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Correlated-basis-function perturbation theory is used to evaluate the zero-temperature responseS(q,v) of
3He-4He mixtures for inelastic neutron scattering, at momentum transfersq ranging from 1.1 to 1.8 Å21. We
adopt a Jastrow correlated ground state and a basis of correlated particle-hole and phonon states. We insert
correlated one-particle–one-hole and one- and two-phonon states to compute the second-order response. The
decay of the one-phonon states into two-phonon states is accounted for in the boson-boson approximation.
The full response is split into three partial componentsSab(q,v), each of them showing a particle-hole bump
and a one phonon,d-shaped peak, which stays separated from the multiphonon background. The cross
term S34(q,v) results to be of comparable importance toS33(q,v) in the particle-hole sector and to
S44(q,v) in the phonon one. Once the response has been convoluted with the experimental broadening,
the computed scattering function is in semiquantitative agreement with recent experimental measurements.
@S0163-1829~96!07637-0#

I. INTRODUCTION

Isotopic atomic helium mixtures are an intriguing case for
many-body physicists. There exists a large body of experi-
mental data, concerning mostly static properties~for in-
stance, the chemical potentials and the maximum
solubility1–3!. Excitation spectra and related quantities, as the
zero concentration (x350) 3He effective mass (m3* ), have
been also measured.4 Recently, inelastic neutron scattering
experiments have been carried out both at low, or intermedi-
ate, and high momentum transfers.6,7 In both regions the
measured response presents two generally distinguishable
structures, to be ascribed to bosonlike collective excitations
~phonons and rotons! and to Fermi particle-hole ones. How-
ever, this apparently simple picture hides a large interplay
between the components of the mixtures, each of them prob-
ably contributing on comparable foot to both branches of the
response. The reason for this lies in the large correlation
effects, which are present in the system because of the strong
interatomic potential and of the large density. These are also
the motivations why truly microscopic andab initio studies
of helium mixtures are difficult, and, in the case of the re-
sponse, practically absent in literature.

Qualitative studies of the response have been done in Ref.
8 ~using a matrix dispersion-relation representation!, in Ref.
9 within a correlated random phase approximation~very
similar, in spirit, to the phenomenological polarization poten-
tial method used in Ref. 10 and, lately, in Ref. 11! and in
Ref. 12 with a sum rules approach. Here we will employ the
correlated basis function13 ~CBF! perturbation theory, to em-
body the above correlation effects directly into the basis
functions. CBF has shown to be a powerful tool to success-
fully study helium at zero temperature: the energetics of both
pure 4He and 3He are well described by sophisticated cor-
related ground state wave functions, containing explicit two-,
three-body, backflow and spin correlations;14–16properties of

one 3He impurity in 4He, such as chemical potential and
effective mass are also quantitatively reproduced by such
correlated wave functions.17 In particular, by using CBF
based perturbation theory, with the insertion of up to two
correlated independent phonon intermediate states, the impu-
rity effective massm3* turns out to be 2.2m3, to be compared
with the experimentally measured 2.3m3 value.

The behavior of the3He effective mass with the concen-
tration in dilute mixtures has been recently object of some
debate. Specific heat measurements18,19 at finite x3 do not
show appreciable deviations from itsx350 value. However,
in Ref. 6 the authors have to postulate a much larger value
(m3*;2.95m3 at x350.05) in order to reproduce the position
of the particle-hole response with a Lindhard-like function
and using a simple Landau-Pomeranchuk~LP! quasiparticle
spectrum,20

ek~LP!5e01
\2k2

2m3*
. ~1!

This contradiction does not appear if one modifies the LP
spectrum~LP modified, or LPM! as

ek~LPM!5e01
\2k2

2m3*
1

11gk2
, ~2!

g being a free parameter, whose experimentally estimated
values6 range fromg;0.08 Å2 to g;0.13 Å2. There are
both experimental6,4 and theoretical5 indications of a devia-
tion from the simple LP form.

In a CBF based approach, we assume to have an homo-
geneous mixture ofN3

3He atoms andN4
4He atoms in a

volumeV, with partial densitiesra53,45Na /V, total den-
sity r5r31r4 and concentrationsxa5ra /r. We will keep
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constant densities, while lettingNa and the volume going to
infinity. The nonrelativistic Hamiltonian of the mixture is

H52 (
a53,4

(
i51

Na \2

2ma
¹ i
21

1

2 (
a,b53,4

(
iÞ j

Na ,Nb

V~r i j !, ~3!

where the interaction is the same for all the different pairs of
the mixture.

