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Subharmonic structures in Josephson tunneling
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We studied the ac Josephson effect. The phase difference is expanded in a Fourier series. The Fourier
components can be evaluated by solving the equations of motion. Truncation was applied to deal with the
infinite products and series of Bessel functions. It is very efficient if the nonlinearity is not too large. We give
some numerical results and derive the dc current response. The latter has a different form from previous works.
The Shapiro steps were also studied with the same method and a more accurate step size estimation is given.
[S0163-182696)04838-2

I. INTRODUCTION Il. DERIVATION OF PHASE

We begin with the equations of motion of the phése,
The ac Josephson effect has been an active field of study .

since it was discovered by Shapir@Recently this effect in d=2eV(t) (h)
high-T. superconducting tunnel junctions has attracted much
attention? Josephson tunnel junctions irradiated by micro-and
wave show rich phenomehauch as those due to imputities, 1
types and sizes of junctions, the magnetic field effect, and ;i,+ —¢+w§sin¢=2evaccosinwt, 2)
effects of flux. In this work we are concerned with the Sha- RC

piro steps and the energy gap-related current steps at thg,o e js the charge an@ is the capacitance of the junc-
subharmonics and higher harmonics of the microwave frefion V(t) includes the dc and ac bias voltage, and
l C

quency. One qf the reasons that.make th Joseph_son t“””e—lvaccomt, w, is the Josephson plasma frequency, #nd
ing so interesting and important is that it is a nonlinear sysyas set to 1. A term of the normal resistance of the junction
tem. The Shapiro steps can be simulated quite well using thg added to Eq(2). As in the case of simple harmonic oscil-
resistively shunted junctiotRSJ model? It has an analog in  |ators the damping force produces a phase differenoe
mechanics, namely, the damped driven pendulum. It exhibitg) between the displacement and the external force and
extensive nonlinear behaviors including chaos. Thus it isnodifies the amplitude; the resistance term here has a similar
tempting to pursue similar phenomena in the Josephson turffect. However, it will not change the characteristics of the
neling. Most of the workson the RSJ model and its me- solution. Therefore, we present the derivation without the
chanical analogs used simulations and obtained satisfyingesistive term to reduce the notation, but will give the results
results. However, analytical works are still desirable. They irwith the junction resistance taken into account.

many cases provide a deeper view of various physical phe- Hasselbergt al,’” with physical insight, proposed the fol-
nomena. This work is a step in that dirction. It was alsolowing solution:

motivated by experimentaland theoreticdl works on the

subharmonic structures related to the superconducting en- b= wyl— 2€Vacsin t+w—§sin t— ZeVacsin t], @
ergy gap. In Ref7 a model similar to RSJ model was studied @o w o w3 @o O]

and a self-coupling solution was proposed. There are cer-
tainly other theories, such as the multiparticle tunnelingwhere
model. But they are not without shortcomings. For example,
a multiparticle tunneling model cannot produce some fine
structures of |-V characteristiésOn the other hand, the self- It was based on the result of a small/w, perturbation.

coupling mechanism indeed gives Shapiro steps which is R\ we found a general solution which is valid in all cases

similar phenomenon and produces correct structure shapegnq agrees with the solution of Hasselbetgl. in the small
Therefore, we believe it is a major cause of the gap-related, , /,, limit. It has the form

structures. Here, we tried to provide a rigorous solution and

generalization. The voltage bias setup, which, we think, is )

more suitable to the high-frequency region, is studied. In ¢:wot+; asin(ko +lwo)t+ 2, bpcogmw+nwo)t,
Sec. Il we derive the formalism. The numerical results are ’ me (5)
presented in Sec. Ill. We then compute the dc current in Sec.

