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Microscopic approach to the response ofHe-*He mixtures
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Correlated-basis-function perturbation theory is used to evaluate the zero-temperature r&égansef
3He-*He mixtures for inelastic neutron scattering, at momentum trangfeasging from 1.1 to 1.8 AL we
adopt a Jastrow correlated ground state and a basis of correlated particle-hole and phonon states. We insert
correlated one-particle—one-hole and one- and two-phonon states to compute the second-order response. The
decay of the one-phonon states into two-phonon states is accounted for in the boson-boson approximation.
The full response is split into three partial componeBg(d,w), each of them showing a particle-hole bump
and a one phonong-shaped peak, which stays separated from the multiphonon background. The cross
term Sg4(g,w) results to be of comparable importance $94(q,w) in the particle-hole sector and to
S.(q,w) in the phonon one. Once the response has been convoluted with the experimental broadening,
the computed scattering function is in semiquantitative agreement with recent experimental measurements.
[S0163-18296)07637-0

I. INTRODUCTION one 3He impurity in “He, such as chemical potential and
effective mass are also quantitatively reproduced by such
Isotopic atomic helium mixtures are an intriguing case forcorrelated wave functior’s. In particular, by using CBF
many-body physicists. There exists a large body of experibased perturbation theory, with the insertion of up to two
mental data, concerning mostly static propertigsr in- correlated independent phonon intermediate states, the impu-
stance, the chemical potentials and the maximunrity effective massn} turns out to be 2123, to be compared
solubility'~3). Excitation spectra and related quantities, as thewith the experimentally measured th3 value.
zero concentrationxg=0) 3He effective massnt}), have The behavior of the’He effective mass with the concen-
been also measurédRecently, inelastic neutron scattering tration in dilute mixtures has been recently object of some
experiments have been carried out both at low, or intermedidebate. Specific heat measurem¥éit3 at finite x; do not
ate, and high momentum transférsin both regions the show appreciable deviations from itg=0 value. However,
measured response presents two generally distinguishabile Ref. 6 the authors have to postulate a much larger value
structures, to be ascribed to bosonlike collective excitationg§m? ~2.95m; atx;=0.05) in order to reproduce the position
(phonons and rotonsand to Fermi particle-hole ones. How- of the particle-hole response with a Lindhard-like function
ever, this apparently simple picture hides a large interplayand using a simple Landau-PomeranckilR) quasiparticle
between the components of the mixtures, each of them protspectrunt?
ably contributing on comparable foot to both branches of the
response. The reason for this lies in the large correlation 72K2
effects, which are present in the system because of the strong e(LP)=€g+ —.
interatomic potential and of the large density. These are also 2mz
the motivations why truly microscopic arab initio studies
of helium mixtures are difficult, and, in the case of the re-  This contradiction does not appear if one modifies the LP

@

sponse, practically absent in literature. spectrum(LP modified, or LPM as
Qualitative studies of the response have been done in Ref.
8 (using a matrix dispersion-relation representatiom Ref. A2 1
9 within a correlated random phase approximati@ery e(LPM)=€eg+ —— ————, 2
similar, in spirit, to the phenomenological polarization poten- 2m3 1+9k

tial method used in Ref. 10 and, lately, in Ref.)Hihd in

Ref. 12 with a sum rules approach. Here we will employ they being a free parameter, whose experimentally estimated
correlated basis functidh(CBF) perturbation theory, to em- value$ range fromy~0.08 A? to y~0.13 A?. There are
body the above correlation effects directly into the basisboth experimentt* and theoreticalindications of a devia-
functions. CBF has shown to be a powerful tool to successtion from the simple LP form.

fully study helium at zero temperature: the energetics of both In a CBF based approach, we assume to have an homo-
pure “He and ®He are well described by sophisticated cor- geneous mixture oN; *He atoms andN, “He atoms in a
related ground state wave functions, containing explicit two-yolume Q, with partial densitiep,-34=N,/Q, total den-
three-body, backflow and spin correlatio{s'®properties of  sity p=ps+ p, and concentrations,=p,/p. We will keep
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constant densities, while lettifg, and the volume going to er
infinity. The nonrelativistic Hamiltonian of the mixture is P4(k)=i;N e, (7)
=1Ng

N 2 N, .N
@ 4 1 a B . . Lo
H=- >, E 5 VZ+ > > E V(ri), (3 Correlated np-mh states are obtained in a similar way, by
a=34i=1 My @,f=34 1#] applying the correlation operator to the Fermi gas excited

where the interaction is the same for all the different pairs oftates®np —mr(Ns),
the mixture.

A realistic, correlated, variational ground state wave func-
tion ¥, is obtained by the Jastrow-Feenberg arfdatz

I:J|(I)np—mh>
np— mhl FEFqu)npf mh>l/2.

