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We study the phase diagram of a one-dimensional Hubbard model where, in addition to the standard
nearest-neighbor hoppingt, we also include a next-to-nearest-neighbor hoppingt8. For strong enough on-site
repulsion, this model has a transition at half filling from a magnetic insulator with gapless spin excitations at
small t8/t to a dimerized insulator with a spin gap at largert8/t. We show that upon doping this model exhibits
quite interesting features, which include the presence of a metallic phase with a spin gap and dominant
superconducting fluctuations, in spite of the repulsive interaction. More interestingly, we find that this super-
conducting phase can be reached upon hole doping the magnetic insulator. The connections between this model
and the two chain models, recently object of intensive investigations, are also discussed.
@S0163-1829~96!02838-X#

I. INTRODUCTION

The properties of correlated electrons confined to a double
chain have recently attracted considerable attention from
both the theoretical and experimental point of views.

The theoretical analyses have been mainly focused on
simplified models as two chains of electrons interacting via a
short-range repulsion~e.g., the Hubbard model! and coupled
by a transverse hoppingt' or two t-J chains coupled both by
a transverse hopping and by a transverse exchangeJ' . At
half filling both models are equivalent to two coupled
Heisenberg chains whose ground state has been found to be
a spin-liquid insulator with a gap in the excitation spectrum
for arbitrary transverse coupling.1–3 Away from half-filling
both models describe a metal which, however, maintains a
finite gap for the spin excitations. This behavior suggests the
existence of electron pairs which is confirmed by the evi-
dence that the dominant fluctuations describe 4kF density
waves and interchain-pairing fluctuations.2–8 The latter are
expected to dominate for weak repulsion and sufficiently
away from half filling or, in thet-J ladders, for strongJ.

From the experimental point of view, recent measure-
ments on ladders compounds like SrCu2O3 ~Ref. 9! and
~VO! 2P2O7 ~Ref. 10! confirmed the theoretical prediction of
a spin gap at half filling. The transition upon doping from the
spin-liquid insulator to the metal with a spin gap has also
been verified experimentally in Sr-doped LaCuO2.5.

11 Un-
fortunately no superconducting transition seems to occur
down to 5 K, which is, however, not in contrast with the
theoretical predictions~it would imply either that the doping
is still low or that the interaction is too strong!.

An important message which in our opinion arises from
all the theoretical analyses of the two-chain models and
which is the subject of the present work is that doping a
one-dimensional~1D! spin liquid may indeed result in super-
conductivity also in the presence of a repulsive interaction.
The goal of this paper is to show that this feature is shared
not only by two-chain models but also by a wider class of 1D
models which do describe a spin-liquid insulator at half fill-
ing.

Among the spin models which are known to exhibit a spin

gap in the excitation spectrum, a very simple and well-
studied model is the spin-1/2 Heisenberg chain with an ad-
ditional next-to-nearest-neighbor exchange:

ĤJJ85J(
i51

L

SW i•SW i111J8(
i51

L

SW i•SW i12 . ~1!

If J850, this model is the well-known Heisenberg model,12

which is characterized by gapless excitations and power-law
decay of the spin correlations. IfJ85J/2, the ground state is
exactly known13 and consists of a product of singlets among
nearest-neighboring sites~dimerized state!. There are two of
these states, which are related among each other by the trans-
lation of one lattice constant. A finite energy gap exists be-
tween these two degenerate states and the first excited
ones.14 The transition upon increasingJ8 from the gapless
regime to the gapped dimerized state was studied using
bosonization by Haldane,15 who predicted the transition to
occur atJ8.J/6. Successively, Nomura and Okamoto16 per-
formed a detailed numerical investigation of the model and
estimated a larger transition value ofJ8.J/4.

A model of interacting electrons which in a particular
limit reproduces the spin model~1! is the Hubbard model
with an additional next-to-nearest-neighbor hopping
(t2t82U model!, described by the Hamiltonian
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† ci11s1H.c.!
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† ci12s1H.c.!1U(

i51

L

ni↑ni↓ , ~2!

where cis annihilates a spins electron at sitei and
nis5cis

† cis . At half filling and for U@(t,t8) this model
indeed maps onto Eq.~1! with J54t2/U and J854t82/U,
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and therefore it is a good candidate to study the properties
upon doping of a spin-liquid state.