IV. The comparison with other theories is discussed in Secwherek andm are set to be positive to prevent redundancy.
V. The Shapiro steps are studied in detail in Sec. VI. TheThis is motivated by the nonlinearity of the equations of
conclusion is given in Sec. VII. motion. a's and b’s are to be determined by E¢R). The

w0=2€Vdc. (4)
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second summation will disappear if we drop the resistive ) )
term and this is what we shall do in the following process. ®@?aiot2eVew=0w] X Ja; (@10 J 4y (@01
Using the relatiofy 10-01, 11402

X J”‘ll( all)‘]ozoz( aOZ) ’ (15)
explizsing) =Y, J,(2)e"?, 6)  with
n
we get aotap=1 (16)
and
id_ Al ia(ko+lo,
er=e Otlk_,[l Ea: Ja(ag)eeterioon agtapt2a0=—1, 17
=gy ] 3, (ay)eantketioot, (7 wiag= 0] > Jay (810 d 0y (Q01)
ay) ki K @10,901,@¥11,@02 10 o
where the summation of,; means taking into account all X gy, (@114 (802), (18)
the possible integer values. This convention will be used in . h
the whole paper. Substituting into E@), we have wit
ajot a;=0 (19
> ag(ko+ 1 wg)2sin(kw+ | wo)t+ 2e V,wsinot and
k1
le01+ all-l- 26(02= O, (20)
:(1)§E |:];_[ Jakl(a“) S”'{(J)()t‘i‘% ak|(k(1)+|(1)o)t .
ay| ’
) (0t wp)?ap=e; > Jay(@100Ja,(801)
@10,@01,¥11,%02
So we get X‘]all(all)‘]aoz(aOZ)l (21)
5 s with
(M@ +Nwo) At 26 Vac Iy S0 =052 11 Ja (a0),
Kkl ! (9) CY10+ a11= 1 (22)
. and
with
a/01+ all-l- 2&02: O, (23)
2 agk=m (10 and
and 4ofag=w] 2 Jay(@100Ja,(B01)
@10,%01: 411,402
> ayl+1=n. (11) X3, (810 (802), (24)
Kl

; ' with
We consider the energy gap-related structures first. The Sha-

piro steps will be studied in Sec. V. There are infinite prod- aotap=1 (25)
ucts of J,(x) in Eq. (9). We can simplify them with the
following mathematical knowledge: In any Fourier series,and
the largerk or |1|, the lessa,, in general, and wor+ - 2agy=1. 26
Jn(x)=x™  for n>0 and x—0. (12 In the above equations all othefs are set to zero. There are
- still infinite series involved in EqE15), (18), (21), and(24).
Thus, for any term containing the produtkJ,, (aw) o be  ginoo o is small in magnitude, Bessel functions of lower
important,a,; must approach 0 for largeor [I|. So we can  orders usually give greater contribution. We can truncate

truncate the product by setting them by retaining only lower-order terms. Now it is straight-
forward to solve these coupled equations. Details and some
ay=0 for k or |I—1|>my, (13 humerical results will be presented in the next section.

wherem, can be chosen for desired accuracy and thus the _It can be. shown that the result 0f7the above derivation
approximation coincides with those of Hasselbeeg al.” for small w;/wg.

The solution in Eq(3) gives

2
2(|+1)eVaC)JI(w_g) ei[(|+l)wofkw]t. (27)
w wq

Jo (@)=1 for k or [I—1|>m, (14)

ev=2> J,

can be applied. Below we give an examplenagf=1: k]
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On the other hand, in view of Eg€l5) and(18), in the limit
of small w;/wq, we found

2eV,
a=——, (28

2

W
201~ "7, (29)

Wo

and

a, =0 for others. (30

Substituting Eqs(28) and(29) into Eq. (5), we get the lead-
ing terms of Eq.(3).

We note that the truncation scheme is built upon the in-

terplay of two frequencie® andw,. Without ac bias, it is no

longer applicable or in need of major modification. However,

there is no self-contradiction. For example Mf.=0, then
a,0=0. In fact all the Fourier coefficients,;=b,,=0 for
k#0 andm#0. In this case the form op in Eq. (5) goes
back to that proposed in the pioneer works in this freld.

