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In thermal motion, the instantaneous stresses and strains are correlated throughout phase space—a fluctua-
tion equation for the elastic constants is presented here that takes advantage of this fact. Results obtained with
a nearest-neighbor Lennard-Jones fcc crystal indicate that the equation is considerably more efficient than the
Parrinello-Rahman fluctuation formula.@S0163-1829~96!06726-4#

INTRODUCTION

Elastic constants are important technological properties:
they determine the behavior of materials under arbitrary~suf-
ficiently small! deformations and it is tempting to hazard
calculation using microscopic simulation, i.e., based on a
proposed atomistic arrangement and given interactions be-
tween the atoms. Such calculations are highly interesting, for
example, for understanding the elastic properties of ultraori-
ented polymer fibers,1 the stiffness of which, per unit mass,
exceeds that of the best steels in some cases. These polymer
fibers are highly crystalline and the stiffness of single crys-
tals in the chain direction gives an upper bound for that of
the fibers. It is practically impossible to measure the elastic
constants of single polymer crystals but the quality of cur-
rently available force fields2 seems to be already adequate for
calculating the elastic constants.

Comparison of calculated elastic constants with experi-
mental data can provide a test of the adequacy of the model
used in the calculation. Accurate and rapid calculation of the
elastic constants is essential for such a test.

The elastic constants can be calculated from the thermal
strain fluctuations via the Parrinello-Rahman~PR! fluctua-
tion formula3

Ciklm5
kBT

^V&
^« ik« lm&21, ~1!

where« ik are the components of the strain tensor~the indices
run from 1 to 3!, ^V& is the average volume of the system,

kB is the Boltzmann constant,T is the temperature, and the
brackets denote the ensemble average. The average shape of
the system is used as reference state for introducing the strain
tensor

« ik5
1
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where hik are the components of the scaling matrix
h5(a,b,c) made up of the vectorsa, b, andc forming the
computational cell,̂ h& ik stand for the components of the
average scaling matrix, andd ik is the Kronecker tensor. In
this paper the summation convention always applies to suf-
fixes occurring twice in a product. Equation~1! has the same
form for isothermal and adiabatic elastic constants and can
be derived from the theory of finite elasticity.4

The elastic constants can also be calculated4–6 in the
ThN (N is the number of particles! andEhN (E is the en-
ergy! ensembles in which the scaling matrixh is fixed. For a
potential depending only on the distances between the par-
ticles, the fluctuation formula can be written as follows:
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^B~rab ,r cd!&, ~3!

wheres ik are the components of the microscopic stress ten-
sor,B is the so-called Born term that depends explicitly on
the first and second derivatives of the potential energy,rab
denotes the vector from particlea to particle b, and the
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brackets denote the ensemble average. The Born term is
rather cumbersome and is written symbolically in Eq.~3!.
We refer the reader to the literature4 for details.

For the systems studied, the PR formula was found4,6–9 to
be much more slowly converging than Eq.~3!. For example,
for a nearest-neighbor Lennard-Jones fcc crystal, the PR for-
mula is about two orders of magnitude less efficient. On the
other hand, the PR formula contains only terms depending
on the fluctuations of theh matrix and does not depend ex-
plicitly on the potential energy derivatives. This makes the
PR formula particularly attractive in situations where com-
plicated many-body, tabulated orab initio potentials are
employed2,4,10 and manipulation with the second potential
energy derivatives is impractical.

In this paper we present a fluctuation formula for the elas-
tic constants, allowing for accurate calculation from simula-
tions in which the second moments^« ik« lm& of the strain
fluctuations are not fully converged and the PR formula
gives accordingly only poor estimates for the elastic con-
stants.

ELASTIC CONSTANTS FROM FLUCTUATIONS
IN STRESS AND STRAIN

Consider a system ofN particles in the absence of exter-
nal stresses and letH be its Hamiltonian

H5(
a

pa
2

2ma
1U~r ab!, ~4!

wherepa andma are the momentum and the mass of particle
a, U(r ab) is the potential energy~not necessarily pair-wise
additive! depending only on the distancesr ab between the
particles. If we consider six independent components~say,
those withi>k) of the symmetric strain tensor« ik of Eq. ~2!
as ‘‘generalized coordinates’’~degrees of freedom!, the fol-
lowing identity holds:

K « ik
]H

]« lm
L 5kBTd i ldkm . ~5!

