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We studied the ac Josephson effect. The phase difference is expanded in a Fourier series. The Fourier
components can be evaluated by solving the equations of motion. Truncation was applied to deal with the
infinite products and series of Bessel functions. It is very efficient if the nonlinearity is not too large. We give
some numerical results and derive the dc current response. The latter has a different form from previous works.
The Shapiro steps were also studied with the same method and a more accurate step size estimation is given.
@S0163-1829~96!04838-2#

I. INTRODUCTION

The ac Josephson effect has been an active field of study
since it was discovered by Shapiro.1 Recently this effect in
high-Tc superconducting tunnel junctions has attracted much
attention.2 Josephson tunnel junctions irradiated by micro-
wave show rich phenomena3 such as those due to imputities,
types and sizes of junctions, the magnetic field effect, and
effects of flux. In this work we are concerned with the Sha-
piro steps and the energy gap-related current steps at the
subharmonics and higher harmonics of the microwave fre-
quency. One of the reasons that make the Josephson tunnel-
ing so interesting and important is that it is a nonlinear sys-
tem. The Shapiro steps can be simulated quite well using the
resistively shunted junction~RSJ! model.4 It has an analog in
mechanics, namely, the damped driven pendulum. It exhibits
extensive nonlinear behaviors including chaos. Thus it is
tempting to pursue similar phenomena in the Josephson tun-
neling. Most of the works5 on the RSJ model and its me-
chanical analogs used simulations and obtained satisfying
results. However, analytical works are still desirable. They in
many cases provide a deeper view of various physical phe-
nomena. This work is a step in that dirction. It was also
motivated by experimental6 and theoretical7 works on the
subharmonic structures related to the superconducting en-
ergy gap. In Ref. 7 a model similar to RSJ model was studied
and a self-coupling solution was proposed. There are cer-
tainly other theories, such as the multiparticle tunneling
model. But they are not without shortcomings. For example,
a multiparticle tunneling model cannot produce some fine
structures of I-V characteristics.7 On the other hand, the self-
coupling mechanism indeed gives Shapiro steps which is a
similar phenomenon and produces correct structure shapes.
Therefore, we believe it is a major cause of the gap-related
structures. Here, we tried to provide a rigorous solution and
generalization. The voltage bias setup, which, we think, is
more suitable to the high-frequency region, is studied. In
Sec. II we derive the formalism. The numerical results are
presented in Sec. III. We then compute the dc current in Sec.
IV. The comparison with other theories is discussed in Sec.
V. The Shapiro steps are studied in detail in Sec. VI. The
conclusion is given in Sec. VII.

II. DERIVATION OF PHASE

We begin with the equations of motion of the phase,2

ḟ52eV~ t ! ~1!

and

f̈1
1

RC
ḟ1vJ

2sinf52eVacvsinvt, ~2!

whereQ is the charge andC is the capacitance of the junc-
tion, V(t) includes the dc and ac bias voltageVdc and
2Vaccosvt, vJ is the Josephson plasma frequency, and\
was set to 1. A term of the normal resistance of the junction
is added to Eq.~2!. As in the case of simple harmonic oscil-
lators the damping force produces a phase difference~not
f) between the displacement and the external force and
modifies the amplitude; the resistance term here has a similar
effect. However, it will not change the characteristics of the
solution. Therefore, we present the derivation without the
resistive term to reduce the notation, but will give the results
with the junction resistance taken into account.

Hasselberget al.,7 with physical insight, proposed the fol-
lowing solution:

f5v0t2
2eVac

v
sinvt1

vJ
2

v0
2sinS v0t2

2eVac
v

sinvt D , ~3!

where

v052eVdc. ~4!

It was based on the result of a smallvJ /v0 perturbation.
Now we found a general solution which is valid in all cases
and agrees with the solution of Hasselberget al. in the small
vJ /v0 limit. It has the form

f5v0t1(
k,l

aklsin~kv1 lv0!t1(
m,n

bmncos~mv1nv0!t,

~5!

wherek andm are set to be positive to prevent redundancy.
This is motivated by the nonlinearity of the equations of
motion. a’s and b’s are to be determined by Eq.~2!. The
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second summation will disappear if we drop the resistive
term and this is what we shall do in the following process.
Using the relation8

exp~ izsinu!5(
n

Jn~z!einu, ~6!

we get

eif5eiv0t)
k,l

(
a

Ja~akl!e
ia~kv1 lv0!t

5eiv0t(
akl

)
kl

Jakl
~akl!e

iakl~kv1 lv0!t, ~7!

where the summation ofakl means taking into account all
the possible integer values. This convention will be used in
the whole paper. Substituting into Eq.~2!, we have

(
k,l

akl~kv1 lv0!
2sin~kv1 lv0!t12eVacvsinvt

5vJ
2(

akl
F)
m

Jakl
~akl!GsinFv0t1(

k,l
akl~kv1 lv0!tG .