In this paper we study the phase diagram of Eq.~2! by
making use of the weak-coupling renormalization group
~RG! and bosonization. We will show that, as a function of
the parameters~electron densityn, U/t, andt8/t), the phase
diagram is surprisingly rich. In particular we find that also in
this simple case superconductivity may arise from doping the
spin-liquid insulator, even though the electron-electron inter-
action is repulsive. Moreover, fort/4,t8,t/2 we find a tran-
sition upon doping from a magnetic insulator at half filling to
a metal with dominant spin and charge density wave fluctua-
tions and finally to a superconductor~for small U/t) or a
metal with a spin gap and dominant dimer wave fluctuations
~at largerU/t). Although the model is purely one dimen-
sional, this behavior is quite suggestive especially for its
similarity to the phase diagram of high-Tc superconductors.

II. MODEL

As stated in the Introduction, we are going to study the
model described by the Hamiltonian~2! which, in the ab-
sence of interaction, has the energy dispersion relation

e~k!522tcosk12t8cos2k. ~3!

Notice that the model has particle-hole symmetry if contem-
porary t8→2t8. Let us first analyze the dispersion relation
~3! which is the starting point of our perturbative analysis.

If t8,t/4, the band minimum is atk50 ~see Fig. 1!. The
model is then a simple one-band model, and if the interaction
U is turned on, we expect a behavior qualitatively similar to
the standard Hubbard model (t850). We are not going to
discuss this case in much detail, since its behavior is very
well known.17

If t8.t/4 the band minima6kmin move away from
k50 ~which turns into a band maximum! and satisfy the
relation

coskmin5
t

4t8
.

In this case two different situations may occur~see Fig. 2!.
~1! If the density is such that the chemical potential is

larger thane(0)522t12t8, the model at low energy is ef-

fectively a one-band model, for which the previous conclu-
sions for the caset8,t/4 apply.

~2! If, on the contrary, the chemical potential is smaller
than e(0), there are four Fermi points (6kF1 and6kF2);
thus, the model at low energy behaves as a two-band model.
At half filling this implies the following.

~1! If t8,t/2, there are only two Fermi points
6kF56p/2. There is therefore a simple umklapp scattering
since 4kF52p, exactly like in the standard Hubbard model.

~2! If t8.t/2, there are four Fermi points~see Fig. 2!
satisfying the relation 2kF222kF15p. In this case, as we
are going to discuss in the following section, there is only a
higher-order umklapp scattering which involves four-
electron scattering at the Fermi surface, since
4kF224kF152p.

If UÞ0 and one is interested in the low-energy behavior,
a standard approach for a 1D system is to linearize the band
around the Fermi points:e(k)56vF(k7kF) @see Fig. 3~a!#
if there are only two Fermi points, while
e1(k)57vF1(k7kF1) and e2(k)56vF2(k7kF2) if four
Fermi points are involved@see Fig. 3~b!#. The linearization is

FIG. 1. Energy dispersion relation of thet-t8-U model for
t8,t/4.

FIG. 2. Energy dispersion relation of thet-t8-U model for
t8.t/4. Also drawn are the chemical potentials corresponding to
two different fillings:eF

(1) refers to the case when only one band is
involved at low energy whileeF

(2) refers to the case when two bands
are involved.

FIG. 3. The effective low-energy models:~a! simple one-band
model and~b! two-band model.
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assumed to be valid only within some cutoff range of width
L. The interactionU causes scattering among these Fermi
points. These scattering processes are relevant since they
generate in perturbation theory logarithmic singularities~the
usual Cooper’s singularity in the particle-particle channel
and additional singularities in the particle-hole channels due
to the nesting property of a 1D Fermi surface!. A standard
way to cope with such a logarithmic singularities is the
weak-coupling renormalization group~RG!, which, along
with the bosonization technique, is a very powerful tool in
1D. Although our analysis will make use of these techniques,
we are not going to introduce them since there exists a wide
number of articles where they have been intensively
discussed.18–20 For the two-band model, in particular, I will
closely follow the analysis of Ref.4. In this reference a two-
band model resulting from a two-coupled-chain model was
analyzed both via bosonization and the RG. The only differ-
ence with Ref.4 is that the inner bands@which aree1(k) in
the present case and the antibonding band with transverse
momentumk'5p in the two-chain model# have opposite
slopes in the two cases. The correct mapping between the
two models is therefore4

6kF1°7kF
p ,

6kF2°6kF
0 .