Wo=FiFrFardo(Na), (4) We will consider one-phonofilPH) and 1p-1h interme-
where ¢(N3) is the ground state Fermi gas wave functiondiate correlated states, which we will term as one intermedi-
for the 3He component ané;,F; andFgr areN-body cor-  ate excitation(OIE) states. The response computed at the
relation operators including explicit two-, three-body, andOIE level will be calledvariational. In addition, we will also
backflow dynamical correlations, respectively. Three-bodyconsider the possible decay of 1PH states into 2PH ones,
correlations are important for a good description of the enwhich is essential in giving a physically meaningftiHe
ergetics both of the mixtufé and of the impurity’. How-  excitation spectrum and provides a quenching of the one-
ever, it is unlikely that they may strongly affect the dynami- phonon peak. This term will be computed in a boson-boson
cal response, as the static structure functions are littl@pproximation, i.e., neglecting théHe antisymmetry. Such
sensitive to their inclusion. Backflow correlations may play aan approach may be justified on the basis of the ftie
more important role, but they show a complicate momentungoncentration.
dependence. This does not allow presently for a complete 1p-1h states may also be coupled to 1PH and 2PH. Such a
sum of the cluster diagrams containing this type of correlacoupling may be taken into account by a corresponding self-
tion, so increasing the uncertainty on the final result. Foenergy insertion. Its analogous in the problem of the single
these reasons, we will limit our analysis to the case of two->He atom in*He is responsible for the impurity large effec-
body, state independentor Jastrow correlations only tive mass. To estimate the importance of this effect we will
(F1=Fge=1), but will include the effects of richer correla- use the on-shell part of the impurity self-energy, again rely-
tions by pushing forward the perturbative expansion in ang on the small value of;.

|pl,...,pn,h1,...,hm>=<q) (8)

Jastrow correlated basis. The plan of the paper is as follows. In Sec. Il we will
F; results to be briefly outline the CBFPT for the response of the mixture
N N and the variational calculation will be described in some de-
3 4

33 (4.4 tails. Section Il is devoted to the description of the calcula-
FJ(N4’N3):iE[j L (risjs)igj [ (ri4J4) tion of the coupling with the 2PH states and of the decays
o e into 1PH and 2PH states. Section IV contains results for the

N3 Ng a4 response and the comparison with the experimental scatter-
xIT IT £@2(ri,;), (5 ing functions. Moreover, théHe and®He excitation spectra
's 14 are presented and discussed. Conclusions are drawn in Sec.

where f(*A)(r) are two-body correlation functions deter- V.

mined by minimizing the variational ground state energy.
It is possible to generate a correlated basis through the Il. CBEPT FOR THE RESPONSE

operator (5), to be used in a CBF perturbation theory

(CBFPT). This theory has been successfully adopted for The dynamical structure functiofDSF S(q,w) of a

computing the inclusive response of nuclear matter andHe-*He mixture atT=0 is given by the imaginary part of

heavy nuclei to electron and hadron scattefing, and has the polarization propagatd®(q, )

shown to be able to provide a semiquantitative agreement

with experimental neutron inelastic scatterifigS) data in 1

pure, liquid atomic*He?®. S(g, @)= —ImD(q,®), ©
In this paper, we will apply CBFPT to compute the nIS

response of the mixture, by considering as intermediat&here

states the normalized, correlatéle n-phonon stategnPH)

|ky1,...K,), and 3He n-particle, m-hole states (np-mh 1=y 1 ~
[PPSR WY D(g.0)= g\ Yo p (Ag—g ==, 7@ Yo/
The nPH states are given by (10
[Kiy o oo Kp) and
patky) - palke) Vo) p(@)=ps(a) + pa(), a

T (Wolpi(kn) - pi(KD) pa(Kp) - palke) [ W) 72

© pul@)= 3 o (12

wherep,(Kk) is the “He density fluctuation operator i=1N,
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andN=N3+N,. In Eq. (10), qfo is the exact ground state of 1 1 1
H with ei luek,. S,5(0,w)=—ImD ,45(q,w)=—Im
with eigenvalueE, 50, @) p 5(0,0) - m

The total DSF may be expressed in terms of paial
DSF, S.4(q, ), as

~ 1 ~
X < Wy PL(Q)mPB(Q)"Po> :
(14

S(qlw): E Xaﬁsaﬂ(qrw)r (13) . . .
a,=34 The experimentally measured nIS double differential

cross section for the mixture directly provides access to the
total scattering functiors(q, ), which is in turn related to

H — 1/2
With X 5= (X.Xg) " and the partial DSF’s by the relation

X404S44(Q, ©) + 2X34034S34(Q, @) + X3[ 03S335(Q, 0) + O'isslas(q,w)]
X40'4+X3(0'g+0'|3) '