A realistic, correlated, variational ground state wave func-
tion C0 is obtained by the Jastrow-Feenberg ansatz21

C05FJFTFBFf0~N3!, ~4!

wheref0(N3) is the ground state Fermi gas wave function
for the 3He component andFJ ,FT andFBF areN-body cor-
relation operators including explicit two-, three-body, and
backflow dynamical correlations, respectively. Three-body
correlations are important for a good description of the en-
ergetics both of the mixture22 and of the impurity17. How-
ever, it is unlikely that they may strongly affect the dynami-
cal response, as the static structure functions are little
sensitive to their inclusion. Backflow correlations may play a
more important role, but they show a complicate momentum
dependence. This does not allow presently for a complete
sum of the cluster diagrams containing this type of correla-
tion, so increasing the uncertainty on the final result. For
these reasons, we will limit our analysis to the case of two-
body, state independent~or Jastrow! correlations only
(FT5FBF51), but will include the effects of richer correla-
tions by pushing forward the perturbative expansion in a
Jastrow correlated basis.

FJ results to be

FJ~N4 ,N3!5 )
i3, j 3

N3

f ~3,3!~r i3 j 3! )
i4, j 4

N4

f ~4,4!~r i4 j 4!

3)
i3

N3

)
i4

N4

f ~3,4!~r i3i4!, ~5!

where f (a,b)(r ) are two-body correlation functions deter-
mined by minimizing the variational ground state energy.

It is possible to generate a correlated basis through the
operator ~5!, to be used in a CBF perturbation theory
~CBFPT!. This theory has been successfully adopted for
computing the inclusive response of nuclear matter and
heavy nuclei to electron and hadron scattering23–25, and has
shown to be able to provide a semiquantitative agreement
with experimental neutron inelastic scattering~nIS! data in
pure, liquid atomic4He26.

In this paper, we will apply CBFPT to compute the nIS
response of the mixture, by considering as intermediate
states the normalized, correlated4He n-phonon states~nPH!
uk1,...,kn&, and 3He n-particle, m-hole states ~np-mh!
up1 ,...,pn ,h1 ,...,hm&.

The nPH states are given by

uk1 , . . . ,kn&

5
r4~k1!•••r4~kn!uC0&

^C0ur4
†~kn!•••r4

†~k1!r4~k1!•••r4~kn!uC0&
1/2,

~6!

wherer4(k) is the
4He density fluctuation operator

r4~k!5 (
i51,N4

eik–r i. ~7!

Correlated np-mh states are obtained in a similar way, by
applying the correlation operator to the Fermi gas excited
statesFnp2mh(N3),

up1 ,...,pn ,h1 ,... ,hm&5
FJuFnp2mh&

^Fnp2mhuFJ
†FJuFnp2mh&

1/2. ~8!

We will consider one-phonon~1PH! and 1p-1h interme-
diate correlated states, which we will term as one intermedi-
ate excitation~OIE! states. The response computed at the
OIE level will be calledvariational. In addition, we will also
consider the possible decay of 1PH states into 2PH ones,
which is essential in giving a physically meaningful4He
excitation spectrum and provides a quenching of the one-
phonon peak. This term will be computed in a boson-boson
approximation, i.e., neglecting the3He antisymmetry. Such
an approach may be justified on the basis of the low3He
concentration.

1p-1h states may also be coupled to 1PH and 2PH. Such a
coupling may be taken into account by a corresponding self-
energy insertion. Its analogous in the problem of the single
3He atom in4He is responsible for the impurity large effec-
tive mass. To estimate the importance of this effect we will
use the on-shell part of the impurity self-energy, again rely-
ing on the small value ofx3.

The plan of the paper is as follows. In Sec. II we will
briefly outline the CBFPT for the response of the mixture
and the variational calculation will be described in some de-
tails. Section III is devoted to the description of the calcula-
tion of the coupling with the 2PH states and of the decays
into 1PH and 2PH states. Section IV contains results for the
response and the comparison with the experimental scatter-
ing functions. Moreover, the4He and3He excitation spectra
are presented and discussed. Conclusions are drawn in Sec.
V.

II. CBFPT FOR THE RESPONSE

The dynamical structure function~DSF! S(q,v) of a
3He-4He mixture atT50 is given by the imaginary part of
the polarization propagatorD(q,v)

S~q,v!5
1

p
ImD~q,v!, ~9!

where

D~q,v!5
1

N K C̃0Ur†~q!
1

H2E02v2 ih
r~q!UC̃0L ,

~10!

and

r~q!5r3~q!1r4~q!, ~11!

ra~q!5 (
i51,Na

eiq–r i ~12!
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andN5N31N4. In Eq. ~10!, C̃0 is the exact ground state of
H with eigenvalueE0.

The total DSF may be expressed in terms of partialab
DSF,Sab(q,v), as

S~q,v!5 (
a,b53,4

xabSab~q,v!, ~13!

with xab5(xaxb)
1/2 and

Sab~q,v!5
1

p
ImDab~q,v!5

1

p
Im

1

ANaNb

3 K C̃0Ura
†~q!

1

H2E02v2 ih
rb~q!UC̃0L .

~14!

The experimentally measured nIS double differential
cross section for the mixture directly provides access to the
total scattering functionŜ(q,v), which is in turn related to
the partial DSF’s by the relation

Ŝ~q,v!5
x4s4S44~q,v!12x34s34S34~q,v!1x3@s3S33~q,v!1s3

i S33
I ~q,v!#

x4s41x3~s3
c1s3

i !
. ~15!