On provision that the previous mapping is performed, the
perturbation expansion of thet-t8-U two-band model and of
the two-chain Hubbard model is exactly the same at low
energy~apart from an important difference at half filling; see
next section!. Therefore we can simply borrow all the results
which have been obtained for the two-chain models and use
them for the present case. This is what we are going to do in
the following sections.21

Already at this stage it is apparent that the behavior of the
two-chain models is similar to that of a single-chaint-t8-U
model and that the feature which makes the two class of
models equivalent is the presence of four Fermi points in
some parameter range.

III. MODEL AT HALF FILLING

If the density corresponds to one electron per site, two
cases occur, as previously discussed.

A. t8<t/2

If t8,t/2, the low-energy model is a one-band model with
Fermi momenta6p/2. There is a relevant umklapp process
which makes the system an insulator. However, the spin ex-
citations are gapless and, as a consequence, the spin correla-
tions have a power-law decay at large distance. The model,
for what it concerns the spin degrees of freedom, behaves
exactly like a Heisenberg model.17,12

B. t8>t/2

If t8.t/2, the effective model is a two-band model. It is
therefore worthwhile to start with a broad outline of the be-
havior of such a two-band model in 1D.

Without umklapp terms, two different phases exist de-
pending on the ratio of the Fermi velocities,vF1 /vF2, and
U/t. If t8.t/2, the Fermi velocity of the inner band
vF1!vF2. In this case the RG predicts4,2 that the model is a
metal with four gapless excitations~two spin and two charge
sound modes!. The properties of the ground state can be
inferred from the correlation functions which have the slow-
est decay at large distances. In this case these correlation
functions describe spin and charge density waves at the in-
commensurate momenta 2kF2 and 2kF1. By increasingt8
also vF1 /vF2 increases and at a criticaltc8 a transition to a
different phase occurs.4,2,22In this new phase the model has a
gap for the spin excitations and a single gapless charge mode
which corresponds to the ordinary zero sound.4,2,7 There are
two competing correlation functions which have the slowest
asymptotic decay. One is, in two-chain language, the 4kF
charge density wave.6,2,7 In the language appropriate to the
t-t8-U model this function translates into the dimer wave
~DW! correlation function which decays at large distances
like

xDW~x!5^ODW~x!ODW~0!&;
cos@2~kF22kF1!x#

x2K

5
cos~px!

x2K
, ~4!

the last equivalence being true only at half filling and

ODW~x!5S1~x!S2~x1a!2S1~x2a!S2~x! ~5!

being the dimer order parameter,15 with a the lattice con-
stant.

The other competing correlation function is what in two-
chain language has been identified as a kind ofd-wave su-
perconducting correlation function~SC!.4 In the t-t8-U
model,

xSC~x!5^D~x!D†~0!&;
1

x1/2K
, ~6!

where

D~x!5 (
p56

cpkF1↑~x!c2pkF1↓~x!2cpkF2↑~x!c2pkF2↓~x!.

~7!

The Fermi operatorsc ’s in Eq. ~7! are defined around each
Fermi point, i.e.,

cpkFis
~x!;eipkFix (

uku,L
eikxcpkFi1k,s ,

wherei51,2. Notice that the existence of a spin gap already
signals some kind of electron pairing. Due to the repulsive
nature of the interaction, the pair wave function should have
a minimum whenever the two electrons approach each other.
This is accomplished by the minus sign in the expression of
the pair operatorD(x), Eq. ~7!, which in turns shows the
importance of having more than two Fermi points at our
disposal. However, the existence of electron pairs does not
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necessarily imply dominant superconductivity. This depends
upon the pair-pair interaction which in turn determines the
value of the parameterK.

From Eqs.~4!–~6!, we see in fact that ifK.1/2 the pair-
ing fluctuations indeed dominate over the DW fluctuations,
while the opposite occurs ifK,1/2. According to
bosonization,19,12K is related to the charge compressibility.
In particular,

1

K
5

4L

pvr

]2E

]N2 , ~8!

whereL is the length of the chain,E the ground-state energy,
N the electron number, andvr the velocity of the charge zero
sound. The latter can be determined numerically by calculat-
ing the energy gap between the ground state~for closed
shells at total momentumP50) and the first excited state at
total momentumP52p/L:

E~P52p/L !2E~P50!5
2p

L
vr .

The larger the electron-electron repulsion, the smaller the
compressibility and consequentlyK, and the more unlikely is
the dominance of superconductivity.

Since we are at half filling, we have also to take into
account umklapp scattering. In this case there is only one
higher-order umklapp process, which involves a four-
electron scattering at the Fermi surface~see Fig. 4!. From
dimensional analysis it turns out that this umklapp process is

relevant ifK,1/2. In this case the zero-sound mode acquires
a gap and the model becomes insulating.