S(q,0) = (15)

The elementary cross sections, as given by $kans As stated in the introduction, we will first consider only
units of barns, aresc,=1.34, 03=4.42, 05=1.19, and OIE insertions, i.e., correlated 1PH and 1p-1h intermediate
03,=2.35. The spin-density DSB}4(q,») also appears in states, defined as
the expression above, with the corresponding cross section

. It describes®He spin fluctuations via the operator k)= f4(k)|q’°> . (21)
(Polpa(k)pa(K)[¥o)
ph(a)=_ 2, €y, (16) Fol®1p_1n)
i=1Ng h>= JI¥ 1p—1h (22)
|p’ <(D |FTF |(D h>l/2'
wherel; is the spin of*Hei nucleus. 1p=1hiTam I 1p-1
We will focus, in the remainder, mainly on the calculation o
of S,z. To derive a perturbative expansion it is convenient A. The variational responses
to split H into an unperturbed piece, and an interaction The variational response is given by the sum of two com-
termH,, as follows: ponents,
(m|Holn)= 8ym(m|H|m)=E},, 17) Sep(8,©)=St(q,0) +SH5 (g, ), (23
and whereS.5(q,») has a 1PH intermediate state
<m|H1|n>:(1_5nm)<m|H|n>:ﬁmn- (19 1
, , Sip (dw)= ——=—=2 (VolpL(@K)(klps(a)| o)
Here|m) are correlated basis states, eigenstatespfin VNLNg k
particular,|0) = |\_I'0> is not an eigenstate of and its dlff_er— . X 80— ), (24)
ence from| W) is treated perturbatively. The expansion is
obtained by writing andSL (g, ) has a 1p-1h intermediate state
H_EOZHO_ 8+(H1_AEO)! (19) - 1
. _ o Sy (0,w)= == (¥olpL(a)[p.h)
where AE, is the correction to the variational ground state VN Ngp.h
energy Ej, and by developing the propagator B
(H—Eq—w—in)~*in powers of H;—AEg). A similar ex- X(p.hlps(A)[Wo) S(w—ep+ €n). (25
pansion is performed for the ground stéfe,). oy and e,-€, are the variational energies of the OIE states
If the expansion is truncated at the lowest order, the pareonsidered.
tial DSF are given by wy IS given by
1 1 (k|H—E}|k) h2k?
= i 0= = , 26
Sap(d,w) \/VNBE”‘J (Polpa(@)n){n|pg(a)| o) N, (KK 2m,Su(K) (26)
X 8(w—oy), (20) and corresponds to the well known Feynman spectfim.

Eq. (26), S44(K) is the variational estimate of the 44 compo-
with w,=E}—Ej. nent of the static structure functia8Sh, S,4(k), given by



10 038 A. FABROCINI, L. VICHI, F. MAZZANTI, AND A. POLLS 54

S (k)= 1 <‘I’O|p2(k)p3(k)|\1’0> @7 901 12) = 9dd,ap(r12) T 6p39de,a3(M 12) + 9430ed3s( M 12)
“p NNy (Wo|Wo) ' + 8436p30ee33(l 12)- (34)
~In a similar way, the single particle ener¢$PB e—p The partial RDF are classified according to whether the
is obtained by external particlé1 or 2) is reached by a statistical correlation

(i.e., if the particle is involved in an exchange loop,
(28) e-vertey, or by a dynamical correlation onhd(verteX. The
(x[xy 7 definitions of the partial RDF, together with the full set of
the related FHNC equations, may be found in Ref. 22
Actually, Eq.(31) sums all cluster diagrams factorizable
in products ofdressedtwo-body diagrams, as discussed in
Ref. 23. Nonfactorizable diagrams involving three particles
are also taken into account, even if they do not appear in Eq.

_(xH-Eglx)

€y =

where|x) is a particle or hole correlated state. We will dis-
cuss later the evaluation ef, .

By using the definition of the SSF given in EQR7),
£(0:K)=(Wo|pl(a)|k) is readily obtained as

S,(K) (31). However, they have been inserted, following Ref. 23.
ad ; H
£, (k) =N, ——= Sk—q» (29) The functionD(x=p,h) is
VS4(K)
giving, for S;5(q, ), D(X)=1—p3J d%re™ " (ggqas(r) — DL(Ker),  (35)
Saa(K)Syp(K)

SiZH(q@):Ek Sk—qd(w—wy). (30)  whereL(ker) is the FHNC generalization of the exchange

Sad(k) Slater function | (ker)=3j,(ker)/(ker)3, and ke is the
I~ - He Fermi momentumk®=23m?p,).