~8!

So we get

~mv1nv0!
2amn12eVacvdm1dn05vJ

2(
akl

)
k,l

Jakl
~akl!,

~9!

with

(
k,l

aklk5m ~10!

and

(
k,l

akll115n. ~11!

We consider the energy gap-related structures first. The Sha-
piro steps will be studied in Sec. V. There are infinite prod-
ucts of Jn(x) in Eq. ~9!. We can simplify them with the
following mathematical knowledge: In any Fourier series,
the largerk or u l u, the lessakl in general, and

Jn~x!}xn for n.0 and x→0. ~12!

Thus, for any term containing the product)klJakl
(akl) to be

important,akl must approach 0 for largek or u l u. So we can
truncate the product by setting

akl50 for k or u l21u.m0 , ~13!

wherem0 can be chosen for desired accuracy and thus the
approximation

Jakl
~akl!.1 for k or u l21u.m0 ~14!

can be applied. Below we give an example ofm051:

v2a1012eVacv.vJ
2 (

a10 ,a01 ,a11 ,a02
Ja10

~a10!Ja01
~a01!

3Ja11
~a11!Ja02

~a02!, ~15!

with

a101a1151 ~16!

and

a011a1112a02521, ~17!

v0
2a01.vJ

2 (
a10 ,a01 ,a11 ,a02

Ja10
~a10!Ja01

~a01!

3Ja11
~a11!Ja02

~a02!, ~18!

with

a101a1150 ~19!

and

a011a1112a0250, ~20!

~v1v0!
2a11.vJ

2 (
a10 ,a01 ,a11 ,a02

Ja10
~a10!Ja01

~a01!

3Ja11
~a11!Ja02

~a02!, ~21!

with

a101a1151 ~22!

and

a011a1112a0250, ~23!

and

4v0
2a02.vJ

2 (
a10 ,a01 ,a11 ,a02

Ja10
~a10!Ja01

~a01!

3Ja11
~a11!Ja02

~a02!, ~24!

with

a101a1151 ~25!

and

a011a1112a0251. ~26!

In the above equations all othera ’s are set to zero. There are
still infinite series involved in Eqs.~15!, ~18!, ~21!, and~24!.
Sinceakl is small in magnitude, Bessel functions of lower
orders usually give greater contribution. We can truncate
them by retaining only lower-order terms. Now it is straight-
forward to solve these coupled equations. Details and some
numerical results will be presented in the next section.

It can be shown that the result of the above derivation
coincides with those of Hasselberget al.7 for smallvJ /v0.
The solution in Eq.~3! gives

eif5(
k,l

JkS 2~ l11!eVac
v D Jl S vJ

2

v0
2D ei [ ~ l11!v02kv] t. ~27!
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On the other hand, in view of Eqs.~15! and~18!, in the limit
of smallvJ /v0, we found

a10.
2eVac

v
, ~28!

a01.
vJ
2

v0
2 , ~29!

and

akl.0 for others. ~30!

Substituting Eqs.~28! and~29! into Eq. ~5!, we get the lead-
ing terms of Eq.~3!.

We note that the truncation scheme is built upon the in-
terplay of two frequenciesv andv0. Without ac bias, it is no
longer applicable or in need of major modification. However,
there is no self-contradiction. For example, ifVac50, then
a1050. In fact all the Fourier coefficientsakl5bmn50 for
kÞ0 andmÞ0. In this case the form off in Eq. ~5! goes
back to that proposed in the pioneer works in this field.9

III. NUMERICAL RESULTS

As stated in the last section, we have to truncate the infi-
nite products and infinite series in order to perform the com-
putation. The truncation is based on Eqs.~12!–~14!. The
value ofm0 depends on two dimensionless parameters

x5
vJ

v
~31!

and

xd5
vJ

v0
. ~32!

