series are too long to be listed here, but are available on

request.

These series have been analyzed by using integrated first-

order inhomogeneous differential approximatftsor the

two-chain ladder, there are two bands of excitations; Fig. 4

shows the dispersior(k), with k,=, for antiferromag-
netic interchain coupling. The other band wki=0 is re-
lated to this bye(k,,0)=e(7—k,, 7). This is simply due to

the staggered field, which doubles the spectrum. As a com-

y/(1+lyl)

0.5
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Ising phase
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Disordered phase

TR N R

o
@
v

parison, the dispersion relation of a single chdimat is, the
case ofy=0) is also shown. It can be seen from the graph
that in the limity—0, the dispersion relation has a simple
cosine function with a period of 2, and in the limit

Rierd argued that the dispersion, for al] can be fitted by

-0.4

-0.6

-0.8

-1.2

: 2 chain ladder -
: 3 chain ladder \
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FIG. 2. The ground state energy per diig/N as function of
y for two-chain and three-chain ladders. The results for a two-chain

FIG. 1. The phase boundary for two-chain ladder. The asympladder withy=1 are from the dimer expansions, and the rest of the

totic behavior ay— —« predicted by a spin-1 single chain system results are from the Ising expansions. The error bars are much
with on-site anisotropy is also shown by the bold line.

smaller than the symbols.
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FIG. 3. The uniform susceptibility at T=0 as a function of
y for the three-chain ladder.

e(Ky, )%= e(0,m)2c02(K,/2) + e( 7, ) 3SirP(K,/2)
+ CoSirP(Ky). 9

2 chain: k,=0
from top to bottom
y=0, -0.25, -0.5, -0.75, -1, —1.5, -2, —4

0 n/4 m/2 3m/4 0

FIG. 5. Thek,=0 dispersions of the spin-triplet excitated states
of the two-chain ladder with ferromagnetic interchain couplings
y=0, —0.25,-0.5,-0.75,—1, —1.5, —2, and—4. For the data
shown, e(7/2) decreases monotonically with increasing

For y=1, the Ising expansions give an energy gap of

e(m,m)=0.447). A more precise estimate is obtained by

| T T T T T L T | T T T T I T T T T I
2 chain: ky=m 7
3L T . from top to bottom 2
‘\\ y=2, 1.5, 1, 0.75, 0.5, 0.25, 0.1, 0

e(k)

PSR S SO VA NSV S S T A S M N T S O T

0 /4 /2 3n/4 ™
ky

the dimer expansions, which give w,7)=0.5047). We
will discuss the dimer expansions later.

For ferromagnetic interchain coupling, the two bands of
spectra are independent, but each band is a simple cosine
function with a gap at the minimum and symmetric about
k,= /2, as shown in Figs. 5 and 6. As noted in Fig. 4, it is
clear that the spin gap decreases smoothly &s reduced,
and vanishes at=0. These results agree well with previous
calculation.

For the three-chain system, there are three bands. In the
Ising limit, two bands have initial excitations located in the
side rows, and the third band has it in the middle row. Fig-
ures 7 and 12 show the spectrum of the three bands for
ferromagnetic and antiferromagnetic interchain couplings.
From these graphs, we can see that all of the dispersion
relations have a simple cosine functigqexcept for the
middle row band with largg) with a minumum located at
ky,=0 (or k,=m by symmetry; where two of these three
bands have a definite gap, the third baflde symmetric
excitations for the outer chainss consistent with a gapless
spectrum. The estimate for the gap in the third band for all
y values is 0.2(3]except for the case gf=0 where we got
0.0810)]. We note here that we have rather large uncertain-

FIG. 4. The dlspersmns of the spin-triplet excitated states of thdi€S in the gap due to the fact that one class of approximants

two-chain ladder with antiferromagnetic interchain coupling 2,
15,1, 0.75, 0.5, 0.25, 0.1, and(§hown in the figure from the top
to the bottom, respectively for k,=; the results fory=1 are
from the dimer expansion, and the results jor 1 are from the
Ising expansion.

