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Superconductivity from doping a spin-liquid insulator: A simple one-dimensional example
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We study the phase diagram of a one-dimensional Hubbard model where, in addition to the standard
nearest-neighbor hoppirtg we also include a next-to-nearest-neighbor hoppind-or strong enough on-site
repulsion, this model has a transition at half filling from a magnetic insulator with gapless spin excitations at
smallt’/t to a dimerized insulator with a spin gap at larg/gt. We show that upon doping this model exhibits
quite interesting features, which include the presence of a metallic phase with a spin gap and dominant
superconducting fluctuations, in spite of the repulsive interaction. More interestingly, we find that this super-
conducting phase can be reached upon hole doping the magnetic insulator. The connections between this model
and the two chain models, recently object of intensive investigations, are also discussed.
[S0163-182896)02838-X

I. INTRODUCTION gap in the excitation spectrum, a very simple and well-
studied model is the spin-1/2 Heisenberg chain with an ad-
The properties of correlated electrons confined to a doublditional next-to-nearest-neighbor exchange:
chain have recently attracted considerable attention from
both the theoretical and experimental point of views.
The theoretical analyses have been mainly focused on . L L
simplified models as two chains of electrons interacting via a Hjy ZJE S- SH1+J’2 S-S.o. (D)
short-range repulsiofe.g., the Hubbard mode&nd coupled =1 =1
by a transverse hoppirtg or twot-J chains coupled both by

a transverse hopping and by a transverse exchdngeAt If J’=0, this model is the well-known Heisenberg motfel,

half filling both models are equivalent to two coupled .~ . ; o
Heisenberg chains whose ground state has been found to g/eh ich is characterized by gapless excitations and power-law

a spin-liquid insulator with a gap in the excitation spectrum ecay of the ng correlayons.\]f =J12, the grqund state is
for arbitrary transverse couplifg® Away from half-filing ~ €xa@ctly knowrt® and consists of a product of singlets among
both models describe a metal which, however, maintains 3éarest-neighboring sitédimerized state There are two of
finite gap for the spin excitations. This behavior suggests th&1€se states, which are related among each other by the trans-
existence of electron pairs which is confirmed by the evi-@tion of one lattice constant. A finite energy gap exists be-
dence that the dominant fluctuations descritbe 4lensity  tween these two degenerate states and the first excited
waves and interchain-pairing fluctuatiché. The latter are ones'* The transition upon increasing from the gapless
expected to dominate for weak repulsion and sufficientlyregime to the gapped dimerized state was studied using
away from half filling or, in thet-J ladders, for strongl. bosonization by Haldan€, who predicted the transition to
From the experimental point of view, recent measure-occur at)’ =J/6. Successively, Nomura and OkamGtper-
ments on ladders compounds like SgOg (Ref. 9 and formed a detailed numerical investigation of the model and
(VO),P,05 (Ref. 10 confirmed the theoretical prediction of estimated a larger transition value &f=J/4.
a spin gap at half filling. The transition upon doping fromthe A model of interacting electrons which in a particular
spin-liquid insulator to the metal with a spin gap has alsdimit reproduces the spin modél) is the Hubbard model
been verified experimentally in Sr-doped LaCu0™ Un-  with an additional next-to-nearest-neighbor hopping
fortunately no superconducting transition seems to occuft—t’—U mode), described by the Hamiltonian
down to 5 K, which is, however, not in contrast with the
theoretical predictiong&t would imply either that the doping
is still low or that the interaction is too strong

-

An importan_t message which in our opiniqn arises from H=—t (CiTg—Ci+10+ H.c)
all the theoretical analyses of the two-chain models and o=T1,1 i=1
which is the subject of the present work is that doping a L L
one-dimensionallD) spin liquid may indeed result in super- ! T
L : SO i Ci,Ci+20+H.C)+U ni+Ni;, (2
conductivity also in the presence of a repulsive interaction. o=1.1 ;1 (CiCi+20 ) izl i 2