The one-phonon contribution to the variationalg re- ; S 1p—1h
sponses shows as-like behavior, whose strength is Again, asD (x) tluprglshout o be positiveSs; 44(q, ) are
2% 5(K) = S,4(K) Spa(K)/Sy(K), and it is located at the Feyn- poi_“"e”’ Wher§a§34 _(q"‘]jl) may be not. |
man phonon energy. We notice th@t Z;,(k) = S;4(k) and | |.nahy,_ \Itf € I+ spin h gctgaﬂoln . mattrjlx element,
that (ii) the 33 and 44 variational DSF are positiV8y4(k) &3(a:p.n) =(Yolp3 (a)|p.h), is simply given by
being positivé, whereas this may not be true for the 34 DSF.

The expression for the particle-hole response £ (qph)=8 1
Sﬁ%flh(q,a.)) is more involved. A detailed description for a s PN D(p)D(h)
pure Fermi systertspecifically, nuclear mattgcan be found
in Ref. 23 and references therein. On the basis of that for-
malism, the extension to a boson-fermion mixture is straight-
forward.

In CBF theory, the nondiagonal matrix elements |n this section we will first study the effect on the phonon

£.(a;p,h)=(Wo|pl(a)|p.h) are computed by a cluster ex- responses of the insertion of orthogonal, correlated 2PH
pansion in Mayer-like diagrams, built up by dynamical cor- states:

relations, ((*#)2—1, and by statistical ones. Infinite

(36)

Ill. CORRELATED ONE- AND TWO-PHONON
INTERMEDIATE STATES

classes of cluster terms are then summed by Fermi hypernet- [kik2)o=(1—|k)(k|)|k1Kz), (37
ted chai? (FHNC) technique. .
The ¢, are explicitly given by where the 2PH states of E() have been orthogonalized to

the 1PH ones by a Gram-Schmidt procedure.

1 - 2PH states influence the partial polarization propagators
£.(0;p,h)= 8¢+ h === (Ngq,03(q) D, ;(d,w) via the direct coupling to the ground state and via
D(p)D(h) the decay of 1PH states into 2PH. The coupling to the g.s
15 01+h , 31 goes through the matrix element of tiele fluctuation op-
el ed3d A1) (3D erator,
where
&3(0ika ko) = (Wolpd(@)[K1 Koo, (39)

ny,a?:(q):paf dsrelq.r[gxy,as(r)_ 5xy,dd]a (32)

with (x,y)=(d,e) andgyy ,s(r) are partial radial distribu-
tion functions (RDF). In fact, the totala8-RDF, g,4(r),
giving the probability of finding aa-type particle 1 at a
distancer , from a B-type particle 2,

[notice that&,(q;k;,k,) vanishes because of the Schmidt
orthogonalization of the 2PH stafesvhereas the decay is
driven by the nondiagonal matrix element of the Hamiltonian

a(k;ky ko) =(k|Hylky,ka)o - (39

No(Ng— 8,p) S35+ d3ry| W2 These CBF matri>_< eI(_aments_ have been computed in a
TPy [T g2 (33  boson-boson approximatiofireating the ®He as a mass-3
PabPp ! NEEo boson and by adopting the convolution approximafibn
is computed in FHNC? using the correlated g.&, and it  (CA) for the three-body distribution functions. expansion
turns out to be written as Their explicit expressions are

Gap(r12)=
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Saa(K1) Sza(k2) ( S§4<q>>
ki k) =—— - ,
&3k, kz) SukDSuka) Sz3(a) Su(qQ) o
and
a(k;ky,kz)
ﬁZ
:\/N—42m4

X ( K- Kk1S44(K) + K- KoSya(Ky) — k2Syq(Ky) Saa(kz)
VS4a(K) Saa(K1) Saa ko)

_\/§ K2S34(K) Saa(ky) Saa( ko)
X3 S44(K) VS4a(K) Spa(K1) Saaka) |

(41)

10 039

The relevant changes introduced by the insertion of the
2PH states in the phonon responses (@)ethe strengths of
the deltalike 1PH peak&,; are generally quenched respect
to Z; 5 In the 44 case, we have

Zu(K)=2Z3,K)| 1+ (48)

(?Rezl(k,co)) -1
Jw .

=wy

Analogous corrections occur foZs.(k) and Zig(k),
which are also affected by those parts of the polarization
propagators containings(q;ky,k,); (2) the 1PH peaks are
shifted by the real part of the on-shell self energy, since the
“He spectrum is modified as

o o = oyt R (K wl™); (49

(3) a multiphonon tail appears at largevalues, beyond the

It is convenient, at this point, to introduce the correlatedPosition of the 1PH peak, at the momentum transfers here

self-energy

E D la(k;ky,ko)|?
2 Kk, wkl+wk2—w—i77’

El(k,w)=

(42

and the functiony(q;k,w) given by

<k>1_1 > a(kiky,ky)
Kw)= 75— a(K;Kq,
x(q 2 Nskl,kz 1:02

—ip idkko). (43)

wh+wg—w
If we define the dressed phonon propagd®dtk, ) as

1

d _
Go(k, )= w—21(K,w)—w—in’

(44)

considered.