The elementary cross sections, as given by Sears27 in
units of barns, ares451.34, s354.42, s3

i 51.19, and
s3452.35. The spin-density DSFS33

I (q,v) also appears in
the expression above, with the corresponding cross section
s3
i . It describes3He spin fluctuations via the operator

r3
I ~q!5 (

i51,N3
eiq–r iI i , ~16!

whereI i is the spin of3He i nucleus.
We will focus, in the remainder, mainly on the calculation

of Sab . To derive a perturbative expansion it is convenient
to split H into an unperturbed pieceH0 and an interaction
termH1, as follows:

^muH0un&5dnm^muHum&5Em
v , ~17!

and

^muH1un&5~12dnm!^muHun&5H̃mn . ~18!

Hereum& are correlated basis states, eigenstates ofH0. In
particular,u0&5uC0& is not an eigenstate ofH and its differ-
ence fromuC̃0& is treated perturbatively. The expansion is
obtained by writing

H2E05H02E0
v1~H12DE0!, ~19!

whereDE0 is the correction to the variational ground state
energy E0

v , and by developing the propagator
(H2E02v2 ih)21 in powers of (H12DE0). A similar ex-
pansion is performed for the ground stateuC̃0&.

If the expansion is truncated at the lowest order, the par-
tial DSF are given by

Sab~q,v!5
1

ANaNb
(
n

^C0ura
†~q!un&^nurb~q!uC0&

3d~v2vn!, ~20!

with vn5En
v2E0

v .

As stated in the introduction, we will first consider only
OIE insertions, i.e., correlated 1PH and 1p-1h intermediate
states, defined as

uk&5
r4~k!uC0&

^C0ur4
†~k!r4~k!uC0&

1/2, ~21!

up,h&5
FJuF1p21h&

^F1p21huFJ
†FJuF1p21h&

1/2. ~22!

A. The variational responses

The variational response is given by the sum of two com-
ponents,

Sab~q,v!5Sab
1PH~q,v!1Sab

1p21h~q,v!, ~23!

whereSab
1PH(q,v) has a 1PH intermediate state

Sab
1PH~q,v!5

1

ANaNb
(
k

^C0ura
†~q!uk&^kurb~q!uC0&

3d~v2vk!, ~24!

andSab
1p21h(q,v) has a 1p-1h intermediate state

Sab
1p21h~q,v!5

1

ANaNb
(
p,h

^C0ura
†~q!up,h&

3^p,hurb~q!uC0&d~v2ep1eh!. ~25!

vk and ep-eh are the variational energies of the OIE states
considered.

vk is given by

vk5
1

N4

^kuH2E0
vuk&

^kuk&
5

\2k2

2m4S44~k!
, ~26!

and corresponds to the well known Feynman spectrum.28 In
Eq. ~26!, S44(k) is the variational estimate of the 44 compo-
nent of the static structure function~SSF!, Sab(k), given by
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Sab~k!5
1

ANaNb

^C0ura
†~k!rb~k!uC0&

^C0uC0&
. ~27!

In a similar way, the single particle energy~SPE! ex5p,h
is obtained by

ex5
^xuH2E0

vux&
^xux&

, ~28!

whereux& is a particle or hole correlated state. We will dis-
cuss later the evaluation ofex .

By using the definition of the SSF given in Eq.~27!,
ja(q;k)[^C0ura

†(q)uk& is readily obtained as

ja~q;k!5ANa

Sa4~k!

AS44~k!
dk2q , ~29!

giving, for Sab
1PH(q,v),

Sab
1PH~q,v!5(

k

Sa4~k!S4b~k!

S44~k!
dk2qd~v2vk!. ~30!

The one-phonon contribution to the variationala-b re-
sponses shows ad-like behavior, whose strength is
Zab
v (k)5Sa4(k)Sb4(k)/S44(k), and it is located at the Feyn-

man phonon energy. We notice that~i! Z44
v (k)5S44(k) and

that ~ii ! the 33 and 44 variational DSF are positive@S44(k)
being positive#, whereas this may not be true for the 34 DSF.

The expression for the particle-hole response
Sab
1p21h(q,v) is more involved. A detailed description for a
pure Fermi system~specifically, nuclear matter! can be found
in Ref. 23 and references therein. On the basis of that for-
malism, the extension to a boson-fermion mixture is straight-
forward.

In CBF theory, the nondiagonal matrix elements
ja(q;p,h)5^C0ura

†(q)up,h& are computed by a cluster ex-
pansion in Mayer-like diagrams, built up by dynamical cor-
relations, (f (a,b))221, and by statistical ones. Infinite
classes of cluster terms are then summed by Fermi hypernet-
ted chain22 ~FHNC! technique.

The ja are explicitly given by

ja~q;p,h!5dq2p1h

1

AD~p!D~h!
„h̃dd,a3~q!