Having discussed the possible phases of thet-t8-U model
when the Fermi surface has two branches, let us study in
detail their occurrence at half filling.

If t8.tc8 andK,1/2, the umklapp process is relevant and
therefore the model is insulating with a gap in the whole
excitation spectrum and a finite average value of the dimer
order parameter, Eq.~5!:

^ODW~x!&5~21!x3const.

This insulating phase certainly occurs forU@(t,t8) when
the mapping to the spin model~1! is justified. On the other
hand, for very smallU, the parameterK can be evaluated by
perturbation theory and it turns out to be close to 1, modulo
corrections of orderU. Therefore, provided perturbation
theory is valid,K.1/2 forU!t, which implies that the um-
klapp scattering is irrelevant and the model is metallic with
the dominant superconducting fluctuations, Eq.~6!. Conse-
quently we expect a transition at a finiteU5Uc from a metal
with superconducting correlationsdirectly to an insulator
with a dimer order. In Fig. 6, below, we have drawn a quali-
tative phase diagram fort8.tc8.t/2. At half filling, n51 in
the figure, there is a criticalU which separates the insulating
regime~the bold line in the figure which we label DI, mean-
ing a dimer insulator! at largerU from the metal with super-
conducting fluctuations at smallerU ~which we label SC!.

If t/2,t8,tc8 we still expect a metal-to-insulator transi-
tion at a finiteU, but this time the metal has no spin gap and
shows dominant density wave fluctuations. The properties of
the insulating phase into which the above metal transforms at
large U cannot be simply deduced by means of the RG,
whose validity is doubtful at finiteU. However, we tend to
believe23 that this insulator should have the same properties
of the dimer insulator which occurs fort8.tc8

Notice that the behavior of thet-t8-U model at half filling
is different from the behavior of the two-chain models also at
half filling. There, the umklapp term is a two-electron scat-
tering process and is relevant for anyK,1, which implies
that the model is an insulator for anyUÞ0.2 @This coinci-
dence, which might well be accidental, is quite surprising,

FIG. 5. Phase diagram of thet-t8-U model for t8,t/4 as a
function ofU/t and of the densityn.

FIG. 4. The relevant umklapp scattering when the Fermi surface
is made by four Fermi points.

FIG. 6. Qualitative phase diagram of thet-t8-U model for t8
sufficiently larger thant/2 as a function ofU/t and of the density
n.
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since our prediction is based simply onband-structure argu-
ments~modification of the Fermi surface!. In fact, one would
rather believe that band structure details are irrelevant for
electron systems in the strong correlation limit where the
interaction is much larger than the bandwidth, which is the
case of the model~1!.#

To conclude this section, we like to point out that, accord-
ing to our analysis, the transition at largeU between the
insulating phase with power-law decay of the spin correla-
tions and the dimer insulator with a spin gap is predicted to
occur att8.t/2 or, in terms of the exchange couplings, at
J8.J/4. This is exactly the value found by numerical inves-
tigation of the spin model~1! in Ref.16.

IV. MODEL AWAY FROM HALF FILLING

We have seen that already at half filling thet-t8-U model
shows the unusual property of a transition at a criticalU
from a metal with superconducting fluctuations to an insula-
tor, when t8.t/2. Away from half filling the behavior is
even more interesting, for smaller and largert8. Let us con-
sider in detail the various possible scenarios.

A. t8<t/4

In this case the model is for any filling always an effective
one-band model, where nothing special occurs. Whether we
dope with holes or electrons, as soon as we move away from
half-filling the charge gap closes and the system becomes a
metal with gapless spin and charge sound modes. The domi-
nant fluctuations are both spin and charge density wave
~SDW and CDW! fluctuations at momentum 2kF . In Fig. 5
we have drawn the phase diagram for this case as a function
of U/t and of the densityn. The bold line at densityn51,
labeled MI, identifies the magnetic insulator with power-law
decay of the spin correlations, while the rest of the phase
diagram has been labeled with SDW/CDW, implying it is a
metal with dominant density wave fluctuations. These labels
will be used with the same meaning also in the following
cases.

B. t8>t/2

Here, it makes a difference whether we dope with holes or
electrons~the model is not particle-hole symmetric!. In Fig.
6 we have drawn a qualitative phase diagram for
t8.tc8.t/2.