IV. CBF RESPONSES

In the class of the Jastrow correlated wave functions, the
best variational choice is provided by the solution of the
Euler equations

_ XWolH|¥o) 50
Sf(@B)

The resulting equations have been derived, within the
FHNC framework, and solved for the’He impurity
problem?®° for the boson-boson mixtuteand, lately, for
the real fermion-boson case.

Another, often used approach consists in parametrizing
the correlation functions and in minimizing the ground state
energy with respect to the parameters. This is the choice we

then the phonon contributions to the polarization propagatoreave adopted here. Besides that, some of the results we will

can be rearranged as

1
DZE(q,w>=N—4§ (W0l pd(a)[K)2GUk,w),  (45)

1
Di?(q,m:W; (Tolph(a)[K)GU (K, )

31N4

x| (K[pa(@)| o)+ \/%X((q;k,w) , (46)
D§’3“<q,w>=Ni3§ G¥(k,@)| (Klp3(@)]¥o)
. 2
+\/T3X(Q:k,w)l
i 3, Sl

present have been obtained within the average correlation
approximation(ACA).3? In ACA, the correlation functions
are the same for all the types of pai§3®=fG4=f{44)
and the differences in the distribution functiof@ in the
static structure functionsare due only to the different iso-
tope densities and statistics. We will also show that going
beyond the ACA does not significantly affect our results.
We have used three types of correlation functions: the
time honored, short ranged McMillan forg8R) and two
long ranged function$LR and LRJ.
The McMillan correlation, in ACA, is given by

; B bo)\ %1
sr(r)=ex ¥ 3
whereb=1.18 ando=2.556 A. The SR correlation function
gives a good description of the short range behavior of the
pair wave function but fails to reproduce long range proper-
ties. For instance, it does not ensure the linear behavior of
the “He SSF atk—0 (the phonon dispersionSuch a dis-

persion reflects in a long range behavior of the correlation of
the typef (r —o)— 1o —r 2, To this aim, we have also used

, (51

The DSF are then obtained by taking the imaginary part& modified form, having the correct long range structure

of Dyg-

(LR), given by
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FIG. 1. Radial distribution functions for the mixtuteee text
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The parameters df g(r), giving the variational minimum
of the “He energy at the equilibrium densipp=0.02185
A3 are b=1.18, A=0.85, B=1-A, D=3.8 A, and
7=0.043 A2 The B and r parameters are related to the
experimental pure*He sound velocityc and to the lowk
behavior of its SSF by the relations

fLr(r)="fsg(r) (52

B myec
;_2772ﬁp0'

S44(k—0)= (53)

2myc’

i
In order to check the accuracy of ACA, we have also useci)

a LR correlation(LR1), formally identical tof g, but with
parameters depending on the type of the correlated pair. T

44 correlation function is the same as above, whereas thﬁ
parameters of the 43 and 33 ones have been obtained Ry

minimizing the energy of the puréHe with one and two
3He impurities, respectively.

1.5

Sag(k)

05 L

FIG. 2. Static structure functions for the mixtuisee text. The
solid line givesS,,, the dashed lineS;,, and the dotted one is
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TABLE I. Variational strengths and positions of the one phonon
DSF responses with different correlatiofsee text q in A~ and
wq in K.

q Wq Zy Ay Z3,
SR 1.1 20.44 0.356 —0.146 0.060
LR 20.77 0.361 —0.145 0.058
LR1 20.75 0.362 —0.147 0.060
SR 1.3 20.74 0.491 —0.115 0.027
LR 21.68 0.461 —-0.122 0.032
LR1 21.71 0.460 -0.122 0.032
SR 15 19.91 0.681 —0.072 0.008
LR 19.99 0.686 -0.071 0.007
LR1 20.02 0.685 —0.069 0.007
SR 1.7 19.20 0.908 —0.021 0.000
LR 19.24 0.899 —0.023 0.001
LR1 19.26 0.899 —0.019 0.000

Key ingredients in the CBF theory of the response in he-
lium mixtures are the radial distribution functioms,s(r)
and the static structure functior®,z(k). Figures 1 and 2
show these quantities in a 4.7% mixture, at a total density
p=0.02160 A3, for the f g,(r) correlation, in FHNC/O
approximation (i.e., we have neglected the elementary
diagram$?. The results for the SSF, with tHeg(r), differ
mainly in the region of lowk values, in agreement with the
previous discussion.

