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We present a theory for the frequency-dependent current fluctuations in superconducting quantum point
contacts~SQPC! within the dc transport regime. This theory is valid for any barrier transparency between the
tunnel and ballistic limits, yielding an analytical expression for the fluctuations spectrum in the subgap region.
It is shown that the level of noise in a quasiballistic SQPC may have a huge increase in comparison with the
case of a normal contact carrying the same average current. The effect of this high level of noise on the actual
observability of the current-phase relation for a ballistic point contact is discussed in connection with recent
experimental measurements.

Present technologies make it possible to fabricate super-
conducting point-contacts in the nanometer scale. Examples
of these kind of systems are the recently developed atomic
size break-junctions1 and the split-gate superconductor–two-
dimensional electron gas–superconductor junction of Takay-
anagiet al.2 In both cases the electronic transport takes place
through a reduced number of quantum channels, the contact
transmission being a controllable quantity. These features
make these systems very attractive for testing theoretical
models of the superconducting transport beyond tunnel con-
ditions.

Recently, there have been a number of theoretical works
devoted to a detailed analysis of both the dc and ac response
of a single channel point contact.3–5 In particular, illuminat-
ing results have been obtained for the ac current in the hith-
erto less understood limit of small bias voltages.3,5 However,
little attention has been paid to the effect of thermal fluctua-
tions in the transport properties of this kind of device. This is
an important issue both due to its intrinsic interest as a non-
equilibrium phenomena and also because they limit the ob-
servability of the measured characteristics. It is clear that
thermal fluctuations have to be taken into account if a direct
comparison between theory and experimental results is to be
carried out. Regarding this last point, some recent
experiments6 have shown the deviation of the measured
current-phase relation in a mechanically controllable break
junction with respect to the theoretical predicted one.7 Some
authors have recently pointed out the importance of thermal
fluctuations as a source for this deviation.8

The aim of this paper is to present a theory for the thermal
current fluctuations of a superconducting quantum point con-
tact ~SQPC! in the dc regime valid for any contact transmis-
sion. This theory yields an analytical expression for the zero-
frequency noise which, in the limit of low barrier
transparencies, differs strongly from the standard tunnel
theory result.9 In the opposite limit, i.e., for a ballistic con-
tact, we find that the current fluctuationsdivergewhen the

supercurrent tends to its maximum value. We claim that this
fact explains the difficulties found for the experimental ob-
servation of the predicted current-phase relationship for a
ballistic contact.

In recent works we have introduced a theoretical approach
for the study of the transport properties of superconducting
nanoscale constrictions.3,10 In this approach the system is
described by a Hamiltonian written in a site representation,
from which the microscopic Bogoliubov–de Gennes equa-
tions can be derived.10 Within this model the normal trans-
mission coefficient through the constriction can be expressed
in terms of microscopic parameters, allowing one to establish
a complete correspondence with other approaches based on
scattering theory.

For our present purpose of describing an atomic size con-
tact, it will be sufficient to analyze the following
Hamiltonian:3

Ĥ5ĤL1ĤR1(
s

~ teif/2ĉLs
† ĉRs1te2 if/2ĉRs

† ĉLs!, ~1!

where ĤL and ĤR are the BCS Hamiltonians for the un-
coupled electrodes~defined asL andR), t is the hopping
parameter which defines the normal transmission through the
single quantum channel connecting both electrodes, andf is
the total superconducting phase difference between the elec-
trodes. In the present calculations we shall neglect fluctua-
tions in this superconducting phase difference and concen-
trate on the contribution to the current fluctuations arising
from thermal excitation of quasiparticles.

