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A characteristic switching time, associated with an impurity embedded in a tight-binding polyene chain, is
developed. The modulated-energy traversal time, derived for potential models, is modified to the tight-binding
situation. Since the traversal time takes into account the physical distance propagated, which is a meaningless
concept in the context of the tight-binding model, we obtain an interaction time that measures the delay in
tunnelling through the impurity site. The switching time is discussed in terms of the impurity-parameter space.
@S0163-1829~96!02625-2#

I. INTRODUCTION

Since an electron in a quantal system is described by a
delocalized wave function, and is subject to the limitations
imposed by the uncertainty principle, it is difficult to associ-
ate a characteristic time over which the electron can be said
to be located within a particular region. Various attempts
have been made to associate a characteristic time to the sys-
tem of an electron tunneling through a potential barrier.1–6

Part of the difficulty is that the characteristic times derived
describe different aspects of different physical situations,
which complicates comparison among theoretical derivations
and with experimental results.

We do not intend to investigate the appropriateness of
these derivations, or their interpretations, but rather use the
applicability to the system in question as the criterion for
selecting thetraversal time7,8 to characterize our switch,
which we describe as an impurity embedded in a polyene
chain. We use a simple metal-like model9 of the system to
illustrate the method for extracting the switching time. Ap-
plications to more realistic models will be the basis of future
work.

Previous analysis of this system,9,10 via the tight-binding
approximation~TBA!, provides ready access to thepropaga-
tion matrix P, the transfer matrixT(E), and thetransmis-
sion coefficient t(E), through the impurity. This information
allows one to calculate either the time delay11,12 based on
collision theory, or the traversal time3,7,13appropriate to tun-
nelling situations. Since the relevant time through a switch-
ing mechanism is when it is on, it is the latter situation which
is appropriate, and so a characteristic time for the switch
based on the Martin-Landauer~ML ! derivation.7 Since the
definition of the transmission coefficient in the TBA does not
contain the phase change, exp(ikL), across the region, the
ML formula7 does not produce a traversal time, nor will the
TBA calculation reduce to the transit time under WKB con-
ditions.

Thus, it is this phase change that allows us to convert the
complex transmission coefficientfrom the potential model to
the tight-binding one, viz.,

t~E!5t~E!e2 ikL. ~1.1!

With this definition of the transmission coefficient, we no
longer generate the traversal time, instead we measure the

additional time it takes to cross an atomic site due to the
presence of an impurity, i.e., theswitching time, T(E),
through the impurity.

II. TIGHT-BINDING MODEL

In the TBA, it is assumed that atomic orbitals are highly
localized, so that there is little overlap with the other atomic
sites in the chain. We generate the Hamiltonian for the chain
from the isolated orbital wave functions,usn&, and invoke the
nearest-neighbor approximation, so that

H5 (
n52`

`

@anusn&^snu1bn~ usn&^sn11u1usn11&^snu!#,

~2.1!

where thean (bn) is theCoulomb~resonance! integral at
~to! thenth site. In the unperturbed metal chain,an5a and
bn5b, for all n.

For an energy eigenstate of the chain,
HuF(E)&5EuF(E)&, we expand the wave function as a su-
perposition of atomic-orbital wave functions,

uF~E!&5 (
n52`

`

cn~E!usn&, ~2.2!

which leads to the difference equation

qcn5cm211cm11 , ~2.3!

whereq5(E2a)/b is the reduced energy.
Knowing how a wave function changes between any two

sites is sufficient, along with the properties of the chain, to
define the wave function everywhere via

Rm5Pm2nRn , ~2.4!

where

Rn5F cn

cn21
G and P5Fq 21

1 0 G ~2.5!

are thesite vectorand thepropagation matrix, respectively.
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The eigenvalues of P are given by l6

5(1/2)(q6Aq224) or, upon setting q52cosu, by
l65e6 iu, which allows us to diagonalize the system, using
theunimodularmatrix,

U5
1

A2isinu
Feiu e2 iu

1 1 G , ~2.6!

by defining site vectorsVn5U21Rn and the diagonal propa-
gation matrix D5U21PU. Substituting these into~2.4!
yields

Vn5Dn2mVm . ~2.7!