Table | shows the variational strength$,(k) of the one-
phonon response for the same mixture and compares the re-
sults obtained with the SR and LR correlation functions at
four momentum values, frog=1.1 to 1.7 A1, The posi-
ions of the variationab peaks,w,, are also given. It has to
e noticed that the Feynman spectrum overestimates the ex-
erimental data by at least 10 K both in the maxon and roton
gions. Table Il provides the same quantities after the inser-
on of the 2PH statesZ,4(k) of pure *He has been exten-
vely and accurately studied in CBF in Ref. 26. Our ap-
proach, when applied to this system, gives similar results. As
a matter of fact, ak=2 A~! (where its peak approximately

TABLE II. CBF strengths and positions of the one phonon DSF
responses with different correlatiofsee text q in A~* and wq in
K.

q g am Z3y, Za3
SR 1.1 13.73 0.275 —0.066 0.016
LR 13.69 0.272 —0.068 0.017
LR1 13.66 0.272 —0.068 0.017
SR 1.3 14.01 0.390 —0.045 0.005
LR 14.27 0.367 —0.047 0.006
LR1 14.25 0.366 —0.044 0.005
SR 15 13.84 0.559 -0.014 0.000
LR 13.79 0.558 —0.014 0.000
LR1 13.83 0.557 —0.011 0.000
SR 1.7 13.94 0.766 0.024 0.001
LR 13.94 0.766 0.024 0.001
LR1 13.96 0.765 0.027 0.001
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FIG. 3. “He excitation spectrum in the mixtuterossepand in FIG. 4. ®He single particle energies. The dashed line gives

the pure systenidashed ling The upper curves are the Feynman ¢25F(ca), the solid line ise®" also shown are the LP, LPM, and
spectra. Squares and circles are mixture experimental (B#e  free (F) energies. Squares and circles are the experimental data

text). (See text
lies) we obtain Z52M(k)=1.04, vs Z&P(k)=0.943% we o 72K
have been able to push forward the CBF perturbative expan- € :2_m3' (54)

sion in such a system, obtainiZgy (k=2 A~1)=0.96. As a
further remark, we add that the use of either short or long ) ) )
range correlations little affects the strengths in the momen- Perturbative corrections te, may be computed in CBF.

tum region we have considered. This is also true for the othef the case Of,théHe;TGP“”ty* CBFPT provides an accurate
quantities that have been studied in this work. evaluation of its SPE!®if the decay of the impurity excited

Figure 3 shows théHe spectrum with the LR1 correla- state(given by a correlated plane waviato correlated 1PH

tion. The figure also compares the spectrum with fie at ~ @nd 2PH states is considered. 1PH states account 208 of
po and with the experimental results of Ref(@rcles in a the difference between the experimental effective mass and

x;=1.1% mixture at SVP and of Ref. #squares for a the bare one, whereas 2PH states give the remainder. Be-
X3=6.0% mixture. cause of the low density of théHe component, it is reason-

The changes in going from putHe to the mixture are able to expect a similar behavior in the finite concentration

clearly visible. These changes are mainly due to the lowef"Xture. It implies that we should insert in the CBFPT ex-
“He density in the mixture and not to differences in thePansion the coupling between 1p-1h states and 1PH and 2PH

correlations. In fact, we obtain similar results if the LR-ACA ©N€S[1p(1h—1p’(1h")+1(2)PH.
correlation is used. CBF perturbative corrections appear tocgﬁlork along this line is in progress. Here we have used for
the CBFPT SPE of the single impurity, obtained by

be large and bring the maxon energy close to the experi€k : e
ments. The roton is not well described, as it is too shallowextending to finite momenta the approach of Ref. 17 for the
respect to the data. This feature is also present in“the  effective mass. The involved matrix elements have been
case. We believe that most of the discrepancy in this part ofomputed in CA for the three-body distribution functions.
the spectrum has to be ascribed to the use of CA in th€A gives m3(CA)~1.8m; for the impurity, whereas the
calculation of the CBF matrix elements. Moreover, contribu-more realistic superposition approximatio(SA) gives
tions from higher order CBF perturbative diagrams arem;(SA)~2.2m;. However, the SAk#0 matrix elements
known to be important to correctly reproduce the roton mini-are much more involved than their CA counterparts, and
mum in pure*He 34 However, the CA results show a change their evaluation, together with a description of the method,
in the sign of the shift from mixture to pure system atwill be presented subsequentfyHere, the effect of the
q=1.8 A1, in good agreement with the measured experi-missing effective mass has been estimated by simply scaling

mental valué at constant pressurg 1.9 A™Y). the CA SPE asg° =[m% (CA)/m% (expt)] e F(CA).
The boundaries of the 1p-1h DSF's are related to the en- Figure 4 shows thé’He impurity SPE in different ap-
ergies of the 1p-1h staie,-€,. The variational SPEgyy,, proximations, and compares them with the experimental data