IIl. NUMERICAL RESULTS
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w+wg
(0+wg)?ay,+ R—Cbllz w3d1(a0do(ag), (36)
w—w
(0—wg)?ag_1+ R—Cobl—lz ®3J1(a10)3x(agy), (37)
0?D10— — 210~ ©235(a10)J1(boy) (39)
107 Rc 10 w;3J1(d10)Y1(Do1),
o
w§bo1— ﬁ:am:o’ (39
2 2(1)0 2
4wpbgr— RC 202~ 03Jdo(a10)d1(boy), (40)
T Wwo
(0+wg)?byy— Wan:w?‘]o(alo)h(blo)- (41)
and
w—wo
(0= wo)?01 1~ —g=—a1-1=05i(a0z(a0). (42

_As stated in the last section, we have to truncate the infiThe above results were derived with the assumption that the
nite products and infinite series in order to perform the comjunction resistance is very large so thiag| <|ay;|. Actually

putation. The truncation is based on E@$2)—(14). The
value ofmy depends on two dimensionless parameters

X=— (31
w
and
= 32
Xd_w_o- (32

it depends on the experimental situation. However, we an-
ticipate no problem if the resistance is small. The procedure
can be carried out in almost the same way except that more
b’s have to be considered. We have also used the fact that
|aj;| becomes smaller if eithdi| or |j| get larger and have
kept only the leading terms. This approximation is valid if
the nonlinearity is not too largex(x4>1). Though the list is

not complete, we can see thaf, is approximately propor-
tional to 2eV,./w. Thus we consider it to be the zeroth-order
term. The next term large in magnitudeds,. ag, anda;q

They are measures of nonlinearity. The greater these pararare smaller in magnitude arad —; is the smallest coefficient

eters, the largemy should be. Oncen, is chosen the num-
bers of terms in Eqg15), (18), (21), and(24) that should be
kept are more or less fixed. For examplemf=2, then
|@gs] <2 and|aq4|<1. Taking into account more terms will
not enhance accuracy. In our experience, wkenl and
Xg<1, takingmy=1 is already a very good approximation.
The results agree with those of takingy=2 within a tenth

of a percent. Below we give an example of considering only

among thea’s in the list.

According to Eqs.(33)-(42), we plotted a few Fourier
components againstxin Figs. Xa) and Xb) under the con-
ditions 1IRCw=0.1, 1k4=1.1, and ,=1.2, respectively.

In Figs. 4a) and 2b) these coefficients are plotted against
1/xq with 1/RCw=0.1, 1k=1.1, and I¥,=1.2. One can

clearly see that the Fourier components converge very fast.
We derive a general rule for truncation below. According

a few of the leading terms. All the results can be derivedo Eq. (9), if x/k?<1 andx4/I?<1, thena,<1. One also

from the equations in the previous section with the resistivdound

term taken into account:

w
w?aot+ ﬁ:blﬁ' 2eVyw= w?[‘JO(alo)‘]O(aOl)‘]l(alf 1)

—Ji(ai9)d1(agdo(@r-1)1,

(33
2 @o 2
wpdgrt ﬁ:boﬁ 03Jo(@10)Jo(a01), (34
2 2(,00 2
4wgagyt RC b= w3jJo(a10)J1(a01), (39

that a,.q<a, and ay;i<ay. The ratios
ag+1,/ay anday 11 /ay do not vary much withk andl in

our experience. Thus we can define loosely two small param-
eters

Ayk+1
T a (43
and
Ay l+1
€p a—k| (44)

The above argument is valid for-0. Forl <0, -1 should
be used instead df+ 1. In view of Eq.(14), we have
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FIG. 2. (&) aj9, @01, @11, anday, were plotted againsby/w,

with wy=1.1w, and 2V,=1.2w,. Note that botha;; and a,, with = 1.1w, and 2Vae=1.20, - Note that botha,, anday, were
were multiplied by a factor of 20b) by,, bo;, by;, andbg, were multiplied by a factor of 20 ana@g, was multlplleq by a factqr of
plotted againsiv/ w, with wo=1.1w, and 2V,=1.20, . Note that 400. (b) bao, Doy, byy, andby, were plotted againsig/w, with

bothb,; andb,, were multiplied by a factor of 20. w=11w, and 2V,:=1.20,. Note that bothby, and by, were
1 02 P y multiplied by a factor of 20 antby, was multiplied by a factor of

