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In thermal motion, the instantaneous stresses and strains are correlated throughout phase space—a fluctua-
tion equation for the elastic constants is presented here that takes advantage of this fact. Results obtained with
a nearest-neighbor Lennard-Jones fcc crystal indicate that the equation is considerably more efficient than the
Parrinello-Rahman fluctuation formulg50163-182806)06726-4

INTRODUCTION kg is the Boltzmann constanT, is the temperature, and the
brackets denote the ensemble average. The average shape of
Elastic constants are important technological propertiesthe system is used as reference state for introducing the strain
they determine the behavior of materials under arbittanj-  tensor
ficiently smal) deformations and it is tempting to hazard L . .
calculation using microscopic simulation, i.e., based on a &ik= 2 (Nni{M) i Nnp(h) pi” = G, 2
proposed atomistic arrangement and giyen interactiqns b%\'/here h;, are the components of the scaling matrix
tween the atoms. Such cglculatlons are highly interesting, fc.)t[l=(a,b,c) made up of the vectors, b, andc forming the
g)r;?ergplil for ur}qbers%t?adln?f]}he ela?tlchprﬁpemes c_)tf UItrao”i:omputational cell{h);, stand for the components of the
polymer TIbers e SUTNess of Which, per unit mass, average scaling matrix, and is the Kronecker tensor. In

e_xceeds tha.‘t of the best_ steels in SOme cases. These polerﬂﬁ{S paper the summation convention always applies to suf-
fibers are highly crystalline and the stiffness of single crys-,

; AR . ixes occurring twice in a product. Equati¢h) has the same
tals n the cham d|re_ct|on gives an upper bound for that c?fltorm for isothermal and adiabatic elastic constants and can
the fibers. It is practically impossible to measure the elasti

constants of single polymer crystals but the quality of cur-%e derived from the theory of finite elasticl’iy.
gle poly Yy quality The elastic constants can also be calcufa®in the

rently available force fieldfsseems to be already adequate for.l_hN (N is the number of particlesand EnN (E is the en-

calculating the elastic constants. ergy) ensembles in which the scaling mathixs fixed. For a

Comparison of calculated elastic constants with experi- Al d di | he di b h
mental data can provide a test of the adequacy of the mod Iotent|a epending only on the distances between the par-
icles, the fluctuation formula can be written as follows:

used in the calculation. Accurate and rapid calculation of the
elastic constants is essential for such a test. (V) 2NkgT

The elastic constants can be calculated from the thermal C;,=— ﬁ(AUiKAUIm>+ T(5“5km+ SimOk1)
strain fluctuations via the Parrinello-RahmépR) fluctua- B (V)

tion formula
+ X (B(fap.lea)), 3
a>b,c>d
keT )
Ciklm:m<8ik8|m> ' @ whereo;, are the components of the microscopic stress ten-

sor, B is the so-called Born term that depends explicitly on
whereg;, are the components of the strain tengbe indices  the first and second derivatives of the potential energy,
run from 1 to 3, (V) is the average volume of the system, denotes the vector from particle to particleb, and the
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brackets denote the ensemble average. The Born term is U <h>|ph§slxs<h>mth§,lew
rather cumbersome and is written symbolically in E8j. sikE ar r
We refer the reader to the literat@rier details. a>b olab ab

For the systems studied, the PR formula was fédngto 1
be much more slowly converging than Eg). For example, = EkBT( 8i1 Skmt SimSu1) - @
for a nearest-neighbor Lennard-Jones fcc crystal, the PR for-
mula is about two orders of magnitude less efficient. On theye have left out in Eq(7) the “kinetic” contributions be-

other hand, the PR formula contains only terms dependingayse they do not contribute, sin¢e,)=0. From Egs.(1)

on the fluctuations of thé matrix and does not depend ex- and(7) a fluctuation formula for elastic constants follows:
plicitly on the potential energy derivatives. This makes the

PR formula particularly attractive in situations where com- 1 auU (h). -h=(x hY: h-Y(x
plicated many-body, tabulated @b initio potentials are Cik|m=7<8ik2 {Mnppq (Xan)alMiis € ab)s>
employed*1° and manipulation with the second potential V)
energy derivatives is impractical. X<8nj8|m>71- (8)