has been computed by the procedure of Ref. 35. Howevefgircles from Ref. 6 and squares from Ref.ahd with the LP
because of the lowHe density, it turns out to be extremely and LPM parametrizations given in the introduction, with
close to the free Fermi gas SPE, parametersn} = 2.3m; andy=0.132 &. Even from the CA
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calculation, a deviation from the LP behavior clearly ap-
pears. The estimated CBF value pfin CA turns out to be on et i 1
¥(CA)=0.052 K. We stress that, as fdiHe, we expect SA C ]
to provide a better description of thiéle SPE behavior, as it E ]
correctly takes into account the core property of the system, * Frimass0638
requiring that the three-particle distribution functions vanish 3 PH-3420018 4
when any interparticle distance is lower than the radius of the ez - PH-33=0.001 -]
repulsive core of the potential. € _ :
Figure 5 gives the 1p-1h DSELS (g, ) at two mo- 3 o1 -
mentum valuesq=1.3 and 1.7 A?), with the LR1 correla- % ]
tion and usinge®" The two 33 DSF are very close and o0 [ T -13.96 (1/K) |
dominant, becoming indistinguishable at higher momenta; B
the 44 component is always very smétlotice that it has o L e b b L
been amplified by a factor of 10 in the figdr¢he 34 part is (b) 0 5 3} (12) 15 &0

negative and an order of magnitude larger tg}fi " in
absolute value, contributing to decrease the total response ) ) _
mainly at low momenta. The free Fermi Gas DSF would be FIG. 6. CBF Partial scattering functions qt=1.3 (@) and 1.7
located to a larger energy with a lower peak strength, com& " (b). Continuous linéSss, dashed linéSs, dottedS,,. The PH-
patible with the fact that the correlated system hadHe @8 numbers are the strengths of the phonon PSF, located at
effective mass 2.3 times larger than the bare m@sds ] . .
g=1.3 A1 the FG peak position iso=13.6 K and the 33 PSF is strongly reduced by the 34 PSF, which practically
strength i§31§71h(FG):O_115 K~1). In addition, as for the disappears aj=1.7 A"1. The 44 PSF is always negligible in

phonon DSF, the use of the SR and LR correlations does ndpis sector. In the phonon sector, the 44 PSF is the dominant
alter appreciably the results shown in the figure. one. The 33 component always results to be very small. The

— -1 gfi ; .
To evaluate the total scattering functi&fq, ), the DSF 34 PSF ag=1.3 A slightly reduces the scattering func

. . _ 71 . -
must be multiplied by the elementary cross sections and thito" while atq=1.7 A% increases it

- - - - In order to compare with the experimental scattering func-
concentrations of the species. In Figéa)éand §b) we give . . X -
the partial CBF scattering functiof®SH: tion, the theoretical PSF's have to be convoluted with the

experimental broadening functions. As at these momentum
transfers the phonon peak is sifllshaped, because there is
no overlap with the multiphonon background, we assume, in
accordance with the authors of Ref. 6, that the width in en-
ergy of the low temperature results in that reference is en-
tirely due to the instrumental resolution. For this reason we
have convoluted the phonon peak with a Gaussian having an
average half maximum width of 1.3 K. A Gaussian with a
width of 1.2 K (Ref. 37 has been used for the 1p-1h re-
- sponse.
[03S33(0, w) + 03S35(q, @) ]. The convoluted total scattering functions are compared
(57) with the experimental results of Ref. 6 in Figga) 7(b), and
7(c) atq=1.1, 1.5, and 1.7 Al respectively, for the 4.7%
The LR1 correlation has been used. The position and thenixture we have considered so far.
strength of the phonon contribution to the PSF'’s are explic- At q=1.1 A™%, both the position and the strength of the
itly given. In the 1p-1h sector, at the lower momentum, thephonon branch are well described by our calculation. When

X40'4
X404+ X3(05+ o)

Su(d, @) Su(dw), (59

_ 2X340°34
X4(T4+ X3(O’§+ (TI3)

S3(q, @) Su(@w)  (56)

and

X3
_X40'4+X3(0'g+ 0‘3)

S0, )
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FIG. 7. Total scattering functions gt=1.1(a), g=1.5(b), g=1.7 (c) andq=1.8 A~ (d) (solid lineg. Also shown(a—g are the 1p-1h
responses with the LRlotted line$ and LPM (dashed linesspectra and the experimental détaosses In (d), the dashed lines are the
1p-1h and phonon scattering functions and the dotted line is the shifted phonon scattering figmetitexk

approaching the roton minimum region, the agreement worsdoes not follow a quadratic law.

ens and we overestimate the experimental data. As discussed The *He scattering functiorég(q,w), defined as
previously, we expect that the use of SA will improve the
CBF description.