The eigenfunctions of the system are Bloch waves,
whence

Vn5F vnwn
G5F einu

e2 inuG , ~2.8!

which characterizes the wave function by its right-~left-!
moving componentvn (wn).

Introducing an impurity at the origin, we can compress
the perturbation into ad-function potential,10 so that the
transfer matrixT(E), is given by

V015T~E!V02, ~2.9!

which means that~2.7! now contains a discontinuity, namely,

Vn5HDnV02, n,0,

DnV01, n.0.
~2.10!

III. SWITCHING TIME

Adapting the method of ML~Ref. 7! to the TBA, we
consider a wave function constructed from two Bloch waves
with different energies to be incident from the left upon the
impurity site at the origin. Although there will be both re-
flected and transmitted waves, we are interested only in those
moving to the right, i.e., thevn component of the wave func-
tion. We find

vn5H einuE1einu~E1DE!, n,0,

t~E!einuE1t~E1DE!einu~E1DE!, n.0,
~3.1!

t(E) being the complex transmission coefficient~1.1!.
TreatingDE as a perturbation toE, we expandt(E) in a

Taylor series,

t~E1DE!5t~E!1
]t~E!

]E
DE1O~DE2!, ~3.2!

which we substitute back into~3.1! to give

vn5H einuE1einuE1DE, n,0,

t~E!@einu1einu~E1DE!#1
]t~E!

]E
DEeinu~E1DE!1O~DE2!, n.0.

~3.3!

The transmitted wave function will, therefore, replicate,
up to a scale factor, the incident wave function, provided the
first-order term remains subdominant. The transmitted wave
will be affected nontrivially, through the transmission coef-
ficient, whenDE is such that

]t~E!

]E
DE5O~ t~E!!, ~3.4!

which defines the associated characteristic time scale via the
minimizedenergy-time uncertainty relation,

DET~E!5
\

2
. ~3.5!

Combining~3.4! and ~3.5!, we obtain a time scale

T~E!5
\

2DE
5OS \

1

t~E!

]t~E!

]E D5OS \
] lnt~E!

]E D ,
~3.6!

which describes the effects of the impurity. By evaluating
~3.6! for systems for which the characteristic time is avail-
able by other methods~see the Appendix!, we find that it is
appropriate to use a scaling factor of unity. Thus, we write

T~E!5U \

t~E!

]t~E!

]E U, ~3.7!

which appears identical in form to the results of ML.7 We
stress, however, that the quantity measured in~3.7! is not the
same as the ML derivation~see the Appendix!, nor is it the
time delay,6 which accounts only for the imaginary part of
~3.6!.

IV. MOLECULAR SWITCH APPLICATION

The presence of an impurity state at the origin alters the
atomic orbital wave function there. As obtained from~2.1!,
the Coulomb integral,̂s0uHus0&, and the two overlap inte-
grals,^s21uHus0& and ^s0uHus1&, must be redefined. We set

a05a8, b215g, b05g8 ~4.1!

from which we define thedimensionlessimpurity parameters

X5b21~a2a8!, Y5b21g,

Z5g21g8, W5221/2YA11Z2. ~4.2!

As shown previously,9,10 ~2.3! for n521,0,1 gives the
boundary conditions
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qc215c221Yc0 ,

~q2X!c05Yc211YZc1 , ~4.3!

qc15YZc01c2 ,

which define unique propagation matrices across the sites
affected by the impurity. Thus, we have

R25P1P0P21R21 . ~4.4!

Multiplying ~4.4! on the left byD22U21 and using iden-
tity matrices,~2.10! and the definitions of the site vectors, we
obtain

V015D22U21P1P0P21UD
21V02. ~4.5!

Comparing~4.5! to ~2.9! yields the elements of the transfer
matrix T(E). Specifically, we have

T115
1

2 S Z1
1

ZD1 i
@X1q~W221!#

ZY2A42q2
, ~4.6!

which has the well-known relation to the transmission coef-
ficient, T1151/t* . In polar coordinates,

T115~ t* ~q!!215t21/2eif5t21/2~cosf1 isinf!, ~4.7!

from which we find

f5tan21~ Re~T11!
21 Im~T11!! ~4.8!

and

t5uT11u225~ Re~T11!
21 Im~T11!

2!21. ~4.9!