In this paper we present a fluctuation formula for the elas-
tic constants, allowing for accurate calculation from simula- At low temperatures one can neglect the difference be-
tions in which the second momengsixeim) Of the strain  tween instantaneous scaling matriteand the average scal-

fluctuations are not fully converged and the PR formulajng matrix (h) in Eq. (8) and the following equation is ob-
gives accordingly only poor estimates for the elastic contgjned:

a>b Il ap lab

stants.
Cikim={&ikTnj){enjeim) %, 9
ELASTIC CONSTANTS FROM FLUCTUATIONS whereo;, are the components of the microscopic stress ten-
IN STRESS AND STRAIN sor
Consider a system dfl particles in the absence of exter-
nal stresses and lét be its Hamiltonian ” 1 3 (Pa)n(Pa); LS U (Xap)n(Xab);
nov a my a>b dlap lab
(10

2

p
H=2 5= +U(rgp), (4) - .
a 2My For the sake of completeness, we retain in 8d) the ki-

netic contributions. Formally, what one would have to do to
wherep, andm, are the momentum and the mass of particlegbtain Eq.(9) is to replace the constant tekgT/(V) in Eq.
a, U(r,p) is the potential energynot necessarily pair-wise (1) by the fluctuating components of stress-strain correlation.
additive depending only on the distanceg, between the This would in no way improve the overall convergence of
particles. If we consider six independent compondBts/, the elastic constants calculation unless the instantaneous
those withi=k) of the symmetric strain tensef, of Eq.(2)  stresses and strains are correlated. However they are indeed
as “generalized coordinates(tlegrees of freedomthe fol-  correlated throughout phase space. This is most obvious in
lowing identity holds: the limiting case of low temperatures for classical system

where the entropic contributions are negligible and the in-

stantaneous stresses are unambiguously determined by the
Sik_r3’8|m =kgT i Skm- 5 instantaneous strains via Hooke’s law
Equation (5) is an example of the general form oik=Cikim&im - 11

(AdH/9q) =kgT(dAldq) that hold$! for any generalized

Substituting Eq.(11) into Eq. (9), we immediately obtain
coordinateq and functionA in the canonical ensemble and is g Eq.(1 a. 9 y

identity, indicating that the limiting step in the convergence

. _1 .
valid to O(N™") in any _ens_emble. — ) of Eq. (9) is the convergence of the components of the aver-
To calculate the derivatives of the Hamiltonian with re- age scaling matrix, i.e., of the first moments of the strain

spect to the strain components, we consider two arbitraryjctyations. Thus, in the low-temperatutgarmoni¢ situa-
points in the reference state specified by the average scaling,s £ (8) allows for evaluating the elastic constants with-
matrix (h). Let these points be connected by vectory |y converged second momen(sie,n) of the strain
r'=(x1,Xz,X3). In an instantaneous frame with scaling ma-fctuations, as explicitly required by the PR equation. Me-
trix h, the same two points are connected by a differentropolis Monte Carlo and molecular dynamics are desighed
vector r=(x;,X,X3) and, for homogeneous deformations, 1o sample the regions of the phase space in which the system

the following equation hold$? size and shape are close to their averages. These regions
contribute dominantly to the first moments of the fluctuations
r2=r'2+42g;x/ Xy . (6)  but make progressively smaller contributions to the higher

moments, including the second moments of the strain fluc-
Equation (6) is actually the definition of the strain tensor tuations. Hence, for the classical systems considéred
& for the homogeneous deformatiolfdifferentiating both discarding the presence of the zero-point vibratipks). (8)
sides of Eq.(6) with respect toe; and noting that should, at least at low temperatures, converge better than Eq.
x{ =(h)ixhy'x, we obtain from Eqs(4)—(6) (2).
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TABLE I. Isothermal elastic constant¥oigt representation, in units dfikgT/V) (Ref. 15 calculated
from the second half of simulation runs ok3.0’ steps started from the minimum-energy configuration. The
temperaturd is measured in units af/kg , wheree is the well depth of the Lennard-Jones potential energy
function.C,,, C4,, andC,, and their standard deviations were calculated over the three sets of symmetry-
equivalent elastic constants {C1111,C2225,Ca333, and
{C4444,Cosss5,Cesed, respectively.