They are measures of nonlinearity. The greater these param-
eters, the largerm0 should be. Oncem0 is chosen the num-
bers of terms in Eqs.~15!, ~18!, ~21!, and~24! that should be
kept are more or less fixed. For example, ifm052, then
ua01u<2 andua11u<1. Taking into account more terms will
not enhance accuracy. In our experience, whenx,1 and
xd,1, takingm051 is already a very good approximation.
The results agree with those of takingm052 within a tenth
of a percent. Below we give an example of considering only
a few of the leading terms. All the results can be derived
from the equations in the previous section with the resistive
term taken into account:

v2a101
v

RC
b1012eVacv.vJ

2@J0~a10!J0~a01!J1~a121!

2J1~a10!J1~a01!J0~a121!#,

~33!

v0
2a011

v0

RC
b01.vJ

2J0~a10!J0~a01!, ~34!

4v0
2a021

2v0

RC
b02.vJ

2J0~a10!J1~a01!, ~35!

~v1v0!
2a111

v1v0

RC
b11.vJ

2J1~a10!J0~a01!, ~36!

~v2v0!
2a1211

v2v0

RC
b121.vJ

2J1~a10!J2~a01!, ~37!

v2b102
v

RC
a10.vJ

2J1~a10!J1~b01!, ~38!

v0
2b012

v0

RC
a01.0, ~39!

4v0
2b022

2v0

RC
a02.vJ

2J0~a10!J1~b01!, ~40!

~v1v0!
2b112

v1v0

RC
a11.vJ

2J0~a10!J1~b10!, ~41!

and

~v2v0!
2b1212

v2v0

RC
a121.vJ

2J1~a10!J2~a01!. ~42!

The above results were derived with the assumption that the
junction resistance is very large so thatubi j u!uai j u. Actually
it depends on the experimental situation. However, we an-
ticipate no problem if the resistance is small. The procedure
can be carried out in almost the same way except that more
b’s have to be considered. We have also used the fact that
uai j u becomes smaller if eitheru i u or u j u get larger and have
kept only the leading terms. This approximation is valid if
the nonlinearity is not too large (x,xd@1). Though the list is
not complete, we can see thata10 is approximately propor-
tional to 2eVac/v. Thus we consider it to be the zeroth-order
term. The next term large in magnitude isa01. a02 anda11
are smaller in magnitude anda121 is the smallest coefficient
among thea’s in the list.

According to Eqs.~33!–~42!, we plotted a few Fourier
components against 1/x in Figs. 1~a! and 1~b! under the con-
ditions 1/RCv50.1, 1/xd51.1, and 1/xa51.2, respectively.
In Figs. 2~a! and 2~b! these coefficients are plotted against
1/xd with 1/RCv50.1, 1/x51.1, and 1/xa51.2. One can
clearly see that the Fourier components converge very fast.

We derive a general rule for truncation below. According
to Eq. ~9!, if x/k2,1 andxd / l

2,1, thenakl,1. One also
found that ak11,l,akl and ak,l11,akl . The ratios
ak11,l /akl andak,l11 /akl do not vary much withk and l in
our experience. Thus we can define loosely two small param-
eters

ea;
ak11,l

akl
~43!

and

eb;
ak,l11

akl
. ~44!

The above argument is valid forl.0. For l,0, l21 should
be used instead ofl11. In view of Eq.~14!, we have
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Jn~akl/2!;ea
n~k2d1k!eb

nu l u , ~45!

except fora10. The order of magnitude of each Bessel func-
tion can be judged by the power ofea or eb . This way one
can decide the contribution of any term andm0 can be cho-
sen for a desired accuracy. The infinite series can also be
truncated accordingly. We conclude this section by stating
that the truncation method is very efficient forx,xd,2.

IV. CURRENT RESPONSE

A direct consequence of the bias voltage is the current
response. It has the form10

j ~ t !5ImH e2 if~ t !/2F E
2`

`

dt8eif~ t1t8!/2j 1~ t8!

1E
2`

`

dt8e2 if~ t2t8!/21a j 2~ t8!G J , ~46!

where j 1(t) is the quasiparticle current,j 2(t) is the Cooper-
pair current, anda is a constant phase. With the Fourier
transform

j 1~2!~ t !5E dv

2p
e2 ivt j 1~2!8 ~v! ~47!

and substitution of Eq.~7! into Eq. ~46!, we obtain the qua-
siparticle part of the dc current:

FIG. 1. ~a! a10, a01, a11, anda02 were plotted againstv/vp

with v051.1vp and 2eVac51.2vp . Note that botha11 and a02
were multiplied by a factor of 20.~b! b10, b01, b11, andb02 were
plotted againstv/vp with v051.1vp and 2eVac51.2vp . Note that
bothb11 andb02 were multiplied by a factor of 20.