The goal of this paper is to show that this feature is shared

not only by two-chain models but also by a wider class of 1D

models which do describe a spin-liquid insulator at half fill- where c¢;, annihilates a spino electron at sitei and

ing. nig=cfgcio. At half filling and for U>(t,t") this model
Among the spin models which are known to exhibit a spinindeed maps onto Eq1) with J=4t%/U and J’' =4t'?/U,
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FIG. 1. Energy dispersion relation of thet’-U model for FIG. 2. Energy dispersion relation of thet’-U model for
t'<t/A. t’>t/4. Also drawn are the chemical potentials corresponding to

two different fillings: e refers to the case when only one band is

and therefore it is a good candidate to study the propertievolved at low energy while(?”) refers to the case when two bands
upon doping of a spin-liquid state. are involved.
In this paper we study the phase diagram of E].by
making use of the weak-coupling renormalization groupfectively a one-band model, for which the previous conclu-
(RG) and bosonization. We will show that, as a function of sions for the cast’ <t/4 apply.
the parameteréelectron densityr, U/t, andt’/t), the phase (2) If, on the contrary, the chemical potential is smaller
diagram is surprisingly rich. In particular we find that also in than €(0), there are four Fermi pointsH{kg; and *kg,);
this simple case superconductivity may arise from doping thehus, the model at low energy behaves as a two-band model.
spin-liquid insulator, even though the electron-electron interAt half filling this implies the following.
action is repulsive. Moreover, fafd<t’ <t/2 we find a tran- (1) If t'<t/2, there are only two Fermi points
sition upon doping from a magnetic insulator at half filling to + k.= + 77/2. There is therefore a simple umklapp scattering
a metal with dominant spin and charge density wave fluctuasince 4«g= 2, exactly like in the standard Hubbard model.
tions and finally to a superconductéfor small U/t) or a (2) If t'>t/2, there are four Fermi pointtsee Fig. 2
metal with a spin gap and dominant dimer wave fluctuationssatisfying the relation R-,—2kg;=. In this case, as we
(at largerU/t). Although the model is purely one dimen- are going to discuss in the following section, there is only a
sional, this behavior is quite suggestive especially for itshigher-order umklapp scattering which involves four-
similarity to the phase diagram of highsBuperconductors. electron scattering at the Fermi surface, since
4kF2_4kF1:27T.
Il. MODEL If U#0 and one is interested in the low-energy behavior,
As stated in the Introduction, we are going to study thea standard approach for a 1D system is to linearize the band
, _ _
model de_scribed_ by the Hamiltonie(ﬂ)_which, in the_ab- ff\rouPhi:Ze F::’;n I pg:]r};g(kzwo_vFI:(g;;nI?F) [;Oeit;.‘]tzlg. sve\:)r:]l"e
sence of interaction, has the energy dispersion relation e1(K)=Fvp (kT key) and ey(K)=*vpeo(kFkep) if four

e(K) = — 2tcos+ 2t’ cos. &) Fermi points are involvefsee Fig. &)]. The linearization is

Notice that the model has particle-hole symmetry if contem-
poraryt’— —t’. Let us first analyze the dispersion relation
(3) which is the starting point of our perturbative analysis. AN e®

If t'<t/4, the band minimum is &=0 (see Fig. 1L The (@)
model is then a simple one-band model, and if the interaction k
U is turned on, we expect a behavior qualitatively similar to F )
the standard Hubbard moddl’ €0). We are not going to k
discuss this case in much detail, since its behavior is very 'T'
well knownl’

If t'>t/4 the band minimaxk.,, move away from ANE®
k=0 (which turns into a band maximunmand satisfy the (b)

relation \k‘pl\ kr
t
coKmin= k

4

In this case two different situations may ocdsee Fig. 2
(1) If the density is such that the chemical potential is FIG. 3. The effective low-energy model&) simple one-band
larger thane(0)= —2t+2t’, the model at low energy is ef- model and(b) two-band model.
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assumed to be valid only within some cutoff range of width  Without umklapp terms, two different phases exist de-
A. The interactionU causes scattering among these Fermipending on the ratio of the Fermi velocitiass, /vg,, and
points. These scattering processes are relevant since theyt. If t'=t/2, the Fermi velocity of the inner band
generate in perturbation theory logarithmic singularitéé® v, <vg,. In this case the RG prediétsthat the model is a
usual Cooper’s singularity in the particle-particle channelmetal with four gapless excitatiorisvo spin and two charge
and additional singularities in the particle-hole channels dusound modes The properties of the ground state can be
to the nesting property of a 1D Fermi surfacA standard inferred from the correlation functions which have the slow-
way to cope with such a logarithmic singularities is theest decay at large distances. In this case these correlation
weak-coupling renormalization grouRG), which, along functions describe spin and charge density waves at the in-
with the bosonization technique, is a very powerful tool incommensurate momentakg, and Xg,. By increasingt’