give values very close to zero, whereas another class of ap-
proximants give a much larger value. Hence we cannot ex-
clude the possibility of a finite gap simply from these calcu-
lations. But given our earlier results on the phase boundary
with Ising anisotropy, we believe the spectra are gapless.
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3 chain: antisymmetric
from top to bottom
y=2, 1.5, 1, 0.75, 0.5, 0.25, 0.1, O

2 chain: ky=m
from top to bottom
y=-2, -1.5, -1, -0.75, 0.5, ~0.25, -0.1, 0

oo e by ey e e ey L [ IR R T T R T R N SRR

1 | 1
0 /4 m/2 3n/ ™ 0 n/4 /2 3n/4 ™
Ky ky

FIG. 6. The dispersions of the spin-triplet excitated states of the  FIG. 8. The dispersions of the spin-triplet excitated states of the
two-chain ladder with ferromagnetic interchain coupling —2,  three-chain ladder with antiferromagnetic interchain coupling
—-15,-1,-0.75,-0.5,-0.25,-0.1, and 0, fokk,= . y=2, 1.5, 1, 0.75, 0.5, 0.25, 0.1, and 0, for antisymmetric excita-

tions in the outer chains.

B. Dimer expansions

For two-chain ladders, with antiferromagnetic coupling
between the chains, there is an alternaffve0 expansion
that can be developed. In the limit that the exchange cou-
pling along the rungsl, is much larger than the coupling
J, along the chains, that ig/>1, the rungs interact only
weakly with each other, and the dominant configuration in
the ground state is the product state with the spin on each
rung forming a spin singlet, so the Hamiltonian in Ed)
can be rewritten as

H/J, =Hy+ (1)V (10
where
A I=n—-1 I=n,
3 chain: symmetric &R H0: ilzl Sl,i'S|+l,il V:ilzl S,i's,i+l' (11)
. y:1.5 ¥ , )
cy=1
: §:0.7 We can treat the operatdily, as the unperturbed Hamil-
1 y=0.5 tonian. The eigenstates of a single pair of spins, or dimers,
y=02 consist of one singlet state with tot&80 and eigenenergy
' Es=—3/4:
1
. o . [W)s=—=(T1)=111)) (12)
FIG. 7. The dispersions of the spin-triplet excitated states of the \/E

three-chain ladder with antiferromagnetic interchain coupling ) ) _
y=15, 1, 0.75, 0.5, 0.25, and 0, for symmetric excitations in theand three triplet states with tots&=1 and eigenenergy
outer chains. E.=1/4:
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i X T L 3 chain: antisymmetric T
¥ T
—}?.I/I 3 chain: middle row X}I{— i from top to bottom \ !

from top to bottom

- y=2, 15,1, 0.75, 0.5, 0.25, 0.1, 0 . y==% -15, -1, ~0.75, 05, ~0.25, ~01, 0
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0 /4 /2 3n/4 ™ 0 n/4 /2 3m/4 ™
k, ky

FIG. 9. The dispersions of the spin-triplet excitated states of the FIG. 11. The dispersions of the spin-triplet excitated states of
three-chain ladder with antiferromagnetic interchain couplingthe three-chain ladder with ferromagnetic interchain coupling
y=2,15,1,0.75, 0.5, 0.25, 0.1, and 0, for excitations in the middley= -2, —1.5,—-1, —0.75,—0.5,—0.25,—0.1, and 0, for antisym-
chain. metric excitations in the outer chains.