For hole doping (n,1), the effective low-energy model
involves always two bands. Therefore we predict that for any
hole doping the spin gap will survive. As concerns the
charge gap, it will immediately disappear as soon as we
move away from half filling. Therefore, asU increases, we
expect a crossover from a metal with dominant supercon-
ducting fluctuations@see Eq.~6!#, which we still label in Fig.
6 as SC since it is continuously connected to the analogous
state atn51, to a metal with dominant dimer wave fluctua-
tions @see Eq.~4!#, which is labeled by DW.

At this point, it is worthwhile to discuss briefly the prop-
erties of the weakly doped dimer insulator. If we approach
half filling with U.Uc then, according to the theory of the
incommensurate-to-commensurate transitions in 1D,24 K
tends asymptotically to the value 1/4 and, exactly at half
filling, it jumps abruptly to zero. With the asymptotic value
K51/4 valid at low doping, the dimer wave correlation func-
tion, Eq. ~4!, decays likexDW;(21)x/Ax, while the super-
conducting correlation, Eq.~6!, decays quadratically
xSC;1/x2. Notice that these power-law decays are typical of
the Green functions and of the density-density correlation
functions, respectively, of a hard-core Bose gas. The situa-
tion is opposite for the metallic phase atU!t. In this case,
provided perturbation theory is valid,K.1 and the behav-
iors of the two correlation functions are exchanged:
xSC;1/Ax while xDW;(21)x/x2.

In the case of electron doping the situation is in general
different but for low doping where all is the same except the
chemical potential which moves up instead of down~see Fig.
2!. At the same time the Fermi velocitiesvF1 andvF2 of the
two linear bands get more and more different~actually
vF1→0). As we said in the previous section, at a critical
value of vF2 /vF1 or equivalently, a critical densitync1 in
Fig. 6, the RG predicts a transition to another phase where
also the spin gap closes~see, e.g., Appendix B in Ref. 4!. In
this phase the model is a metal with four gapless sound
modes~two spin and two charge modes!. The dominant fluc-
tuations describe charge and spin density waves. We have
labeled this phase in Fig. 6 as SDW/CDW II, implying that
the number of gapless excitations is twice that of the phase
SDW/CDW.

Finally, at a second critical dopingnc2, the topology of
the Fermi surface changes from a four-point to a two-point
Fermi surface. At the transition the density of states of the
inner band diverges due to a van Hove singularity. For this
reason we are not able to predict what happens exactly at the
transition. According to Balents and Fisher,2 the van Hove
singularity induces again a spin gap and therefore they ex-
pect the properties of the model to be similar to those at low
doping. On the other hand, if we assume that the RG equa-
tions of Ref.4 can be extended up to a very largevF2 /vF1
~where their validity is not fully guaranteed!, we would
rather expect that forvF2 /vF1@1 the two linear bands ef-
fectively decouple. In this case the transition would be a
standard metal-to-metal transition with a topological modifi-
cation of the Fermi surface. The van Hove singularity related
to the low~hole! doping of the inner band is not expected to
play any fundamental role, similarly to what happens to any
one-band model close to filling zero or one. Although we

FIG. 7. Qualitative phase diagram of thet-t8-U model for
t/4,t8,t/2 as a function ofU/t and of the densityn.
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have no rigorous proof, we tend to believe that nothing spe-
cial occurs at the transition~the latter scenario!, rather than
in the scenario proposed in Ref. 2. Coming back to the phase
diagram, in the region where only two Fermi points are in-
volved the model should be metallic with still dominant den-
sity wave fluctuations~see Fig. 6! and only two gapless
modes~therefore this phase is labeled SDW/CDW!.

In Fig. 6 we have assumed that the critical densitync1
decreases by increasingU. This is true for very smallU
where perturbation theory is valid. For finiteU, unfortu-
nately, we have no reliable method to evaluatenc1. It might
well be thatnc1→nc2 at U@(t,t8), which would be more
consistent with the proposed transition upon increasingU at
half filling and for t8.t/2 from the phase CDW/SDW II to
the dimer insulator DI. The uncertainty about the precise
behavior ofnc1 as a function ofU is also the reason why we
have preferred not to draw even a qualitative phase diagram
for t8 close tot/2.

C. t/4<t8<t/2

This case is in our opinion the most interesting one for its
surprising similarities with the behavior of high-Tc com-
pounds. We said in the previous section that at half filling the
model is an insulator~MI in Fig. 7 atn51) with power-law
decaying spin correlations. If we dope with electrons
(n.1), the charge gap suddenly closes and the model turns
into a metal with dominant spin and charge density wave
fluctuations, for arbitrary doping~SDW/CDW in Fig. 7!.