1da3@11h̃ed,33~q!#…, ~31!

where

h̃xy,a3~q!5raE d3reıq•r@gxy,a3~r !2dxy,dd#, ~32!

with (x,y)5(d,e) andgxy,ab(r ) are partial radial distribu-
tion functions ~RDF!. In fact, the totalab-RDF, gab(r ),
giving the probability of finding aa-type particle 1 at a
distancer 12 from ab-type particle 2,

gab~r 12!5
Na~Nb2dab!

rarb

*d3r 3•••d
3r NuC0u2

*d3r 1•••d
3r NuC0u2

, ~33!

is computed in FHNC,22 using the correlated g.s.C0 and it
turns out to be written as

gab~r 12!5gdd,ab~r 12!1db3gde,a3~r 12!1da3ged,3b~r 12!

1da3db3gee,33~r 12!. ~34!

The partial RDF are classified according to whether the
external particle~1 or 2! is reached by a statistical correlation
~i.e., if the particle is involved in an exchange loop,
e-vertex!, or by a dynamical correlation only (d vertex!. The
definitions of the partial RDF, together with the full set of
the related FHNC equations, may be found in Ref. 22

Actually, Eq. ~31! sums all cluster diagrams factorizable
in products ofdressedtwo-body diagrams, as discussed in
Ref. 23. Nonfactorizable diagrams involving three particles
are also taken into account, even if they do not appear in Eq.
~31!. However, they have been inserted, following Ref. 23.

The functionD(x5p,h) is

D~x!512r3E d3reıx•r„gdd,33~r !21…L~kFr !, ~35!

whereL(kFr ) is the FHNC generalization of the exchange
Slater function l (kFr )53 j 1(kFr )/(kFr )

3, and kF is the
3He Fermi momentum (kF

353p2r3).
Again, asD(x) turns out to be positive,S33,44

1p21h(q,v) are
positive, whereasS34

1p21h(q,v) may be not.
Finally, the spin fluctuation matrix element,

j3
I (q;p,h)5^C0ur3

I†(q)up,h&, is simply given by

j3
I ~q;p,h!5dq2p1h

1

AD~p!D~h!
. ~36!

III. CORRELATED ONE- AND TWO-PHONON
INTERMEDIATE STATES

In this section we will first study the effect on the phonon
responses of the insertion of orthogonal, correlated 2PH
states:

uk1k2&o5~12uk&^ku!uk1k2&, ~37!

where the 2PH states of Eq.~6! have been orthogonalized to
the 1PH ones by a Gram-Schmidt procedure.

2PH states influence the partial polarization propagators
Dab(q,v) via the direct coupling to the ground state and via
the decay of 1PH states into 2PH. The coupling to the g.s
goes through the matrix element of the3He fluctuation op-
erator,

j3~q;k1 ,k2!5^C0ur3
†~q!uk1 ,k2&o , ~38!

@notice thatj4(q;k1 ,k2) vanishes because of the Schmidt
orthogonalization of the 2PH states#, whereas the decay is
driven by the nondiagonal matrix element of the Hamiltonian

a~k;k1 ,k2!5^kuH1uk1 ,k2&o . ~39!

These CBF matrix elements have been computed in a
boson-boson approximation~treating the 3He as a mass-3
boson! and by adopting the convolution approximation21

~CA! for the three-body distribution functions. expansion
Their explicit expressions are
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j3~q;k1 ,k2!5
S34~k1!S34~k2!

AS44~k1!S44~k2!
SS33~q!2

S34
2 ~q!

S44~q!
D ,

~40!

and

a~k;k1 ,k2!

5
\2

AN42m4

3S k•k1S44~k2!1k•k2S44~k1!2k2S44~k1!S44~k2!

AS44~k!S44~k1!S44~k2!

2Ax4
x3

k2S34~k!S34~k1!S34~k2!

S44~k!AS44~k!S44~k1!S44~k2!
D . ~41!

It is convenient, at this point, to introduce the correlated
self-energy

S1~k,v!5
1

2 (
k1 ,k2

ua~k;k1 ,k2!u2

vk1
1vk2

2v2 ih
, ~42!

and the functionx(q;k,v) given by

x~q;k,v!5
1

2

1

AN3
(
k1 ,k2

a~k;k1 ,k2!

3
1

vk1
1vk2

2v2 ih
j3
†~q;k1 ,k2!. ~43!

If we define the dressed phonon propagatorGd(k,v) as

Gd~k,v!5
1

vk2S1~k,v!2v2 ih
, ~44!

then the phonon contributions to the polarization propagators
can be rearranged as

D44
PH~q,v!5

1

N4
(
k

u^C0ur4
†~q!uk&u2Gd~k,v!, ~45!

D43
PH~q,v!5

1

AN3N4
(
k

^C0ur4
†~q!uk&Gd~k,v!

3F ^kur3~q!uC0&1
1

AN4

x~q;k,v!G , ~46!