The polar form of~3.7! is

T~q!5
\

b
AS df

dqD 21 1

t S dt
1/2

dq D 2. ~4.10!

Thus, we differentiate~4.8! and ~4.9! subject to~4.6! to ob-
tain the energy-dependent switching time via~4.10!, i.e.,

T~q!5
\

ubu
u4~W221!1qXu

~42q2!AW4~42q2!1@X1q~W221!#2
.

~4.11!

Analysis of the impurity-embedded chain9,10 has shown
that the optimum transmission occurs when the impurity-
bond ratio is symmetric, i.e.,Z51, and the energy of the
impurity state coincides with the Fermi level,qm , i.e.,

~12Y2!21X5qm . ~4.12!

Settingqm51, and using the above optimization conditions
in ~4.11!, we have

Top~q!5
\

ubu
~42q!~12Y2!

~42q2!AY4~42q2!1~12q!2~12Y2!2
.

~4.13!

From Fig. 1, we see that the switching time is relatively
constant over most of the band, but rises rapidly at the band
edges, whereT(q) diverges. Once the impurity-chain bond
ratio drops below 0.5, a significant delay develops at ener-

gies about the Fermi level. Since a low switching time is a
desirable feature in a ‘‘good’’ molecular switch, the design
of a practical device should avoid this region. As the major-
ity of charge carriers transmitted by the switch have energies
close to the Fermi level, avoiding the region means keeping
Y.0.5.

The effects of the distribution of transmitted energies can
be accounted for by convolution with the derivative of the
Fermi-Dirac distribution, i.e., the Azbel energy
averaging.14,15 In this way, we obtain the characteristic time
of the switch, as determined by the impurity parameters. It is,
however, physically appropriate to obtain the average fre-
quency with the Azbel method, instead of applying it directly
to the switching time. Thus, we define theeffective switching
timeusing the reciprocal ofT, namely,

1

Teff
5E

band

1

T~q! F2
] f ~q!

]q Gdq, ~4.14!

where f (q) is the Fermi-Dirac distribution,

f ~q!5@11exp~t21~q2qm!!#21, ~4.15!

t being the reduced dimensionless temperature,b21kbT.
The results for optimal transmission at temperatures of
T50 K and T550 K are shown in Fig. 2 for molecular
systems withb;1 eV. With these assumptions in mind, the
time scale in seconds is also provided. Again, forY,0.5, we
begin to see a significant increase in the time.

V. CONCLUSIONS

Using the tight-binding model, we have generated a char-
acteristic time for transmission, derived from the ML energy-
modulated traversal time. Unlike the traversal time, the
switching time measures only thedelaycaused by tunnelling
through an impurity at an atomic site, i.e., we haveT50 for
a pure chain that admits full transmission.

The information gathered from transfer-matrix analyses of
molecular switches embedded in one-dimensional mon-
atomic chains enables both the energy-dependent and effec-
tive switching times to written in terms of the impurity pa-

FIG. 1. Energy and impurity-bond dependence of switching
time under optimized transmission conditions.
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rameters. The resulting equations show an inverse
correlation between impurity-bond strength and switching
time. Identifying low switching time as a desirable property
of a ‘‘good’’ molecular switch leads to the preference for
strong impurity-chain bonds, in contrast to the sharp-

switching property favored by weak impurity-chain bonds.
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APPENDIX: SCALE FACTOR FOR SWITCHING TIME

To show that unity is the appropriate scale factor in de-
fining ~3.7!, we consider the unperturbed calculation. Since
t(E)[1 in this case,T(E)50 and we obtain no information
from the tight-binding situation. We therefore revert to the
potential model and the traversal time, via~1.1!, i.e., where
we havet5eikL andk5A2mE/\.

Evaluating the traversal time, we find

t5U i\L ]k

]E U5 mL

\k
. ~A1!

Identifying \k/m with the classical velocity, we see that the
traversal time requires the scale factor of unity to equate it
with the transit time.
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FIG. 2. log of energy-independent effective switching time as a
function of impurity-chain bond ratio, subject to optimal transmis-
sion conditions. Curves are for temperaturesT50 K andT550 K.
For b51 eV, the approximate time scale for seconds is provided.

54 13BRIEF REPORTS