Equation ~5! is an example of the general form
^A]H/]q&5kBT^]A/]q& that holds11 for any generalized
coordinateq and functionA in the canonical ensemble and is
valid toO(N21) in any ensemble.

To calculate the derivatives of the Hamiltonian with re-
spect to the strain components, we consider two arbitrary
points in the reference state specified by the average scaling
matrix ^h&. Let these points be connected by vector
r 85(x18 ,x28 ,x38). In an instantaneous frame with scaling ma-
trix h, the same two points are connected by a different
vector r5(x1 ,x2 ,x3) and, for homogeneous deformations,
the following equation holds:12

r 25r 8212« ikxi8xk8 . ~6!

Equation ~6! is actually the definition of the strain tensor
« ik for the homogeneous deformations.

12 Differentiating both
sides of Eq. ~6! with respect to « ik and noting that
xi85^h& ikhkl

21xl we obtain from Eqs.~4!–~6!
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We have left out in Eq.~7! the ‘‘kinetic’’ contributions be-
cause they do not contribute, since^« ik&50. From Eqs.~1!
and ~7! a fluctuation formula for elastic constants follows:
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L
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At low temperatures one can neglect the difference be-
tween instantaneous scaling matricesh and the average scal-
ing matrix ^h& in Eq. ~8! and the following equation is ob-
tained:

Ciklm5^« iksn j&^«n j« lm&21, ~9!

wheres ik are the components of the microscopic stress ten-
sor
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For the sake of completeness, we retain in Eq.~10! the ki-
netic contributions. Formally, what one would have to do to
obtain Eq.~9! is to replace the constant termkBT/^V& in Eq.
~1! by the fluctuating components of stress-strain correlation.
This would in no way improve the overall convergence of
the elastic constants calculation unless the instantaneous
stresses and strains are correlated. However they are indeed
correlated throughout phase space. This is most obvious in
the limiting case of low temperatures for classical system
where the entropic contributions are negligible and the in-
stantaneous stresses are unambiguously determined by the
instantaneous strains via Hooke’s law

s ik5Ciklm« lm . ~11!

Substituting Eq.~11! into Eq. ~9!, we immediately obtain
identity, indicating that the limiting step in the convergence
of Eq. ~9! is the convergence of the components of the aver-
age scaling matrix, i.e., of the first moments of the strain
fluctuations. Thus, in the low-temperature~harmonic! situa-
tions, Eq.~8! allows for evaluating the elastic constants with-
out fully converged second moments^« ik« lm& of the strain
fluctuations, as explicitly required by the PR equation. Me-
tropolis Monte Carlo and molecular dynamics are designed13

to sample the regions of the phase space in which the system
size and shape are close to their averages. These regions
contribute dominantly to the first moments of the fluctuations
but make progressively smaller contributions to the higher
moments, including the second moments of the strain fluc-
tuations. Hence, for the classical systems considered~i.e.,
discarding the presence of the zero-point vibrations!, Eq. ~8!
should, at least at low temperatures, converge better than Eq.
~1!.
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At elevated temperatures, where the entropic contribu-
tions are significant, there is no unique correspondence be-
tween the instantaneous stresses and strains, but the stresses
and strains are still somewhat correlated. To understand the
situations in which accounting for the correlation between
instantaneous stresses and strains improves the convergence
of the elastic constant calculation, we take as a benchmark a
calculation with a first-nearest-neighbor Lennard-Jones fcc
crystal.4,5

AN ILLUSTRATION: A 108-ATOM
FIRST-NEAREST-NEIGHBOR

LENNARD-JONES FCC CRYSTAL

We carried out a variable-shape Monte Carlo~MC! simu-
lation of a classical first-nearest-neighbor Lennard-Jones fcc
crystal ofN5108 atoms. A Monte Carlo move consisted of
an attempt to randomly alter the scaled coordinates

TABLE I. Isothermal elastic constants~Voigt representation, in units ofNkBT/V) ~Ref. 15! calculated
from the second half of simulation runs of 33107 steps started from the minimum-energy configuration. The
temperatureT is measured in units of«/kB , where« is the well depth of the Lennard-Jones potential energy
function.C11, C12, andC44 and their standard deviations were calculated over the three sets of symmetry-
equivalent elastic constants $C1111,C2222,C3333%, $C1122,C2233,C1133,C2211,C3322,C3311%, and
$C4444,C5555,C6666%, respectively.