FIG. 2. ~a! a10, a01, a11, anda02 were plotted againstv0 /vp

with v51.1vp and 2eVac51.2vp . Note that botha01 anda11 were
multiplied by a factor of 20 anda02 was multiplied by a factor of
400. ~b! b10, b01, b11, andb02 were plotted againstv0 /vp with
v51.1vp and 2eVac51.2vp . Note that bothb01 and b11 were
multiplied by a factor of 20 andb02 was multiplied by a factor of
400.
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j dc
q 5 (

akl ,gmn
F)
k,l

JaklS akl2 D GF)
m,n

JgmnS amn

2 D G
3Imj 18S (

m,n
mgmnv1

v0

2
1(

m,n
ngmnv0D , ~48!

with the requirement

(
k,l

kakl5(
m,n

mgmn ~49!

and

(
k,l

lakl5(
m,n

ngmn . ~50!

The Cooper-pair part has the form

j dc
p 5 (

akl ,gmn
F)
k,l

JaklS akl2 D GF)
m,n

JgmnS amn

2 D G
3ImFeia j 28S (

m,n
mgklv1

v0

2
1(

m,n
ngmnv0D G , ~51!

with the requirement

(
k,l

kakl1(
m,n

mgmn50 ~52!

and

(
l
lakl1(

n
ngmn1150. ~53!

It is obvious that the structures of both currents are very rich
and complicated. Consider the quasiparticle current first. For
the purpose of analysis, we truncate the product by setting
m051 as in Sec. III. Now Eqs.~49!, ~50!, ~52!, and ~53!
become, respectively,

a101a115g101g11, ~54!

a011a1112a025g011g1112g02, ~55!

a101a111g101g1150, ~56!

and

a011a1112a021g011g1112g02521. ~57!

We can have

akl5gkl ~58!

for all the k and l and many other combinations. The most
important ones are

j dc
q . (

k,l ,m,n
H Jk2S a102 D Jl2S a012 D Jm2 S a112 D Jn2S a022 D 1(

j
FJk2S a102 D Jm2 S a112 D Jl S a012 D Jl12 j S a012 D JnS a022 D Jn2 j S a022 D

1JkS a102 D Jk1 j S a102 D Jl S a012 D Jl1 j S a012 D JmS a112 D Jm2 j S a112 D Jn2S a022 D G J
3Imj 28S (

k,m
~k1m!v1

v0

2
1 (

l ,m,n
~ l1m12n!v0D . ~59!

The Cooper-pair current has the approximate form

j dc
p . (

k,l ,m,n
H JkS a102 D J2kS a102 D Jl S a012 D J2 l21S a012 D JmS a112 D J2mS a112 D JnS a022 D J2nS a022 D

1(
j

FJkS a102 D J2kS a102 D JmS a112 D J2mS a112 D Jl S a012 D J2 j2 l21S a012 D JnS a022 D J2 j2nS a022 D
1JkS a102 D Jj2kS a102 D Jl S a012 D Jj2 l21S a012 D JmS a112 D J2 j2mS a112 D JnS a022 D J2nS a022 D G J
3ImFeia j 28S (

k,m
~k1m!v1

v0

2
1 (

l ,m,n
~ l1m12n!v0D G . ~60!
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Profound structures occur when the arguments ofj 18(v) and
j 28(v) are equal to 2D whereD is the energy gap. For ex-
ample, the Cooper-pair current shows Riedel peaks.11 In
view of Eqs. ~58! and ~59!, the structures occur when
(N11/2)v056(2D6Mv). The leading order terms of the
quasiparticle current are

(
k
Jk
2S a102 D J02S a012 D Imj 18S kv1

v0

2 D ,
and those of Cooper-pair current are

(
k
JkS a102 D J2kS a102 D J0S a012 D J21S a012 D

3ImFeia j 28S kv1
v0

2 D G .
This prediction is not different from the leading order terms
of the self-coupling theory of Ref. 7. However, Eqs.~59! and
~60! give a more complicated dc current amplitude.

V. COMPARISON

In this section we compare the truncation method with
other theories. The present work is built upon the self-
coupling mechanism. Another model, namely, the multipar-
ticle tunneling model, has been developed by several
groups.12,7This model considers the possibility of the tunnel-
ing of many electrons, thus gaining enough energy from the
bias voltage to overcome the energy gap. Its prediction of the
occurrence of steps was indeed seen in experiments.13 How-
ever, the sizes are not always consistent with the experimen-
tal data. For the structure atmeVdc52D1n\v, this model
gives a size proportional toutu2m where t is the tunneling
matrix andm is the number of electrons which tunneled
through. This would make the size too small for largem. The
other inconsistency is that this model predicts only current
steps but current peaks were found in experiments. There-
fore, the consensus is that the multiparticle tunneling model
can only account for part of the picture.