If we dope with holes (n,1), at low doping the Fermi
surface still consists of two points, and therefore the proper-
ties are similar to what we just described for electron doping;
i.e., the phase is a SDW/CDW. However, as the chemical
potential moves down~see Fig. 2!, the same situation en-
countered earlier reappears, now in reverse. At a lower criti-
cal doping (nc2, in analogy with the previous case! there will
be a topological modification of the Fermi surface from a
two-point to a four-point surface. The model turns from a
one-band to a two-band model. Until the Fermi velocities
remain quite different (vF2 /vF1@1) the system is a metal
with four gapless modes~two charge and two spin modes!
and dominant density wave fluctuations~phase SDW/CDW
II in Fig. 7!. At a critical value ofvF2 /vF1 or, equivalently,
a critical dopingnc1, a spin gap opens and only one charge
mode~the ordinary zero sound! remains gapless. The domi-
nant fluctuations are dimer waves, Eq.~5!, or pairing fluc-
tuations, Eq.~7!. The one which dominates depends on the
value of the parameterK, Eq. ~8!, which in turns depends on
U. As we said before, ifK,1/2, the dimer fluctuations win
~DW phase in Fig. 7!, while for K.1/2 superconductivity is
more relevant~SC phase in Fig. 7!. As in the previous case,
we cannot establish the precise behavior at largeU of the
critical line between the CDW/SDW II phase and the SC or
DW phase. Therefore the shape of the phase diagram drawn
in Fig. 7 has not to be taken too literally close to that critical
line.

Notice that the appearance of the spin gap upon hole dop-
ing the magnetic insulator indicates that in this model the
holesincreasethe spin frustration. In the largeU limit, one

can map thet-t8-U model onto a generalizedt-J model with
the Hamiltonian

Ĥ52t (
s5↑,↓

(
i51

L

~cis
† ci11s1H.c.!

1t8 (
s5↑,↓

(
i51

L

~cis
† ci12s1H.c.!1J(

i51

L

SW i•SW i11

1J8(
i51

L

SW i•SW i12 ,

defined in the reduced Hilbert space where double occupan-
cies are forbidden. This model witht850 has been numeri-
cally investigated by Ogata, Luchini, and Rice.25 They find
that the hole doping effectively reduces the frustration due to
J8. Since we instead find an increase of frustration, we have
to conclude that this is mainly a consequence of the next-to-
nearest-neighbor hoppingt8.26

V. CONCLUSIONS

In this paper we have studied the phase diagram of a
one-dimensionalt-t8-U model where, in addition to the on-
site repulsionU and nearest-neighbor hoppingt, we have
included a next-to-nearest-neighbor hoppingt8. Although
very simple, this single-chain model has the interesting prop-
erty to be at half filling and largeU either an insulator with
gapless spin excitations or a dimerized insulator with a spin
gap.15 The transition between the two insulators should oc-
cur, according to our analysis, att8.t/2. This model is
therefore particularly suited to study the occurrence of super-
conductivity upon doping an insulator which has a charge
gap and a spin gap. In fact, recent theoretical and numerical
investigations of two-coupled-chain models,3,8 suggest that
the presence of a spin gap in the insulating phase of two
chains at half filling may lead to superconductivity upon
doping and for not too large a repulsion. We have shown that
precisely this behavior is realized here. Moreover, the weak-
coupling analysis seems to suggests that the key feature
which is responsible for the spin gap and possibly for the
superconductivity is the topology of the Fermi surface in
both models, which in the interesting parameter range has
two branches, i.e., four Fermi points.

The presentt-t8-U model has additional properties which
make this model interesting in its own right. In particular at
half filling and for t8 sufficiently larger thant/2, we predict a
direct transition at a criticalUc from a metal with dominant
superconducting fluctuations atU,Uc to a dimerized insu-
lator atU.Uc .

Interestingly, fort/4,t8,t/2 the phase diagram for hole
doping shows some similarities with the phase diagram of
high-Tc compounds~see Fig. 7!. At half filling we have a
magnetic insulator with power-law decay of the spin corre-
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lations. For low doping we move to a metal with dominant
spin and charge density wave fluctuations. Above a critical
doping, a spin gap opens and the model has either dominant
superconductivity or dimer waves depending upon the
strength of the on-site repulsion.
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