D33
PH~q,v!5

1

N3
(
k
Gd~k,v!F ^kur3~q!uC0&

1
1

AN3

x~q;k,v!G 2
1
1

2

1

N3
(
k1 ,k2

u^C0ur3
†~q!uk1 ,k2&ou2

vk1
1vk2

2v2 ih
. ~47!

The DSF are then obtained by taking the imaginary parts
of Dab .

The relevant changes introduced by the insertion of the
2PH states in the phonon responses are~1! the strengths of
the deltalike 1PH peaksZab are generally quenched respect
to Zab

v In the 44 case, we have

Z44~k!5Z44
v ~k!S 11

]ReS1~k,v!

]v D
v5vk

21

. ~48!

Analogous corrections occur forZ34(k) and Z33(k),
which are also affected by those parts of the polarization
propagators containingj3(q;k1 ,k2); ~2! the 1PH peaks are
shifted by the real part of the on-shell self energy, since the
4He spectrum is modified as

vk→vk
CBF5vk1ReS1~k,vk

CBF!; ~49!

~3! a multiphonon tail appears at largev values, beyond the
position of the 1PH peak, at the momentum transfers here
considered.

IV. CBF RESPONSES

In the class of the Jastrow correlated wave functions, the
best variational choice is provided by the solution of the
Euler equations

05
d^C0uHuC0&

d f ~ab! . ~50!

The resulting equations have been derived, within the
FHNC framework, and solved for the3He impurity
problem,29,30 for the boson-boson mixture31 and, lately, for
the real fermion-boson case.9

Another, often used approach consists in parametrizing
the correlation functions and in minimizing the ground state
energy with respect to the parameters. This is the choice we
have adopted here. Besides that, some of the results we will
present have been obtained within the average correlation
approximation~ACA!.32 In ACA, the correlation functions
are the same for all the types of pairs (f (3,3)5 f (3,4)5 f (4,4))
and the differences in the distribution functions~or in the
static structure functions! are due only to the different iso-
tope densities and statistics. We will also show that going
beyond the ACA does not significantly affect our results.

We have used three types of correlation functions: the
time honored, short ranged McMillan form~SR! and two
long ranged functions~LR and LR1!.

The McMillan correlation, in ACA, is given by

fSR~r !5expF2S bs

r D 512G , ~51!

whereb51.18 ands52.556 Å. The SR correlation function
gives a good description of the short range behavior of the
pair wave function but fails to reproduce long range proper-
ties. For instance, it does not ensure the linear behavior of
the 4He SSF atk→0 ~the phonon dispersion!. Such a dis-
persion reflects in a long range behavior of the correlation of
the typef (r→`)21}2r22. To this aim, we have also used
a modified form, having the correct long range structure
~LR!, given by
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f LR~r !5 f SR~r !FA1BexpS 2
~r2D !2

tr 4 D G . ~52!

The parameters off LR(r ), giving the variational minimum
of the 4He energy at the equilibrium densityr050.02185
Å 23, are b51.18, A50.85, B512A, D53.8 Å, and
t50.043 Å22. The B and t parameters are related to the
experimental pure4He sound velocityc and to the low-k
behavior of its SSF by the relations

B

t
5

m4c

2p2\r0
; S~4,4!~k→0!5

\k

2m4c
. ~53!

In order to check the accuracy of ACA, we have also used
a LR correlation~LR1!, formally identical tof LR , but with
parameters depending on the type of the correlated pair. The
44 correlation function is the same as above, whereas the
parameters of the 43 and 33 ones have been obtained by
minimizing the energy of the pure4He with one and two
3He impurities, respectively.

Key ingredients in the CBF theory of the response in he-
lium mixtures are the radial distribution functionsgab(r )
and the static structure functionsSab(k). Figures 1 and 2
show these quantities in a 4.7% mixture, at a total density
r50.02160 Å23, for the f LR1(r ) correlation, in FHNC/0
approximation ~i.e., we have neglected the elementary
diagrams22!. The results for the SSF, with thefSR(r ), differ
mainly in the region of low-k values, in agreement with the
previous discussion.

Table I shows the variational strengthsZab
v (k) of the one-

phonon response for the same mixture and compares the re-
sults obtained with the SR and LR correlation functions at
four momentum values, fromq51.1 to 1.7 Å21. The posi-
tions of the variationald peaks,vk , are also given. It has to
be noticed that the Feynman spectrum overestimates the ex-
perimental data by at least 10 K both in the maxon and roton
regions. Table II provides the same quantities after the inser-
tion of the 2PH states.Z44(k) of pure

4He has been exten-
sively and accurately studied in CBF in Ref. 26. Our ap-
proach, when applied to this system, gives similar results. As
a matter of fact, atk52 Å21 ~where its peak approximately

FIG. 1. Radial distribution functions for the mixture~see text!.
The solid line givesg44, the dashed lineg34, and the dotted one is
g33.

FIG. 2. Static structure functions for the mixture~see text!. The
solid line givesS44, the dashed lineS34, and the dotted one is
S33.