{C11221C2233- Cll33v C2211- C3322’C331]} ’

T Cix Eq. (1) Eq. (8) Ref. 14 Eq.(9)
Cn 490.6-0.8 492.10.3 494.0-1.1 490.9-0.6
0.125 Cio 234.40.3 238.6-0.2 237.8-1.1 235.4-0.3
Cu 248.5-0.7 250.0-0.3 250.0-0.2 250.0-0.3
2C44/(C11—Cyy) 1.94+0.02 1.97-0.01 1.95-0.02 1.96-0.02
Cn 235.0:1.0 236.8-0.1 237.0-0.8 235.7:0.2
0.5 Cu 108.4+0.7 111.5-0.1 108.2:0.8 108.5-0.2
Cus 121.0-0.2 120.1-0.2 121.9-0.2 121.0:0.2
2C44/(C13—Cyy) 1.91+0.03 1.92-0.01 1.89-0.03 1.96-0.01
Cn 155.3+0.6 156.7-0.1 157.11.0 155.7-0.2
03 Cio 68.1-0.3 71.8-0.1 69.3-0.9 68.8-0.2
: Cu 80.6-0.4 80.2¢0.1 82.200.2 81.1-0.1
2C44/(C11—Cyo) 1.85+0.03 1.90-0.01 1.87-0.05 1.87-0.01

AN ILLUSTRATION: A 108-ATOM
FIRST-NEAREST-NEIGHBOR
LENNARD-JONES FCC CRYSTAL

At elevated temperatures, where the entropic contribu-
tions are significant, there is no unique correspondence be-
tween the instantaneous stresses and strains, but the stresses
and strains are still somewhat correlated. To understand the i i i
situations in which accounting for the correlation between W€ carried out a variable-shape Monte CANEC) simu-

instantaneous stresses and strains improves the convergenf@iion of a c_IassicaI first-nearest-neighbor Lennard-Jones fcc
of the elastic constant calculation, we take as a benchmark @Ystal 0fN=108 atoms. A Monte Carlo move consisted of
calculation with a first-nearest-neighbor Lennard-Jones fc@" attempt to randomly alter the scaled coordinates
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FIG. 1. Comparing the convergence of E8) (lines delimiting
shaded areasand Eq.(1) (the other solid lingsat a low tempera-
ture of T=0.01. The second half of a simulation run of’1IC
steps was used. The running accuracy of calcul@gdvere evalu-
ated agCj,— C%|/CS, whereC?, were the statidclassical, zero-
temperaturg values ofC;, obtained from the components of the
system’s Hessian matrix. See also the legend of Table I.

FIG. 2. Comparing the convergence of E8) (lines delimiting
shaded areasnd Eq.(1) (the other solid linesfor the second half
of simulation runs of X 10’ steps. The running accuracy of calcu-
lated C;, were evaluated d<;,— C;y|/C;y , where the values given
in Table I[obtained with Eqs(8) and (1), respectively were used
as estimates fo€;, . The dashed lines show the statidassical,
zero-temperatujevalues ofC;, obtained from the components of
the system’s Hessian matrix. See also the legend of Table I.
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hij(l(xa)k of each atoma accompanied by small random Figure 2 shows that the fluctuation formula also has su-

changes in the components, of the scaling matrix. The perior convergence properties in situations where the anhar-

Metropolis scheme was implemented to generate states witlonicity is significant and the elastic constants are consider-

a limiting distribution proportional toVNexp{—U/kgT}, ably smaller than their static values. In particular, B).is

whereU is the system’s potential energy, depending only onat least two orders of magnitude more efficient than @&g.

the separations between the nearest neighbors. in obtaining better than the static estimates of the elastic
Table | shows that the calculated elastic constants are igonstants(dashed lines in Fig.)2 estimates of the elastic

good agreement with literature ddfaln the classical statis- constants within 5-10 %—most often adequate in practice—

tics at low temperature, the harmonic approximation is adare also obtained much more rapidly with E8).

equate for describing the atomic thermal motion, and the

conditions Z44/(C11— C12) =2 andC;,= Cy, (the so-called

Cauchy conditiopshould hold for the Lennard-Jones crystal CONCLUSIONS

studied!® One can see from Table | that indeed, the lower

the temperature, the smaller the deviations from these condi- We have presented a fluctuation equation for the elastic

tions. constants. The formula has the same validity as the
As we discussed above, at low temperatures the fluctuaRarrinello-Rahman fluctuation formula and benefits from the

tion formula of Eq.(8) should generally have better conver- fact that in thermal fluctuations the instantaneous stresses

gence properties than E¢). Figure 1 illustrates the situa- and strains are correlated. For the classical first-nearest-

tion at a reduced temperature o= 0.01 where the elastic neighbor Lennard-Jones fcc crystal, the presented fluctuation

constants differ from their static values by less than a tentiormula had superior convergence properties. The use of this

of a percent. With the fluctuation formula it takes only afluctuation formula may be rewarding in various applica-

hundred MC steps to calculate the elastic constants to withitions, especially where the simulation technique employed

a few percent. A few hundred thousand steps are needed {or example, molecular dynamicsalready requires the

reach the same level of accuracy with the PR formula. evaluation of the first potential derivatives.
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