We would like to emphasize that starting from these
simple contact model results which are in complete agree-
ment with those of scattering theory have been obtained.3,10

A detailed discussion on the equivalence between both ap-
proaches forN-S andS-S contacts will be given elsewhere.11

Within this model, the operator associated with the cur-
rent through the contact can be written as
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Î ~t!5
ie
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s

@ teif/2ĉLs
† ~t!ĉRs~t!2te2 if/2ĉRs

† ~t!ĉLs~t!#,

~2!

where the different creation and annihilation operators ap-
pearing in Eq.~2! are the usual Heisenberg operators at a
given timet. Then, the spectral density of the current fluc-
tuations is defined as

S~v!5\E dt eivt@^d Î ~t!d Î ~0!&1^d Î ~0!d Î ~t!&#, ~3!

whered Î (t)[ Î (t)2^ Î &.
For the evaluation of the above averages, we perform a

decoupling procedure which is consistent with the BCS
mean-field theory. The spectrumS(v) can then be expressed
in terms of the single-particle nonequilibrium Green func-
tions ~Ref. 12! Ĝab

1,2(V) andĜab
2,1(V) ~wherea andb can

be eitherL or R). In a superconducting broken symmetry
representation~Ref. 13! Ĝab

12(V) is defined by

Ĝab
12~V!5E dt eiVtĜab

12~t,0!, ~4!

with

Ĝab
12~t,0!5 i S ^ ĉb↑

† ~0!ĉa↑~t!& ^ĉb↓~0!ĉa↑~t!&

^ ĉb↑
† ~0!ĉa↓

† ~t!& ^ĉb↓~0!ĉa↓
† ~t!&

D ,
andĜab

21(t,0)5@Ĝba
12(0,t)#†.

In terms of the functionsĜab
12(V) and Ĝab

21(V), S(v)
adopts the form

S~v!5
e2

\ E dV Tr@ t̂ ĜRL
12~V!ĜRL

21~V1v! t̂

1 t̂ ĜLR
12~V!ĜLR

21~V1v! t̂2 t̂ ĜLL
12~V!ĜRR

21~V1v!

3 t̂2 t̂ ĜRR
12~V!ĜLL

21~V1v! t̂1 t̂ ĜRL
12~V1v!

3ĜRL
21~V! t̂1 t̂ ĜLR

12~V1v!ĜLR
21~V! t̂

2 t̂ ĜLL
12~V1v!ĜRR

21~V! t̂2 t̂ ĜRR
12~V1v!

3ĜLL
21~V! t̂#, ~5!

where t̂ is the hopping interaction between the electrodes
written in the (232) Nambu representation

t̂5S teif 0

0 2te2 ifD . ~6!

In the present paper we concentrate in the zero-voltage
case in which the average current is due to Cooper pairs. For
the calculation of the Keldyhs Green functionsĜ1,2 and
Ĝ2,1 appearing in Eq.~5! we can the use the relations10

Ĝa,b
1,2~V!5@Ĝab

a ~V!2Ĝab
r ~V!# f ~V!,

Ĝa,b
2,1~V!52@Ĝab

a ~V!2Ĝab
r ~V!#@12 f ~V!#, ~7!

where f (V) is the Fermi factor andĜab
r ,(a) are the retarded

~advanced! Green functions of the coupled contact. These

last quantities can be obtained up to infinite order in the
coupling parametert by solving the following Dyson equa-
tion:

Ĝab
r ,~a!~V!5ĝab

r ,~a!~V!dab1(
g

ĝaa
r ,~a!~V!Ŝag

r ,~a!Ĝgb
r ,~a!~V!,

~8!

where ŜLL
r ,(a)5ŜRR

r ,(a)50 and ŜLR
r ,(a)5(ŜRL

r ,(a))*5 t̂. The in-
dexesa, b, andg can be eitherL or R, and ĝaa

r ,(a) are the
retarded~advanced! Green functions corresponding to the
left and right uncoupled electrodes.

For the symmetric case, both electrodes have the same
modulus of the superconducting order parameter,D, and
these Green functions can be expressed as

ĝLL
r ,~a!~v!5ĝRR

r ,~a!~v!