TABLE I. Variational strengths and positions of the one phonon
DSF responses with different correlations~see text!. q in Å21 and
vq in K.

q vq Z44
v Z34

v Z33
v

SR 1.1 20.44 0.356 20.146 0.060
LR 20.77 0.361 20.145 0.058
LR1 20.75 0.362 20.147 0.060
SR 1.3 20.74 0.491 20.115 0.027
LR 21.68 0.461 20.122 0.032
LR1 21.71 0.460 20.122 0.032
SR 1.5 19.91 0.681 20.072 0.008
LR 19.99 0.686 20.071 0.007
LR1 20.02 0.685 20.069 0.007
SR 1.7 19.20 0.908 20.021 0.000
LR 19.24 0.899 20.023 0.001
LR1 19.26 0.899 20.019 0.000

TABLE II. CBF strengths and positions of the one phonon DSF
responses with different correlations~see text!. q in Å21 andvq in
K.

q vq Z44 Z34 Z33

SR 1.1 13.73 0.275 20.066 0.016
LR 13.69 0.272 20.068 0.017
LR1 13.66 0.272 20.068 0.017
SR 1.3 14.01 0.390 20.045 0.005
LR 14.27 0.367 20.047 0.006
LR1 14.25 0.366 20.044 0.005
SR 1.5 13.84 0.559 20.014 0.000
LR 13.79 0.558 20.014 0.000
LR1 13.83 0.557 20.011 0.000
SR 1.7 13.94 0.766 0.024 0.001
LR 13.94 0.766 0.024 0.001
LR1 13.96 0.765 0.027 0.001
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lies! we obtain Z44
CBF(k)51.04, vs Z44

expt(k)50.94.33 We
have been able to push forward the CBF perturbative expan-
sion in such a system, obtainingZ44

CBF(k52 Å21!50.96. As a
further remark, we add that the use of either short or long
range correlations little affects the strengths in the momen-
tum region we have considered. This is also true for the other
quantities that have been studied in this work.

Figure 3 shows the4He spectrum with the LR1 correla-
tion. The figure also compares the spectrum with pure4He at
r0 and with the experimental results of Ref. 6~circles! in a
x351.1% mixture at SVP and of Ref. 4~squares! for a
x356.0% mixture.

The changes in going from pure4He to the mixture are
clearly visible. These changes are mainly due to the lower
4He density in the mixture and not to differences in the
correlations. In fact, we obtain similar results if the LR-ACA
correlation is used. CBF perturbative corrections appear to
be large and bring the maxon energy close to the experi-
ments. The roton is not well described, as it is too shallow
respect to the data. This feature is also present in the4He
case. We believe that most of the discrepancy in this part of
the spectrum has to be ascribed to the use of CA in the
calculation of the CBF matrix elements. Moreover, contribu-
tions from higher order CBF perturbative diagrams are
known to be important to correctly reproduce the roton mini-
mum in pure4He.34 However, the CA results show a change
in the sign of the shift from mixture to pure system at
q.1.8 Å21, in good agreement with the measured experi-
mental value6 at constant pressure (q.1.9 Å21!.

The boundaries of the 1p-1h DSF’s are related to the en-
ergies of the 1p-1h stateep-eh . The variational SPE,ep(h) ,
has been computed by the procedure of Ref. 35. However,
because of the low3He density, it turns out to be extremely
close to the free Fermi gas SPE,

ek
FG5

\2k2

2m3
. ~54!

Perturbative corrections toek may be computed in CBF.
In the case of the3He impurity, CBFPT provides an accurate
evaluation of its SPE,17,36if the decay of the impurity excited
state~given by a correlated plane wave! into correlated 1PH
and 2PH states is considered. 1PH states account for;2/3 of
the difference between the experimental effective mass and
the bare one, whereas 2PH states give the remainder. Be-
cause of the low density of the3He component, it is reason-
able to expect a similar behavior in the finite concentration
mixture. It implies that we should insert in the CBFPT ex-
pansion the coupling between 1p-1h states and 1PH and 2PH
ones@1p~1h!→1p8~1h8)11(2)PH#.

Work along this line is in progress. Here we have used for
ek
CBF the CBFPT SPE of the single impurity, obtained by
extending to finite momenta the approach of Ref. 17 for the
effective mass. The involved matrix elements have been
computed in CA for the three-body distribution functions.
CA gives m3* (CA);1.8m3 for the impurity, whereas the
more realistic superposition approximation~SA! gives
m3* (SA);2.2m3. However, the SAkÞ0 matrix elements
are much more involved than their CA counterparts, and
their evaluation, together with a description of the method,
will be presented subsequently.36 Here, the effect of the
missing effective mass has been estimated by simply scaling
the CA SPE asek

CBF5@m3* (CA)/m3* (expt)#ek
CBF(CA).