1D. Although our analysis will make use of these techniquesalso v, /v, increases and at a criticg] a transition to a

we are not going to introduce them since there exists a widgifferent phase occufs???In this new phase the model has a
number of articles where they have been intensivelygap for the spin excitations and a single gapless charge mode
discussed® "’ For the two-band model, in particular, | will which corresponds to the ordinary zero sodRd.There are
closely follow the analysis of Ref.4. In this reference a two-two competing correlation functions which have the slowest
band model resulting from a two-coupled-chain model wasasymptotic decay. One is, in two-chain language, tke 4
analyzed both via bosonization and the RG. The only diffel’-charge density wave?’ In the language appropriate to the
ence with Ref.4 is that the inner banfghich aree (k) in t-t’-U model this function translates into the dimer wave
the present case and the antibonding band with transver§pw) correlation function which decays at large distances
momentumk, =7 in the two-chain modéelhave opposite |ike

slopes in the two cases. The correct mapping between the

two models is therefofe c0$ 2(Keo—Kep)X]

Xow(X) ={Opw(X)Opw(0))~

X2K
ke~ FkE, cog mX)
:_XQK_' (4)
e kg- the last equivalence being true only at half filling and
On provision that the previous mapping is performed, the N B . 5
perturbation expansion of ttet’-U two-band model and of Opw(X)=S"(X)S™ (x+a)=S"(x=a)S (x) (5

the two-chain Hubbard model is exactly the same at Iowb
energy(apart from an important difference at half filling; see
ne>§t section Therefore_ we can simply borrpw all the results The other competing correlation function is what in two-
which have been obtained for the two-chain models and usg

them for the present case. This is what we are going to do i an Izngqage has :oe_en |o]£ent|f!edsacs ? km(di;ﬁave, S
the following sectiong: perconducting correlation functiofSC).” In the t-t'-U

Already at this stage it is apparent that the behavior of themOdeL

two-chain models is similar to that of a single-chaitf -U 1
model and Fhat the_ feature which makes the two cl_ass _of xsdX)=(A(X)AT(0))~ =, (6)
models equivalent is the presence of four Fermi points in X

some parameter range.

eing the dimer order paramet@rwith a the lattice con-
stant.

where
I1l. MODEL AT HALF FILLING

If the density corresponds to one electron per site, two A(x)=p:t Pty 1 OV P—pie 11 () = Ppie 1 () pi 1 (X)
cases occur, as previously discussed. 7

A t'<t/2 The Fermi operatorg’s in Eq. (7) are defined around each

. . Fermi point, i.e.,
If t' <t/2, the low-energy model is a one-band model with

Fermi momentat 7/2. There is a relevant umklapp process .
which makes the system an insulator. However, the spin ex- ,ﬂka_U(X),\,elkaix
citations are gapless and, as a consequence, the spin correla- ' [k[<A
tions have a power-law decay at large distance. The model o . . .
for what it concerns the spin degrees of freedom, behave‘gherel =12 N(_)tlce that the existence of a spin gap a'fea_‘dy
; ; 12 signals some kind of electron pairing. Due to the repulsive
exactly like a Heisenberg mod#: . ) ! X
nature of the interaction, the pair wave function should have
a minimum whenever the two electrons approach each other.
This is accomplished by the minus sign in the expression of
If t'>1/2, the effective model is a two-band model. It is the pair operatorA (x), Eq. (7), which in turns shows the
therefore worthwhile to start with a broad outline of the be-importance of having more than two Fermi points at our
havior of such a two-band model in 1D. disposal. However, the existence of electron pairs does not

ikx
€ Cpke, +k,os

B.t'>t/2
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FIG. 4. The relevant umklapp scattering when the Fermi surface F|G 6. Qualitative phase diagrgm of tie'-U model fort"
is made by four Fermi points. sufficiently larger thart/2 as a function otJ/t and of the density

n.

necessarily imply dominant superconductivity. This depends

upon the pair-pair interaction which in turn determines the'elevant ifK <1/2. In this case the zero-sound mode acquires

value of the parametet a gap and the model becomes insulating.