This feature is particularly relevant in tlieregion where -
the experimental 1p-l1h and phonon branches overlap Ss(q,w) = X3(oS+ o)
(q=1.8 A1), Because the CBF*He excitation spectrum U
beyond the maxon is higher than the measured one, the com- _
puted CBF branches do not overlap, as it is shown in Figand the functiorS;(q, ), given by
7(d) by the dashed curves. We have also shifted the position
of the phonon response to its measured peak value of o
w~10 K (dotted curve and added it to the 1p-1h contribu- S04 w):(73533(q,w)+03333(q,w) 59
tion. The result (full curve) is compared with the ' o5+ oy '
experimenf
CB?:?CerSaSEtgﬁg%]Et)lylkrl]izzgsO:hI: Ig?:g(t:igrr?(e)?,tr:re]ebjri%,ovt/etn% the 1p-1h sector., are given in Fig.. 8. The figure_s contains
described in turn by a LPM parametrization, which is essen@/S0 the convolution 0fS;(q,w) with the experimental
tially a fit to the experimental data. We recall that the rel-Proadening function and the experimental results of Ref. 6, at
evant difference between the LPM and the CBF-CA energie§=1.3 A% S; and S; are identical if S3~*"
lies in the y-parameter value, smaller by a facte0.4 inthe  =S;5 “"=0. So, their differences are basically a measure of
latter case. A simple, quadratic LP parametrization withthe importance of the 34 contributigthe 44 one being neg-
mj =2.3m; seems to be ruled out. Notice that the 1p-1hligible). Our results show a large suppressiors§] 1" due
branch has been calculated with a nonquadratic SPE, therts Séf{’lh which brings the CBF response much closer to the
fore the resulting band is not symmetric and its peak locatiorexperiments.

X404+ Xa( 05+ o) ~
404+ X3( 03 Ug)S(q,w), (58
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o large change of the’He effective mass in mixturéfrom
' 1 m3 =2.3m; at x3=0 to m3 =2.9m; atXz=4.7%. CBF still
i does not reproduce fully quantitatively the data, and a more
| accurate calculation is needed.
~ The “He excitation spectra in the phonon-roton branch of
] the pure system and the mixture at SVP have been compared.
The shift between the two excitations appears to be due to
the change in density. CBF gives a good description of the
maxon region, but overestimates the roton, even if it gives an
almost correcty value for the change of sign of the shift .
1 The CBF scattering function at low momenta gives a rea-
. sonable description of the scattering détath for the posi-
tion and strength The agreement worsens gsincreases.
. 1 The peaks are located at too a large energy and their strength
el is overestimated. We believe that the reason of this lies in the
approximations made to compute the decay of 1PH states
into 2PH and in the lack of higher intermediate states, which
FIG. 8. 1p-1h®He scattering function aj=1.3 A~%. The solid become more and more important as the momentum in-
line is $,(q.w), the dashed line ig(q,w), the dotted line is the CT€SES: In particular, the ;p-lh sector does not include two
. . - . probably relevant contributions: the decays of 1p-1h states
an:riZP;;fl convolution 085(q,w) and crosses are the experi- jniq (1) 2n_oh and(2) 1PH states. The former adds large
' energy tails to the 1p-1h bump reducing its strength, and the
latter is known to be responsible for a large part of the
3He effective mass. Our CBF calculation includes the real

Correlated basis perturbation theory has been used to mpart of the 1p-1h into 1PH decay but does not consider its
croscopically compute the scattering function in aimaginary part.
X3=4.7% 3He-*He mixture afT=0. The theory has allowed The 34 contribution to the total scattering function is es-
for explicitly separating the different contributions to the re- pecially visible in the®He scattering function in the 1p-1h
sponse and for semiquantitatively assessing the relevance &fgion, where its introduction reduces the response by a fac-
the 34 component. In the 1p-1h region, 8% " response tor ~0.6 atq=1.3 A~ However, the size of the effect
is sizeably reduced by;ég*lh up to g=1.5 A%, whereas rapidly decreases witly, becoming almost negligible at

~ -1
S}lf{’lh is always negligible. A similar effect, even if smaller q=2 A%,

in magnitude, is present in the phonon-roton sector, where !N conclusion, we have3 mic‘;lroscopically established the
1PH complex structure of the’He-"He response using CBF

the dominantS};* is only slightly modified b
a4 y SIgy 4 theory. More work is clearly needed in order to give a fully

The responses have been computed by inserting corr e e o
lated 1p-1h and one- and two-phonon intermediate stateguantitative description of both the excitations and the re-
ponses of the Helium mixtures. However, from our results,

Also the possible decay of one-phonon into two-phonorﬁ@ believe that CBF is a promising tool in view of achieving

states has been estimated in boson-boson approximation at |
using the convolution approximation for the three-body dis- IS goal.
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