Figure 4 shows the3He impurity SPE in different ap-
proximations, and compares them with the experimental data
~circles from Ref. 6 and squares from Ref. 4! and with the LP
and LPM parametrizations given in the introduction, with
parametersm3*52.3m3 andg50.132 Å2. Even from the CA

FIG. 3. 4He excitation spectrum in the mixture~crosses! and in
the pure system~dashed line!. The upper curves are the Feynman
spectra. Squares and circles are mixture experimental data~See
text!.

FIG. 4. 3He single particle energies. The dashed line gives
ek
CBF~CA!, the solid line isek

CBF also shown are the LP, LPM, and
free (F) energies. Squares and circles are the experimental data
~See text!.
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calculation, a deviation from the LP behavior clearly ap-
pears. The estimated CBF value ofg in CA turns out to be
g(CA)50.052 Å2. We stress that, as for4He, we expect SA
to provide a better description of the3He SPE behavior, as it
correctly takes into account the core property of the system,
requiring that the three-particle distribution functions vanish
when any interparticle distance is lower than the radius of the
repulsive core of the potential.

Figure 5 gives the 1p-1h DSFSab
1p21h(q,v) at two mo-

mentum values (q51.3 and 1.7 Å21!, with the LR1 correla-
tion and usingek

CBF The two 33 DSF are very close and
dominant, becoming indistinguishable at higher momenta;
the 44 component is always very small~notice that it has
been amplified by a factor of 10 in the figure!; the 34 part is
negative and an order of magnitude larger thanS44

1p21h in
absolute value, contributing to decrease the total response
mainly at low momenta. The free Fermi Gas DSF would be
located to a larger energy with a lower peak strength, com-
patible with the fact that the correlated system has a3He
effective mass 2.3 times larger than the bare mass~at
q51.3 Å21 the FG peak position isv513.6 K and the
strength isS33

1p21h(FG)50.115 K21). In addition, as for the
phonon DSF, the use of the SR and LR correlations does not
alter appreciably the results shown in the figure.

To evaluate the total scattering functionŜ(q,v), the DSF
must be multiplied by the elementary cross sections and the
concentrations of the species. In Figs. 6~a! and 6~b! we give
the partial CBF scattering functions~PSF!:

Ŝ44~q,v!5
x4s4

x4s41x3~s3
c1s3

i !
S44~q,v!, ~55!

Ŝ34~q,v!5
2x34s34

x4s41x3~s3
c1s3

i !
S34~q,v! ~56!

and

Ŝ33~q,v!5
x3

x4s41x3~s3
c1s3

i !
@s3S33~q,v!1s3

i S33
I ~q,v!#.

~57!

The LR1 correlation has been used. The position and the
strength of the phonon contribution to the PSF’s are explic-
itly given. In the 1p-1h sector, at the lower momentum, the

33 PSF is strongly reduced by the 34 PSF, which practically
disappears atq51.7 Å21. The 44 PSF is always negligible in
this sector. In the phonon sector, the 44 PSF is the dominant
one. The 33 component always results to be very small. The
34 PSF atq51.3 Å21 slightly reduces the scattering func-
tion, while atq51.7 Å21 increases it.

In order to compare with the experimental scattering func-
tion, the theoretical PSF’s have to be convoluted with the
experimental broadening functions. As at these momentum
transfers the phonon peak is stilld shaped, because there is
no overlap with the multiphonon background, we assume, in
accordance with the authors of Ref. 6, that the width in en-
ergy of the low temperature results in that reference is en-
tirely due to the instrumental resolution. For this reason we
have convoluted the phonon peak with a Gaussian having an
average half maximum width of 1.3 K. A Gaussian with a
width of 1.2 K ~Ref. 37! has been used for the 1p-1h re-
sponse.

The convoluted total scattering functions are compared
with the experimental results of Ref. 6 in Figs. 7~a!, 7~b!, and
7~c! at q51.1, 1.5, and 1.7 Å21, respectively, for the 4.7%
mixture we have considered so far.

At q51.1 Å21, both the position and the strength of the
phonon branch are well described by our calculation. When

FIG. 5. 1p-1h DSF atq51.3 and 1.7 Å21. The continuous line
gives S33,the dot-dashedS33

I the dotted 103S44 and the dashed
S34.

FIG. 6. CBF Partial scattering functions atq51.3 ~a! and 1.7
Å21 ~b!. Continuous lineŜ33, dashed lineŜ34 dottedŜ44. The PH-
ab numbers are the strengths of the phonon PSF, located atvq .
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approaching the roton minimum region, the agreement wors-
ens and we overestimate the experimental data. As discussed
previously, we expect that the use of SA will improve the
CBF description.