From Eqs.(4)—(6), we see in fact that iK>1/2 the pair- Having discussed the possible phases oftitfeU model

ing fluctuations indeed dominate over the DW quctuations,When the Fermi surface has two branches, let us study in

while the opposite occurs ifK<1/2. According to detalllthel,r occurrence at half filling. .
bosonization®?K is related to the charge compressibility. If t">1c andK<1/2_, the umklapp Process Is _relevant and
In particular, therefore the model is insulating with a gap in the whole

excitation spectrum and a finite average value of the dimer
AL 5°E order parameter, E@5):

1
K= 7o, N2 ®

whereL is the length of the chairE the ground-state energy, (Opw(x))=(—1)*Xconst.
N the electron number, and, the velocity of the charge zero
sound. The latter can be determined numerically by calculat.-l.
ing the energy gap between the ground stdte closed
shells at total momentu®=0) and the first excited state at
total momentunP=2/L:

his insulating phase certainly occurs for>(t,t’) when
the mapping to the spin modél) is justified. On the other
hand, for very smalU, the parameteK can be evaluated by
perturbation theory and it turns out to be close to 1, modulo
corrections of orderU. Therefore, provided perturbation
E(P=27/L)—E(P=0)= ZTWUp- theory is vaIi(_j,K?l/Z for U <t, which implies.that the um-
klapp scattering is irrelevant and the model is metallic with

) the dominant superconducting fluctuations, E). Conse-
The larger the electron-electron repulsion, the smaller theently we expect a transition at a finlte= U, from a metal

compressibility and consequentty, and the more unlikely is  \ith superconducting correlationgirectly to an insulator
the dominance of superconductivity. ~ with a dimer order. In Fig. 6, below, we have drawn a quali-
Since we are at half filling, we have also to take into 46 phase diagram faf>t.>t/2. At half filling, n=1 in
account umklapp scattering. In this c.:ase.there Is only ong,q figure, there is a criticd) which separates the insulating
higher-order umklapp process, which involves a four-reqime the bold line in the figure which we label DI, mean-
e!ec"O’? scattering _at' the Fermi surfa(c;zee Fig. 3. From .ing a dimer insulatgrat largerU from the metal with super-
dimensional analysis it turns out that this umklapp process 'ﬁonducting fluctuations at smaller (which we label SC
If t/2<t’<t. we still expect a metal-to-insulator transi-
8/ tion at a finiteU, but this time the metal has no spin gap and
T shows dominant density wave fluctuations. The properties of
| T the insulating phase into which the above metal transforms at
7MI . large U cannot be simply deduced by means of the RG,
- whose validity is doubtful at finitéJ. However, we tend to
CDW/SDW | CDW/SDW believe® that this insulator should have the same properties
' - of the dimer insulator which occurs fof>t.
Notice that the behavior of thet’-U model at half filling
is different from the behavior of the two-chain models also at
half filling. There, the umklapp term is a two-electron scat-
tering process and is relevant for aky<1, which implies
FIG. 5. Phase diagram of thiet’-U model fort’<t/4 as a that the model is an insulator for any+#0.2 [This coinci-
function of U/t and of the density. dence, which might well be accidental, is quite surprising,
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For hole doping §<1), the effective low-energy model
involves always two bands. Therefore we predict that for any
hole doping the spin gap will survive. As concerns the
charge gap, it will immediately disappear as soon as we
move away from half filling. Therefore, d$ increases, we
expect a crossover from a metal with dominant supercon-
ducting fluctuationgsee Eq(6)], which we still label in Fig.

6 as SC since it is continuously connected to the analogous
state an=1, to a metal with dominant dimer wave fluctua-
tions[see Eq.(4)], which is labeled by DW.

At this point, it is worthwhile to discuss briefly the prop-
erties of the weakly doped dimer insulator. If we approach
half filling with U> U, then, according to the theory of the
incommensurate-to-commensurate transitions in 240K
since our prediction is based simply band-structure argu-  tends asymptotically to the value 1/4 and, exactly at half

ments(modification of the Fermi surfageln fact, one would  fjing it jumps abruptly to zero. With the asymptotic value
rather believe that band structure details are irrelevant fog _ 14 \aiid at low doping, the dimer wave correlation func-
electron systems in the strong correlation limit where the. 9

interaction is much larger than the bandwidth, which is theion Ed.(4), decays likexpw~(—1)"/ VX, while the super-

case of the mode(1).] conducting correlation, EQq.(6), decays quadratically

To conclude this section, we like to point out that, accord-xsc™ 1/x*. Notice that these power-law decays are typical of
ing to our analysis, the transition at large between the the Green functions and of the density-density correlation
insulating phase with power-law decay of the spin correlafunctions, respectively, of a hard-core Bose gas. The situa-
tions and the dimer insulator with a spin gap is predicted taion is opposite for the metallic phase @t<t. In this case,
oceur att’=t/2 or, in terms of the exchange couplings, atprovided perturbation theory is valitk=1 and the behav-
J’=J/4. This is exactly the value found by numerical inves-jors of the two correlation functions are exchanged:
tigation of the spin mode(l) in Ref.16. Yso LIWX while ypy~(— 1)¥/x2.