FIG. 1. (&) aig, ao1, a;1, anday, were plotted againsb/w,

400.
In(al2)~ el 2wl (45)
j(t)=|m[ e 1012 f_' dt/ei¢(t+t’)/2jl(t/)
except fora,o. The order of magnitude of each Bessel func- i fm dt/e—i¢(t—t’)/2+aj (t') (46)
tion can be judged by the power ef or ¢,. This way one —w 2 '

can decide the contribution of any term amg can be cho-
sen for a desired accuracy. The infinite series can also
truncated accordingly. We conclude this section by statin
that the truncation method is very efficient foxy<2.

b\gherejl(t) is the quasiparticle curreni,(t) is the Cooper-
air current, ande is a constant phase. With the Fourier
ransform

H do —iwt;
Ji()= >-€ J12)(@) (47)
IV. CURRENT RESPONSE

A direct consequence of the bias voltage is the currenand substitution of Eq(7) into Eq. (46), we obtain the qua-
response. It has the fofth siparticle part of the dc current:
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. akI mn and
q — J J -
Jde akIsEan [ ki % gln Ymn| 2
lejl(E MYymno+ — +E n'ymnwo), (48) Z |ak|+§ Nymat1=0. (53
with the requirement It is obvious that the structures of both currents are very rich
and complicated. Consider the quasiparticle current first. For
the purpose of analysis, we truncate the product by setting
. mp=1 as in Sec. lll. Now Eqgs(49), (50), (52), and (53
kz,l kak'_mE,n MYmn 49 pecome, respectively,
and
ajot a11= vt v11, (54
sz Iak|: mE’n n7mn . (50) a01+ a11+ 2a'02: ’)’Ol“l‘ ’yll+ 2'}/02, (55)
The Cooper-pair part has the form
perparp aiotapt yiot y11=0, (56)
) ay a and
e 3, Tl 3
K antapt 2apt yort vt 2ye= — 1. (57
. o
XIm| e'?j, m +—+2,n , 51
]2(%1 Y@ 2 % 'Ymnwo) (51 We can have
with the requirement
= Yk (58
2 kakl+2 Mygn=0 (52) for all the k andl and many other combinations. The most

important ones are

. a0 o1 an o2 aj o o1 302 o2
q 2 2 2 2 i s | 292
Jae k,;n,n[Jk(zj 2 I 23“(2> 2{3(23 2)3' 2 e z)an -] z)
aio aio ao1 o1 aig ai1| [ @02
ke z)Jkﬂ 2 |2 i 2 Im 2 I 7)]
w
xlmjg(E (ktmo+ —+ > (I+m+2n)wo). (59)
k,m 2 I,m,n
The Cooper-pair current has the approximate form
10 10 Qo1 Qo1 an an ap2 ap2
P~ 710 . . 20z Z02
JdC kImn|Jk 2 —k( Z)Jl( 2)‘]—|—1 2)‘] ( Z)J—m 2 ‘]n Z)J—n 2)

aio 10 an an o1 Qo1 Ao Ao
> Jk(?)“ 2 2 Jm(?)JI(T)JZJ‘M 2 Jn(7>31n(7)
a0 a10 801 o1 an an o2 o2
ke 7)“(7 JI(? Jimima| 5 JIml 5 Jim(?)% 2 [Pl }

X Im (60)

e‘“jg(E (k+mot+ 243 (I+m+2n)w0) .
k,m 2 I,m,n



10070 C.D. HU 54

Profound structures occur when the argumentg; 6&) and
j>(w) are equal to A whereA is the energy gap. For ex-
ample, the Cooper-pair current shows Riedel péaks

view of Egs. (58) and (59), the structures occur when // \
(N+1/2)wo= * (2A+Mw). The leading order terms of the S
quasiparticle current are / \ R}
/ \\ / ) s TN
4 > -
a a )] N
PN 33(701>|mj;(kw+7° , 0 W 2 3
k \/QC (Q)J/e>

and those of Cooper-pair current are

a0 a10 8o1 o1
Il 513kl 5 | dol = | I=1| =~
FIG. 3. The magnitudes of the Cooper-pair current vs ac bias
X Im eiaj/ Koo+ @o voltage in the large resistance limit under the conditions
2 2/ eVy=w;, w=0.70; and V,. is also in units ofw,/e. The solid

line is the result of the present calculation multiplied by a factor of
This prediction is not different from the leading order terms10 and the dashed line is from the form in Ref. 7.
of the self-coupling theory of Ref. 7. However, E¢S9) and
(60) give a more complicated dc current amplitude. . 10 Qo1| .,[®o
jde=31| |36\ o | Imis| 5 —w (61)