Klapwijk et al.14 cleverly invoked Andreev reflection15 to
explain subharmonic structures. They found that with multi-
Andreev reflection, electrons can also obtain energy to over-
come the energy gap. This mechanism should occur in the
superconducting-normal-superconducting~SNS! junction.
Similar to the multiparticle tunneling model, the amplitude
of the structures~peaks ofdV/dI) is proportional torm

where r is the reflection coeffient andm is the number of
reflections.r is not easy to evaluate and Ref. 14 only gave a
phenomenological calculation. At this stage, a more accurate
calculation is needed to give a quantitative comparison with
the experimental data.

The present form sometimes predicts results quite differ-
ent from those of Ref. 7. For example, consider the case
eVdc52D2v. In view of Eqs. ~59! and ~60!, the leading
terms of the current densities are (k521 andl50)

j dc
q .J1

2S a102 D J02S a012 D Imj 28S v0

2
2v D ~61!

and

j dc
p .J1

2S a102 D J0S a012 D J21S a012 D ImFeia j 28S v0

2
2v D G , ~62!

where we have used the approximation

J0S a112 D.J0S a022 D.0. ~63!

Their forms are the same as those in Eq.~3.17! of Ref. 7 if
the following replacements were made:

a→2a10/2 ~64!

and

a1→a01/2. ~65!

Indeed we found they are approximately true in view of Eqs.
~33! and ~34! since, in Ref. 7,

a5eVac/v ~66!

and

a15vJ
2/2v0

2 ~67!

in the high-Vdc limit. However, a01 varies withVac while
a1 in Ref. 7 is constant. This produces a difference. To
present another case, we plotted in Fig. 3 the magnitudes of
the Cooper-pair current ateVdc5(2D2\v)/3 versus ac bias
voltage in the large resistance limit under the conditions

FIG. 3. The magnitudes of the Cooper-pair current vs ac bias
voltage in the large resistance limit under the conditions
eVdc5vJ , v50.7vJ andVac is also in units ofvJ /e. The solid
line is the result of the present calculation multiplied by a factor of
10 and the dashed line is from the form in Ref. 7.
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eVdc54vJ and v50.7vJ , and Vac is also in units of
vJ /e. The solid line is the result of the present calculation
multiplied by a factor of 10 and the dashed line is from the
form in Ref. 7.

VI. SHAPIRO STEPS

The dc current shows Shapiro steps provided the ratio of
v to v0 is a rational number. In this section we introduce a
neater version of Eq.~5!. In fact, both are the same. Note that
if Vac50, one had better go back to the process of Sec. II.
We define

V[
v

M
5

v0

N
, ~68!

whereM andN are integers andv/v05M /N. Instead of the
form in Eq. ~5! we now have

f5v0t1(
m

cmsinmVt1(
n

dnsinnVt. ~69!

Now the derivation will take the resistive term into account.
However, we continue to assume the resistance to be very
large so thatdn→0. Substituting into Eq.~2!, we get

(
m

cmm
2V2sinmVt1

1

RC(n dnnVcosnVt12eVacvsinvt5vJ
2 (

am ,bn
F)
m

Jam
~cm!GF)

n
Jbn

~dn!G
3@ei ((m mamVt1(n nbnVt1v0t)i (nbn

2e2 i ((m mamVt1(n nbnVt1v0t)i2(n bn#. ~70!

The Fourier components can be found easily:

l 2V2cl1
lV

RC
dl12eVacvd lM

5vJ
2 (

am ,bn
i (n bnF)

m
Jam

~cm!GF)
n

Jbn
~dn!G , ~71!

with

N1(
m

mam1(
n

nbn5 l ~72!

and(nbn is an even integer, and

l 2V2dl2
lV

RC
cl5vJ

2 (
am ,bn

i(
n

bnF)
m

Jam
~cm!G

3F)
n

Jbn
~dn!G , ~73!

with

N1(
m

mam1(
n

nbn5 l ~74!

and(nbn is an odd integer. Apparently the coefficients larg-
est in magnitude arecM andcN . But as we shall see below,
cN6M is not negligible. The magnitude ofcM will be deter-
mined byVac. If the nonlinearity is not too large, i.e., ifx is
of the order of 1 or less, the magnitudes of the Bessel func-
tions on the right-hand side~RHS! of Eq. ~71! will be small.
Hence,

cM.2
2eVacv

v21~1/RC!2
. ~75!