4J_IIII|IIII|IIII|III!L

1.5 ﬂtﬂ"“ll—ll“
PTTTriTioiu FE iRy

©
o
I

3 chain: symmetric
from top to bottom
y=0, —0.5, -1, -2 i ‘H“%

3 chain: middle row
from top to bottom
y=-2, ~1.5, -1, =0.75, -0.5, -0.25, -0.1, 0

RTINS R W N

| 1 1 | 1 1
0 7T/4' 7T/2 371-/4 ‘IT 0 PR S R R NS T SR N AN R S S N N S R R
K, o wA . a4 w
ky

FIG. 10. The dispersions of the spin-triplet excitated states of
the three-chain ladder with ferromagnetic interchain coupling FIG. 12. The dispersions of the spin-triplet excitated states of
y=0, —0.5, —1, and —2 for symmetric excitations in the outer the three-chain ladder with ferromagnetic interchain coupling
chains. For the data shows(7/2) decreases monotonically with y=-2, —1.5,—-1, —0.75,—-0.5, —0.25,—0.1, and 0, for excita-
increasingy. tions in the middle chain.
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TABLE Ill. Series coefficients for the dimer expansion of the two-chain triplet spin-wave excitation spectrum
e(ky ,ky=m)=yZ man m(1ly)"cosfnk). Nonzero coefficients,, ,, up to ordem=8 are listed.
(n,m) anm (n,m) anm (n,m) anm (n,m) anm
0,0 1.000000000 (5,1 —2.03125000&10 % (3,93 1.25000000& 10 * 5,9 5.468750008 102
2,0 7.500000006 101 6,7 9.375000006 102 4,3 1.250000006 10 * (6,95 7.812500006 10 2
(3,0 3.75000000& 10" (7,1  3.29345703k10° ! (5,3 —9.37500000610°% (7,5 —6.04248046% 10 2
(4,0 —2.03125000&x10 ! (8,1  2.55584716&10 ' (6,3 —3.1640625010°* (8,5 —2.65716552%10° !
5,0 —6.2500000010°Y (2,2 —2.50000000& 107! (7,3 —2.22290039kx10° % (6,6 —4.101562508 10 2
6,0 —5.0000000010°Y (3,2 —2.500000008 107! (8,3 2.75268554% 10 * (7,60 —6.835937506 10 2
(7,0 2.96630859% 10! (4,2 —3.12500000610°2 (4,4 —7.81250000&10° 2 (8, 6 4.957580566 1072
8,0 1.120300293 (5,2 2.031250006 10 * (5,4 —9.3750000010 2 (7,7 3.22265625& 102
1,1 1.000000000 6, 2 1.71875000& 10" * (6, 9 7.128906256 102 8,7 6.152343756 10 2
3,2 —2.500000006c10° 1 (7,2 —1.72851562%10° ! (7,4 2.69042968& 101 (8,8 —2.61840820% 10 2
4,1 —3.125000006¢10° 1 (8,2 —5.04745483%10°! (8, 4 1.69052124 1071
1 differential approximantg to extrapolate the series. For the
[Ty=| =TT TNILL) ] (13)  ground state energy, we gEt/N=—0.5785(5) fory=1,
V2 which agrees very well with the recent quantum Monte Carlo

(QMO) result, Eo/N=—0.578@2), of Frischmuthet al®

For the excitation spectrum, the dimer expansions give much
better results than the Ising expansions for the case of

y>1. Fory~1 the dimer expansions also appear to con-
erge better. The overall spectra determined from the com-
ined study of dimer and Ising expansions are shown in Fig.

The operatolV is treated as a perturbation. It can cause ex-
citations on a pair of neighboring dimers. Details of the
dimer expansions and the matrix elementd/cdre given in
Ref. 19, and will not be repeated here.

We have carried out the dimer expansion for the groun
state energy to order ()° and for the lowest lying triplet
excitations to order (¥)8. The series for the ground state
energy per sitd&ey /N is _ ] )

C. High temperature series expansions

We now turn to the thermodynamic properties of the lad-
der system at finite temperatures. We have developed high
temperature series expansions for the uniform magnetic sus-
ceptibility x(T) and the specific hea®(T), for two-chain
and three-chain system with =J,,

Eo/N=J,[—3/8—3/(16y?)—3/(32y%)+ 3/(256y*)
+45/(512y°) + 159(2048/%) — 879(32 768/7)
—4527/(32 768/%) — 248 391(2 097 153°)]