V. COMPARISON
and

In this section we compare the truncation method with

other theories. The present work is built upon the self- , >/ a0 o1 o1 iair| @0

coupling mechanism. Another model, namely, the multipar-ldcz‘]l 2 Jo 2 I 2 Im &) 2 (62)
ticle tunneling model, has been developed by several L

groupst2” This model considers the possibility of the tunnel- Where we have used the approximation

ing of many electrons, thus gaining enough energy from the

bias voltage to overcome the energy gap. Its prediction of the a a

occurrence of steps was indeed seen in experintétew- Jo e DS 0 202 _o. (63)
ever, the sizes are not always consistent with the experimen- 2 2

tal data. For the structure ateV;.=2A +n# w, this model

gives a size proportional tft|?™ wheret is the tunneling  Their forms are the same as those in E3j17) of Ref. 7 if
matrix andm is the number of electrons which tunneled the following replacements were made:

through. This would make the size too small for lamgeThe

other inconsistency is that this model predicts only current

steps but current peaks were found in experiments. There- a——a;g2 (64)
fore, the consensus is that the multiparticle tunneling model
can only account for part of the picture. and
Klapwijk et all* cleverly invoked Andreev reflectionto
explain subharmonic structures. They found that with multi-
a]_"aoj_/z. (65)

Andreev reflection, electrons can also obtain energy to over-
come the energy gap. This mechanism should occur in thgdeed we found they are approximately true in view of Egs.
superconducting-normal-superconductingNS junction.  (33) and(34) since, in Ref. 7,

Similar to the multiparticle tunneling model, the amplitude

of the structures(peaks ofdV/dl) is proportional tor™ a=eVy/w (66)
wherer is the reflection coeffient andh is the number of

reflectionsr is not easy to evaluate and Ref. 14 only gave aand

phenomenological calculation. At this stage, a more accurate = 02202 (67)
calculation is needed to give a quantitative comparison with 1o
the experimental data. in the highVg. limit. However, ay, varies with V,. while

The present form sometimes predicts results quite differa; in Ref. 7 is constant. This produces a difference. To
ent from those of Ref. 7. For example, consider the caspresent another case, we plotted in Fig. 3 the magnitudes of
eVyg=2A—w. In view of Egs.(59) and (60), the leading the Cooper-pair current atVy.= (2A — i w)/3 versus ac bias
terms of the current densities arfe< —1 andl =0) voltage in the large resistance limit under the conditions
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o w w
_ . Q=—=_, (68
eVy=4w; and w=0.70;, and V. is also in units of M N
w;le. The solid line is the result of the present calculation
multiplied by a factor of 10 and the dashed line is from thewhereM andN are integers an@/wy=M/N. Instead of the

form in Ref. 7. form in Eqg. (5) we now have

VI. SHAPIRO STEPS
¢=w0t+2 cmsiantJrz d,sinnQt. (69
The dc current shows Shapiro steps provided the ratio of m n
o 10 wq is a rational number. In this section we introduce a
neater version of Eq5). In fact, both are the same. Note that Now the derivation will take the resistive term into account.
if V,c=0, one had better go back to the process of Sec. IIHowever, we continue to assume the resistance to be very
We define large so thatd,— 0. Substituting into Eq(2), we get

> cmmzﬂzsiantJr E d,nQconOt+2eV,wsinwt=w3 >,
m

am,Bn

11 3., (cm)

11 Jﬁn(dm}

X[ei(Em maQt+2, nBQt+ wot)i ZnBn

— e_i(zm mam\(lt"’zn nﬁnﬂt"'wot)i —Zn ;Bn] . (70)

The Fourier components can be found easily: andX .8, is an odd integer. Apparently the coefficients larg-
est in magnitude arey; andcy . But as we shall see below,
Cn=+m IS Not negligible. The magnitude af, will be deter-