5
1

WAD22~v6 ih!2
S 2v6 ih D

D 2v6 ih D ,
~9!

whereW is an energy scale related to the normal density of
states at the Fermi level byr(eF)51/(pW) andh is a small
energy relaxation rate that takes into account the damping of
the quasiparticle states due to inelastic processes inside the
electrodes. This parameter can be estimated from the
electron-phonon interaction to be a small fraction ofD.14 It
is useful to define the normal transmission coefficient of the
contact, which in terms ofW and t has the form
a54(2t/W)2/@11(2t/W)2#2.15 The spectral densities that
are obtained from Eq.~8! are no longer singular at the gap
edges and exhibit poles inside the superconducting gap, lo-
cated at energiesvS56DA12a sin2(f/2), corresponding
to the interface bound states.16 As stated in previous works,
these bound states carry all the Josephson current in the limit
of a short constriction.10,17 Therefore, their contribution to
the zero-voltage current fluctuations can be expected to be
crucial, as is certainly found.

Once the single particle Green functions are known, the
spectrumS(v) can be calculated using Eq.~5!. The typical
form of this spectrum is illustrated in Fig. 1, whereS(v) is
plotted for fixed temperature and three different contact
transmissions. Notice that forv,2D the spectrum is formed
by two resonant peaks atv50 andv52vS , arising from
the existence of the bound states atvS . Qualitatively, the
peak at zero frequency increases with increasing transmis-
sion, while the one at 2vS is negligible for both nearly per-
fect and very small transmissions, adopting its maximum
value arounda;2/3. For v.D1uvSu contributions from
the continuous part of the single particle spectrum become
important.

In the limit of a very weakly damped contact, i.e.,
h!aD, it is possible to evaluateS(v) at v50 and
v52vS analytically. We find

S~0!5
2e2

h

p

h

D4a2sin2~f!

vS
2 f ~vS!@12 f ~vS!# ~10!

and

R8892 53MARTÍN-RODERO, LEVY YEYATI, AND GARCÍA-VIDAL



S~2vS!5
2e2

h

p

h

D4a2~12a!sin4~f/2!

vS
2

3@ f ~vS!
21 f ~2vS!

2#. ~11!

These expressions clearly display the important role
played by the interface bound states in fixing the magnitude
of the current fluctuations for subgap frequencies. It should
be stressed that, although the absolute size of the current
fluctuations depend on the estimated value of parameterh,
its precise variation with the superconducting phase differ-
ence and temperature is controlled only by the contact trans-
missiona.

Our analytical results are strictly valid in the limit
h!aD and differ strongly from the equilibrium fluctuations
obtained using standard tunnel theory,9 which yields
S(0);a@11cos(f)#lnD/h. This last expression becomes ac-
curate just in the opposite limit,h@aD which holds in the
tunnel regime, i.e.a!1. In Ref. 3 we have explicitly shown
that the limitsh→0 anda→0 do not commute. This behav-
ior can be understood in the following way: whenh!aD,
multiple Andreev scattering processes give the dominant
contribution to any dynamical quantity and should be in-
cluded up to infinite order. On the other hand, whena is
small enough~in such a way thataD!h) these high-order
scattering events become heavily damped and the lowest
term of the perturbative expansion int gives the correct re-
sult. For a realistic SQPC in which, as commented above,
h can be estimated to be a small fraction ofD, the situation
would always correspond to the weakly damped regime, ex-
cept for extremely small values ofa and therefore Eqs.~10!
and ~11! will accurately describe the low-frequency noise.

The analysis of Eq.~10! reveals some remarkable physi-
cal consequences. To begin with, and in contrast to the nor-
mal case where a reduction of noise is found~Ref. 18!,
S(0) experiences a dramatic increase when approaching the
ballistic regime. More precisely, there is a value ofa, given
roughly by the conditionkBT;DA12a, above which there

is an exponential increase of the thermal noise. On the other
hand, in this last situation, there appears a very strong asym-
metry on the phase dependence ofS(0), with its maximum
value progressively moving fromf5p/2 tof5p. This re-
markable behavior should certainly have implications in the
actual observability of the supercurrent-phase relation in a
SQPC.