IV. MODEL AWAY EROM HALFE EILLING . In the case of electrqn doping the' situation is in general
o different but for low doping where all is the same except the

We have seen that already at half filling the’-U model  chemical potential which moves up instead of ddisee Fig.
shows the unu_sual property of_ a transition at a crlt_|UaI 2). At the same time the Fermi velocitieg, andvg, of the
from a metal with superconducting fluctuations to an insulay\yo linear bands get more and more differe@ictually
tor, whent .>t/2' Away from half filling the behavior is ve1—0). As we said in the previous section, at a critical
even more interesting, for smaller and largérLet us con- . - . .

value of vg,/vgq Or equivalently, a critical density,; in

sider in detail the various possible scenarios. Fig. 6, the RG predicts a transition to another phase where
also the spin gap closdsee, e.g., Appendix B in Ref)4in
A. t'<t/4 this phase the model is a metal with four gapless sound
modes(two spin and two charge modedhe dominant fluc-
In this case the model is for any filling always an effectivetuations describe charge and spin density waves. We have
one-band model, where nothing special occurs. Whether weibeled this phase in Fig. 6 as SDW/CDW I, implying that

dope with holes or electrons, as soon as we move away frofhe number of gapless excitations is twice that of the phase
half-filling the charge gap closes and the system becomes gnw/cpw.

metal with gapless spin and charge sound modes. The domi-
nant fluctuations are both spin and charge density wave,
(SDW and CDW fluctuations at momentumk? . In Fig. 5

Uht

n

FIG. 7. Qualitative phase diagram of thet’-U model for
t/4<t’<t/2 as a function ofJ/t and of the density.

Finally, at a second critical doping.,, the topology of
e Fermi surface changes from a four-point to a two-point

we have drawn the phase diagram for this case as a functi(ﬁ]ermi surface. At the transition the density of states of the
of U/t and of the densityr. The bold line at densitp=1 inner band diverges due to a van Hove singularity. For this

labeled MI, identifies the magnetic insulator with power-law "€aS0n we are not able to predict what happens exactly at the
decay of the spin correlations, while the rest of the phas&ansition. According to Balents and Fistfethe van Hove
diagram has been labeled with SDW/CDW, implying it is asingularity induces again a spin gap and therefore they ex-
metal with dominant density wave fluctuations. These label$ect the properties of the model to be similar to those at low
will be used with the same meaning also in the followingdoping. On the other hand, if we assume that the RG equa-
cases. tions of Ref.4 can be extended up to a very lavgg/vg,
(where their validity is not fully guarantegdwe would
rather expect that foog,/vg,>1 the two linear bands ef-
B. t'>t/2 fectively decouple. In this case the transition would be a
standard metal-to-metal transition with a topological modifi-
Here, it makes a difference whether we dope with holes otation of the Fermi surface. The van Hove singularity related
electrons(the model is not particle-hole symmetrién Fig.  to the low(hole) doping of the inner band is not expected to
6 we have drawn a qualitative phase diagram forplay any fundamental role, similarly to what happens to any
t' >t >t/2. one-band model close to filling zero or one. Although we
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have no rigorous proof, we tend to believe that nothing speean map the-t’-U model onto a generalizédJ model with
cial occurs at the transitiotthe latter scenarip rather than the Hamiltonian
in the scenario proposed in Ref. 2. Coming back to the phase
diagram, in the region where only two Fermi points are in-
volved the model should be metallic with still dominant den-
sity wave fluctuations(see Fig. § and only two gapless
modes(therefore this phase is labeled SDW/CRW

In Fig. 6 we have assumed that the critical density L L
decreases by increasirlg. This is true for very smallJ p + 2 a
where perturbation theory is valid. For finit¢, unfortu- it o7 2‘1 (C‘”Ci+2"+H'C')+JiZ‘1 S-S
nately, we have no reliable method to evaluage. It might
well be thatn.;—n., at U>(t,t"), which would be more L
consistent with the proposed transition upon increaslnat +Jr2 é . §H2,
half filling and fort’=t/2 from the phase CDW/SDW Il to i=1
the dimer insulator DI. The uncertainty about the precise
behavior ofn.; as a function ol is also the reason why we
have preferred not to draw even a qualitative phase diagra
for t’ close tot/2.