This feature is particularly relevant in theq region where
the experimental 1p-1h and phonon branches overlap
(q>1.8 Å21!. Because the CBF4He excitation spectrum
beyond the maxon is higher than the measured one, the com-
puted CBF branches do not overlap, as it is shown in Fig.
7~d! by the dashed curves. We have also shifted the position
of the phonon response to its measured peak value of
v;10 K ~dotted curve! and added it to the 1p-1h contribu-
tion. The result ~full curve! is compared with the
experiment.6

As far as the 1p-1h sector is concerned, the use of the
CBF-CA SPE slightly misses the location of the bump, well
described in turn by a LPM parametrization, which is essen-
tially a fit to the experimental data. We recall that the rel-
evant difference between the LPM and the CBF-CA energies
lies in theg-parameter value, smaller by a factor;0.4 in the
latter case. A simple, quadratic LP parametrization with
m3*52.3m3 seems to be ruled out. Notice that the 1p-1h
branch has been calculated with a nonquadratic SPE, there-
fore the resulting band is not symmetric and its peak location

does not follow a quadratic law.
The 3He scattering functionŜ3(q,v), defined as

Ŝ3~q,v!5
x4s41x3~s3

c1s3
i !

x3~s3
c1s3

i !
Ŝ~q,v!, ~58!

and the functionS̄3(q,v), given by

S̄3~q,v!5
s3S33~q,v!1s3

i S33
I ~q,v!

s3
c1s3

i , ~59!

in the 1p-1h sector, are given in Fig. 8. The figures contains
also the convolution ofŜ3(q,v) with the experimental
broadening function and the experimental results of Ref. 6, at
q51.3 Å21. Ŝ3 and S̄3 are identical if S34

1p21h

5S44
1p21h50. So, their differences are basically a measure of

the importance of the 34 contribution~the 44 one being neg-
ligible!. Our results show a large suppression ofS33

1p21h due
to S34

1p21h which brings the CBF response much closer to the
experiments.

FIG. 7. Total scattering functions atq51.1 ~a!, q51.5 ~b!, q51.7 ~c! andq51.8 Å21 ~d! ~solid lines!. Also shown~a–c! are the 1p-1h
responses with the LP~dotted lines! and LPM ~dashed lines! spectra and the experimental data~crosses!. In ~d!, the dashed lines are the
1p-1h and phonon scattering functions and the dotted line is the shifted phonon scattering function~see text!.
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V. CONCLUSIONS

Correlated basis perturbation theory has been used to mi-
croscopically compute the scattering function in a
x354.7% 3He-4He mixture atT50. The theory has allowed
for explicitly separating the different contributions to the re-
sponse and for semiquantitatively assessing the relevance of
the 34 component. In the 1p-1h region, theS33

1p21h response
is sizeably reduced byS34

1p21h up to q.1.5 Å21, whereas
S44
1p21h is always negligible. A similar effect, even if smaller
in magnitude, is present in the phonon-roton sector, where
the dominantS44

1PH is only slightly modified byS34
1PH

The responses have been computed by inserting corre-
lated 1p-1h and one- and two-phonon intermediate states.
Also the possible decay of one-phonon into two-phonon
states has been estimated in boson-boson approximation and
using the convolution approximation for the three-body dis-
tribution functions.

The microscopic quasiparticle3He energies clearly show
a deviation from the simple LP form. The energies have been
actually computed for the single impurity problem, but we
do not believe that their evaluation in the low concentration
mixture will dramatically change our findings. In particular,
a deviation from LP was advocated in Ref. 6 to explain the
experimental 1p-1h response, in contrast with a possible

large change of the3He effective mass in mixture~from
m3*52.3m3 at x350 tom3*52.9m3 at x354.7%!. CBF still
does not reproduce fully quantitatively the data, and a more
accurate calculation is needed.

The 4He excitation spectra in the phonon-roton branch of
the pure system and the mixture at SVP have been compared.
The shift between the two excitations appears to be due to
the change in density. CBF gives a good description of the
maxon region, but overestimates the roton, even if it gives an
almost correctq value for the change of sign of the shift .

The CBF scattering function at low momenta gives a rea-
sonable description of the scattering data~both for the posi-
tion and strength!. The agreement worsens asq increases.
The peaks are located at too a large energy and their strength
is overestimated. We believe that the reason of this lies in the
approximations made to compute the decay of 1PH states
into 2PH and in the lack of higher intermediate states, which
become more and more important as the momentum in-
creases. In particular, the 1p-1h sector does not include two
probably relevant contributions: the decays of 1p-1h states
into ~1! 2p-2h and~2! 1PH states. The former adds large
energy tails to the 1p-1h bump reducing its strength, and the
latter is known to be responsible for a large part of the
3He effective mass. Our CBF calculation includes the real
part of the 1p-1h into 1PH decay but does not consider its
imaginary part.

The 34 contribution to the total scattering function is es-
pecially visible in the3He scattering function in the 1p-1h
region, where its introduction reduces the response by a fac-
tor ;0.6 at q51.3 Å21. However, the size of the effect
rapidly decreases withq, becoming almost negligible at
q.2 Å21.

In conclusion, we have microscopically established the
complex structure of the3He-4He response using CBF
theory. More work is clearly needed in order to give a fully
quantitative description of both the excitations and the re-
sponses of the Helium mixtures. However, from our results,
we believe that CBF is a promising tool in view of achieving
this goal.
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