In order to analyze the importance of these thermal fluc-
tuations it is convenient to study the ratioS(0)/2e^I (f)&,
where ^I (f)& is the phase-dependent average supercurrent
@let us recall that for a normal contact the classical shot noise
limit corresponds toS(0)52e^I &#, given by10

^ Î ~f!&5
ep

h

D2a sin~f!

uvSu
tanhF uvSu

2kBT
G . ~12!

In Fig. 2 we plotS(0)/2e^I (f)& as a function of the su-
perconducting phase difference for increasing values of the
transmissiona and two different temperatures. This figure
illustrates the huge increase of thermal noise when the trans-
mission becomes sufficiently large. As can be observed, for a
reasonable choice of parameterh and depending on the tem-

FIG. 1. Current fluctuation spectrum of a SQPC in the dc regime
for three different values of the transmission. The superconducting
phase difference corresponds in each case to the maximum super-
current and the temperature iskBT50.2D.

FIG. 2. The ratio between the zero frequency noise and the
average supercurrent as a function of the superconducting phase
difference for increasing values of the transmission coefficient.
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perature, the level of noise can reach values several orders of
magnitude larger than 2e^I (f)&. When lowering the tem-
perature this level of noise is reduced, but it will always be
significant close to the ballistic case in a phase interval
aroundf5p, just in the zone where the average current has
its maximum at low temperatures. In fact, taking the limit
a→1, the ratioS(0)/2e^I (f)& has the form

S~0!

2e^ Î ~f!&
~a→1!5

2D

h

sin@f/2#

sinh@Dcos~f/2!/kBT#
, ~13!

which clearly diverges whenf approachesp. The fact that
the zero frequency noise has large values in the zone where
the maximum of the average current occurs can explain the
experimental difficulties found to observe the predicted
;sinf/2 form of the current-phase relation for junctions
with direct conductivity, as reported in Ref. 6.

Finally, it is worth discussing our result for the zero fre-
quency noise of a weakly damped contact in the light of the
Callen-Welton fluctuation-dissipation theorem. In general,
this theorem relates the equilibrium current fluctuations with
the linear conductanceG by S(0)54kBTG. This relation
allows us to calculate in a straightforward way the phase-
dependent linear conductance of a SQPC from Eq.~10!

G~f!5
2e2

h

p

kBTh FD2asin~f!

4vS
sechS vS

2kBT
D G2. ~14!

Equation~14! coincides exactly with the result of Ref. 3
in which a direct calculation of the linear conductance of a
SQPC was performed@this expression forG(f) has been
recently rederived in Ref. 19 for the particular case of a
ballistic contact#.

The above relation between zero-frequency noise and lin-
ear conductance can provide a convenient way for testing the
predicted unusual phase dependence of the noise by a direct
measurement ofG(f). In this respect, we should mention
early experiments of this kind made during the seventies for
nonmesoscopic weak links~see discussion given in Ref. 3!.
In our opinion it should be desirable to attempt similar mea-
surements using atomic size break junctions as the one de-
scribed in Refs. 1 and 6 which are closer to the theoretical
situation discussed in this work due to their reduced number
of conducting channels.

In conclusion, we have developed a theory of the thermal
fluctuations for a SQPC in the dc regime. The noise spectrum
exhibits resonant peaks at subgap frequencies associated
with the existence of bound states in the constriction region.
For the case of a weakly damped contact (h!aD), we have
obtained a closed analytical expression for the weight of
these resonant peaks. We have shown that a striking conse-
quence of the presence of these bound states is a huge in-
crease of the low-frequency noise level when approaching
the ballistic limit, this high level of noise being particularly
important when the average supercurrent is close to its maxi-
mum value. We claim that these results may explain the re-
ported difficulties in measuring the predicted sinf/2 behavior
for ^I (f)& in the case of highly transmissive contacts. Fi-
nally, we have discussed the connection between the present
theory and the phase-dependent conductance of a SQPC by
means of the fluctuation-dissipation theorem.
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