H=—t > (¢l cii1,tH.C)
o=1,l 1=

=

Refined in the reduced Hilbert space where double occupan-
cies are forbidden. This model with=0 has been numeri-
cally investigated by Ogata, Luchini, and RiceThey find

that the hole doping effectively reduces the frustration due to
C. ta<t'<t/2 J'. Since we instead find an increase of frustration, we have
to conclude that this is mainly a consequence of the next-to-

This case is in our opinion the most interesting one for itsNearest-neighbor hoppirtg.®
surprising similarities with the behavior of highsTcom-
pounds. We said in the previous section that at half filling the
model is an insulatofMI in Fig. 7 atn=1) with power-law
decaying spin correlations. If we dope with electrons V. CONCLUSIONS
(n>1), the charge gap suddenly closes and the model turns
into a metal with dominant spin and charge density wave

fluctuations, for arbitrary dopingsSDW/CDW in Fig. 7. one-dimensional-t’-U model where, in addition to the on-

It we d_ope Wit.h holes 'ﬁ<l.)' at low doping the Fermi site repulsionU and nearest-neighbor hoppirig we have
surface still consists of two points, and therefore the proper; | 4ed a next-to-nearest-neighbor hoppitig Although

ties are similar to what we just described for electron doping; : I : : ;
. ) . 2very simple, this single-chain model has the interesting prop-
.e., the phase is a SDW/CDW. However, as the chemmalrty to be at half filling and larg® either an insulator with

Egﬁggi dmecz)avrtlai:rdrg\;vmséa;rs':lgb\% iLh?e\?:rr;]: i:uaa}'c)?;e?z_ritigapless spin excitations or a dimerized insulator with a spin
pp ! ) gap?® The transition between the two insulators should oc-

cal doping fic,, in analogy with the previous casthere will = " 2 o4ing o our analysis, at=t/2. This model is

?v?o? é?ﬁtoiggg:?élﬁ‘_o%{;ia;'ggagg th%gi:g&;”[ﬂ?ﬁg :‘Tgm :therefore particularly suited to study the occurrence of super-
one—[:t))and to a two—Fl:))and model .Until the Fermi velocitiescondUCtiVity upon doping an insulator which has a charge
; gap and a spin gap. In fact, recent theoretical and numerical

rg?]afin quite ldiffere”tdl(l:zlv F1;>1) the zytstem is a metal investigations of two-coupled-chain modéfssuggest that
with four gapless modedwo charge and wo spin modes the presence of a spin gap in the insulating phase of two

and dominant density wave fluctuatiofghase SDW/CDW chains at half filling may lead to superconductivity upon

I in.Fig‘ 7). Ata critical \(alue Ofvrz /vy OF, equivalently, doping and for not too large a repulsion. We have shown that
a cgtlcta;: dOpc'jngnﬂ’ aspin gac[;) opens andlonly _cr)ﬂe ghargeprecisely this behavior is realized here. Moreover, the weak-
mode(the ordinary zero soundemains gapless. The domi- coupling analysis seems to suggests that the key feature

nant fluctuations are dimer waves, E§), or pairing fluc- I : . .
tuations, Eq(7). The one which dominates depends on theWhICh is responsible for the spin gap and possibly for the

. superconductivity is the topology of the Fermi surface in
value of the p;rt;sln;etet,_ffq.(?), vnhlcdh n tufrlns dep_ends ON hoth models, which in the interesting parameter range has
U. As we said before, I <1/2, the dimer uctuauop; WIN 1o branches, i.e., four Fermi points.

(DW phase in Fig. ¥ while for K>1/2 superconductivity i 1 present-t’-U model has additional properties which
more relevantsgl_pnashe n F|g.)7 ﬁsr:n the preIV|ousf Cﬁse' make this model interesting in its own right. In particular at
W?.Calnant SSta IS L eCp[r)(\B/i:/I/SSeDV\(/a ”av'r?r at alégeh tSeC half filling and fort’ sufficiently larger thar/2, we predict a
g\'/t\'lcah Ine Te;we?nt eh h £ th P ﬁse acr;. the d Ofgirect transition at a criticalJ;, from a metal with dominant

DW phase. Therefore the shape of the phase diagram .ra%perconducting fluctuations Bt<U. to a dimerized insu-

in Fig. 7 has not to be taken too literally close to that crltlcalIator atu>U

line. ¢

In this paper we have studied the phase diagram of a
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