For cN the requirement of Eq.~65! becomes

(
m

mam50. ~76!

Therefore the most important term on the RHS of Eq.~71! is
that with all theam50. Therefore,

cN.
vJ
2

v0
21~1/RC!2

J0S cN2 D . ~77!

It can be solved easily. Other Fourier coefficients can be
computed with iterations.

The important implication of Eq.~71! is that there exists
significant subharmonic structures at (N6M )V. In order to
satisfy Eq.~72! we can chooseaM561 and others vanish.
Thus, we have
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cN6M.6
vJ
2

@~N6M !V#21~1/RC!2
J1S cM2 D

3J0S cN2 D J0S cN6M

2 D . ~78!

cN6M is comparable withcN in magnitude.
The dc current can be calculated in the same way as in the

last section. We simply gave the result

j dc
p5 (

ak ,b l ,gm ,zn
F)

k
JakS ck2 D GF)

l
Jb lS dl2 D G

3F)
m

JgmS cm2 D GF)
n

JzmS dn2 D G
3ImH eia j 28S (

m
mgmV1(

n
nznV1

v0

2 D J ,
~79!

with the requirement

(
k
kak1(

l
lb l1(

m
mgm1(

n
nzn1N50. ~80!

If M51, Shapiro steps occur. The most important terms
are all the

ak5b l5gm5zn50, ~81!

except

a11g11N50. ~82!

This produces a series

(
n

JnS c12 D J2N2nS c12 D5J2N~c1!, ~83!

if

j 28S (
m

mgmV1(
n

nznV1
v0

2 D . j 285const. ~84!

The next important terms are

b15 lÞ0, ~85!

so that

a11g11b11N50. ~86!

It is also possible thatb150 but z15 l . Hence

j dc
p .J2N~c1! j 2812(

l
J2N2 l~c1!Jl~d1! j 28 . ~87!

In view of Eq. ~75! we see that the first term is the usual
form of the size of the Shapiro steps while the second term is
the modification of the step size by the resistivity.

In general (NÞ1), we shall have steps at subharmonics.
For example, a significant contribution comes from

ak5b l5gm5zn50, ~88!

except

aM56N ~89!

and

gN57M21. ~90!

The resistance term can also contribute. The terms of largest
magnitude are those with

bN521, ~91!

aM1gM50, ~92!

or

bN1M521, ~93!

aM1gM51, ~94!

or

bN2M521, ~95!

aM1gM521. ~96!

Using Eqs.~83! and ~84! we get

j dc
p 52 j 28FJNS cM2 D J2M21S cN2 D1J2NS cM2 D JM21S cN2 D

2J0~cM !J1S dN2 D2J1~cM !J1S dN1M

2 D
1J1~cM !J1S dN2M

2 D G . ~97!

Clearly Eq. ~97! predicts the existence of the subharmonic
steps with the largest occurring atM52, i.e., the half-integer
steps. The size is given mainly by the second term.

VII. CONCLUSION

We have found a general solution for the Josephson junc-
tion by expanding the phase in a Fourier series of Bessel
functions. The Fourier components can be calculated with
equations of motion. A truncation method was proposed to
deal with the infinite products and series. If the system is not
too nonlinear, i.e., ifx and xd are not greater than 2, the
truncation is very efficient. We presented numerical results
which showed the relationship between the Fourier compo-
nents andx, xd , andxa . The form of dc current was derived
and new predictions were made. The essential difference be-
tween our prediction and those of earlier works is that the dc
current form is the product of many Bessel functions. The
present theory also gives a more complex form for the Sha-
piro steps. Significant subharmonic structures were found at
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(N2M )V whereV5v/M5v0 /N. Its amplitude is compa-
rable with that ofv0 and should be detectable in microwave
radiation. The size of the Shapiro steps reduces to the con-
ventional form in the limit of small plasma frequency. We
also predict the subharmonic steps with the half-integer ones
being the largest. As nonlinearity increases, the complexity
grows very fast. Many additional Bessel functions have to be
accounted for. However, considering the computation time,
the analytical method still compared favorably with the

simulation approach. It also has the advantage of being
easier to analyze and being able to make predictions.
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