(14
Trs/Ste ~FH U

and the series for the excitation spectrum are listed in Table X(T)= /32 2 — o C(T)= - (15)

[ll. Again, we use the integrated first-order inhomogeneous ]

TABLE IV. Series coefficients for high temperature series expansion of the uniform suscepjiility- BiciB(n2'T41), and the
specific heaC(T)=823;¢;8'/(n,2'*5i1). Coefficientsc; are listed for two-chain and three-chain ladders with1.

x(T) for two-chain x(T) for three-chain C(T) for two-chain C(T) for three-chain

0 8 12 36 60

1 —-12 —-20 72 120

2 12 28 —270 —522

3 6 —20 —2640 —5040

4 —20 4 90 3270

5 —162 —160 141876 318780

6 —630 —1052 580797 1075767

7 9991 17298 —10663200 —28792032

8 88228 80468 —118074186 —291518730

9 — 779322 —1467200 946669020 3061122900
10 — 13957358 —12792822 26078160405 76820424879
11 55717397 165603440 —42521155560 —195632449272
12 2827957594 2955180058 —6789937647207 —22502126499801
13 4867299659 — 24526691326

14 —687967034169 —924449102836
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FIG. 13. Susceptibility as a function of temperature for two- T
chain and three-chain ladders from the high temperature series ex-
pansion, and the Ising expansion Bt0 (for three-chain ladder FIG. 14. The specific heat as a function of temperature for two-

only). Several different integrated differential approximants to thechain and three-chain ladders from the high temperature series ex-
high temperature series are shown. Also shown are the QMC resulgansion. Several different integrated differential approximants are
of Frischmuthet al. (Ref. 16 as the filled symbolgfor two-chain ~ shown.

ladde) and open symbol§or three-chain laddérfor comparison.

Ill. CONCLUSIONS

where N is the number of sites ang8=1/(kgT), and the . . .
internal energyU is defined by We have studied the two- and three-chain Heisenberg-

Ising ladders by a variety of different series expansions. Our
results confirm the existence of a gap in the excitation spec-
trum of two-chain systems, with either ferromagnetic or an-
TrHe A4 tiferromagnetic interchain interactions. For three-chain sys-
= Tre AH - (160 tems, a direct calculation of the excitation spectra leads to
rather large uncertainties near the minimum and on that basis
_ the possibility of a gap cannot be ruled out. However, given
The series were computed to orgg¥. The number of con- oy other results on the phase diagram with Ising anisotropy
tributing graphs, with up to 14 bonds, was 4545 for the two-an the uniform susceptibility, we are led to the conclusion
are listed in Table IV. We use integrated first-order inhomo-a5 the temperature dependence of the uniform susceptibility
geneous differential approximafitso extrapolate the series. and the specific heat are also calculated. Overall, our results

The resulting estimates are shown in Figs. 13 and 14. For thgre in reasonable agreement with previous numerical studies
susceptibility, as a comparison, the recent quantum Montgs these systems.

Carlo (QMC) results of Frischmuttet all® and the results
from our T = 0 Ising expansion for three chains are also
shown. It can be seen that our results agree very well with
the QMC results except for the three-chain system at very
low temperatures. Given the recent findings that for the spin-
half chain theT =0 value is reached from finite temperatures  This work forms part of a research project supported by a
with infinite slope?® one might expect th€—0 behavior for ~ grant from the Australian Research Council. R.R.P.S. is sup-
these three-chain systems to be equally complex, making jtorted in part by the National Science Foundation through
very difficult to explore numerically. For the specific heat, Grant No. DMR-9318537 and would like to thank the Uni-
our results showed good convergence up to the peak, bwersity of New South Wales for hospitality and the Gordon
poor convergence below it. The results for the two-chainGodfrey Foundation for support, while the work was being
ladder are consistent with recent quantum transfer-matrixlone. We would also like to thank Dr. Troyer for providing
calculations by Troyeet al* us with the Monte Carlo data for comparison.
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