T Cik Eq. ~1! Eq. ~8! Ref. 14 Eq.~9!

C11 490.660.8 492.160.3 494.061.1 490.960.6

0.125
C12 234.460.3 238.660.2 237.861.1 235.460.3
C44 248.560.7 250.060.3 250.060.2 250.060.3

2C44/(C112C12) 1.9460.02 1.9760.01 1.9560.02 1.9660.02
C11 235.061.0 236.860.1 237.060.8 235.760.2

0.225
C12 108.460.7 111.560.1 108.260.8 108.560.2
C44 121.060.2 120.160.2 121.960.2 121.060.2

2C44/(C112C12) 1.9160.03 1.9260.01 1.8960.03 1.9060.01
C11 155.360.6 156.760.1 157.161.0 155.760.2

0.3
C12 68.160.3 71.860.1 69.360.9 68.860.2
C44 80.660.4 80.260.1 82.260.2 81.160.1

2C44/(C112C12) 1.8560.03 1.9060.01 1.8760.05 1.8760.01

FIG. 1. Comparing the convergence of Eq.~8! ~lines delimiting
shaded areas! and Eq.~1! ~the other solid lines! at a low tempera-
ture of T50.01. The second half of a simulation run of 107 MC
steps was used. The running accuracy of calculatedCik were evalu-
ated asuCik2Cik

0 u/Cik
0 , whereCik

0 were the static~classical, zero-
temperature! values ofCik obtained from the components of the
system’s Hessian matrix. See also the legend of Table I.

FIG. 2. Comparing the convergence of Eq.~8! ~lines delimiting
shaded areas! and Eq.~1! ~the other solid lines! for the second half
of simulation runs of 33107 steps. The running accuracy of calcu-
latedCik were evaluated asuCik2Cik

` u/Cik
` , where the values given

in Table I @obtained with Eqs.~8! and ~1!, respectively# were used
as estimates forCik

` . The dashed lines show the static~classical,
zero-temperature! values ofCik obtained from the components of
the system’s Hessian matrix. See also the legend of Table I.
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hik
21(xa)k of each atoma accompanied by small random
changes in the componentshik of the scaling matrix. The
Metropolis scheme was implemented to generate states with
a limiting distribution proportional toVNexp$2U/kBT%,
whereU is the system’s potential energy, depending only on
the separations between the nearest neighbors.

Table I shows that the calculated elastic constants are in
good agreement with literature data.14 In the classical statis-
tics at low temperature, the harmonic approximation is ad-
equate for describing the atomic thermal motion, and the
conditions 2C44/(C112C12)52 andC125C44 ~the so-called
Cauchy condition! should hold for the Lennard-Jones crystal
studied.16 One can see from Table I that indeed, the lower
the temperature, the smaller the deviations from these condi-
tions.

As we discussed above, at low temperatures the fluctua-
tion formula of Eq.~8! should generally have better conver-
gence properties than Eq.~1!. Figure 1 illustrates the situa-
tion at a reduced temperature ofT50.01 where the elastic
constants differ from their static values by less than a tenth
of a percent. With the fluctuation formula it takes only a
hundred MC steps to calculate the elastic constants to within
a few percent. A few hundred thousand steps are needed to
reach the same level of accuracy with the PR formula.

Figure 2 shows that the fluctuation formula also has su-
perior convergence properties in situations where the anhar-
monicity is significant and the elastic constants are consider-
ably smaller than their static values. In particular, Eq.~8! is
at least two orders of magnitude more efficient than Eq.~1!
in obtaining better than the static estimates of the elastic
constants~dashed lines in Fig. 2!; estimates of the elastic
constants within 5–10 %—most often adequate in practice—
are also obtained much more rapidly with Eq.~8!.

CONCLUSIONS

We have presented a fluctuation equation for the elastic
constants. The formula has the same validity as the
Parrinello-Rahman fluctuation formula and benefits from the
fact that in thermal fluctuations the instantaneous stresses
and strains are correlated. For the classical first-nearest-
neighbor Lennard-Jones fcc crystal, the presented fluctuation
formula had superior convergence properties. The use of this
fluctuation formula may be rewarding in various applica-
tions, especially where the simulation technique employed
~for example, molecular dynamics! already requires the
evaluation of the first potential derivatives.
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