92 1Q mined byV,.. If the nonlinearity is not too large, i.e., Xis
1705+ gt +28Vaw diu of the order of 1 or less, the magnitudes of the Bessel func-
tions on the right-hand sid&RHS) of Eq. (71) will be small.
Hence,
= w} EB =080 IT 9, (cm) || 11 9 (dnﬂ (7D
. 2eV,w
with ~_ a
M= W (RO (79)
N+ may,+ 2, nB,=| (720  Forcy the requirement of Eq65) becomes
m n
andX .8, is an even integer, and % Maip,=0. (76
Therefore the most important term on the RHS of &) is
I that with all thea,,=0. Therefore,
1202d,— —=c = w? |E%HJmm om
RC™ am B
w§ (CN) 7
X l_n[ JBn(dn)}' (73 —zm (77)
with It can be solved easily. Other Fourier coefficients can be

computed with iterations.
The important implication of Eq(71) is that there exists
significant subharmonic structures & M)(}. In order to
N+ mae+S ng.=| 74 satisfy Eq.(72) we can choosery,= *+1 and others vanish.
2, Mant 2y 74 Thus, we have
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w§ Cwm In general N#1), we shall have steps at subharmonics.
CN+M= _[(N+M)Q]2+(1/RC)2 Jl( ) For example, a significant contribution comes from
CN=m
><Jo 2 Jo| 5 - (78 = B1= Ym={n=0, (88)
except
Cn+m IS comparable witkey in magnitude. —+N 89)
The dc current can be calculated in the same way as in the am= =
last section. We simply gave the result and
= J Jg| =
1 2 a3 [T
d The resistance term can also contribute. The terms of largest
Cm “n magnitude are those with
A2
BN: - 11 (91)
it (O]
X|m{el JZ(Em: mme-FEn: ngnﬂ+7)J, ay+ ym=0, (92)
(79) or
with the requirement Bnim=—1, (93
> kayt+ X 18+ Myn+ > ni,+N=0. (80 amtym=1, (94)
k | m n
or
If M=1, Shapiro steps occur. The most important terms Bn-m=—1, (95
are all the
= B= ym=n=0, Using Egs.(83) and (84) we get
except Cn Cu Cn
jte ZJZ[JN( )J M—-1 2)+‘JN 7)JM1(7)
ay+y,+N=0. (82)

dn dn+
Jo<cM>J1( 2) (cMm( -5 M)

This produces a series

97)

dn-
+J1(cM)J1( NZM) .
Cq Cq
> Jn(z)a N- (2) ~n(C), (83

n
Clearly Eq.(97) predicts the existence of the subharmonic

if steps with the largest occurringlédt= 2, i.e., the half-integer
steps. The size is given mainly by the second term.

=j,=const. (84

Ly o
Jz(E m7m9+2 ngnQ"'?
m n VIl. CONCLUSION

The next important terms are We have found a general solution for the Josephson junc-

Bi=1#0 (85) tion by expanding the phase in a Fourier series of Bessel
' functions. The Fourier components can be calculated with
so that equations of motion. A truncation method was proposed to
deal with the infinite products and series. If the system is not
ayty1+ B+ N=0. (88)  too nonlinear, i.e., ifx and x4 are not greater than 2, the

truncation is very efficient. We presented numerical results
which showed the relationship between the Fourier compo-
) ) ) nents an, x4, andx, . The form of dc current was derived
jie=d-n(cy)jp+ 22 Jon-i(e)d(dy)jz. (87 and new predictions were made. The essential difference be-
tween our prediction and those of earlier works is that the dc
In view of Eq. (75 we see that the first term is the usual current form is the product of many Bessel functions. The
form of the size of the Shapiro steps while the second term ipresent theory also gives a more complex form for the Sha-
the modification of the step size by the resistivity. piro steps. Significant subharmonic structures were found at

It is also possible thgB,=0 but;=1. Hence
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(N—=M)Q whereQ)=w/M=wqy/N. Its amplitude is compa- simulation approach. It also has the advantage of being
rable with that ofwy and should be detectable in microwave easier to analyze and being able to make predictions.
radiation. The size of the Shapiro steps reduces to the con-

ventional form in the limit of small plasma frequency. We

also predict the subharmonic steps with the half-integer ones ACKNOWLEDGMENTS
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