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Theory of Andreev reflection in a junction with a strongly disordered semiconductor
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We study the conduction of a normal-metal-semiconductor—superconductor junction, where the semicon-
ductor is strongly disordered. The differential conductatibelV of this structure is predicted to have a sharp
peak atV=0. Unlike the case of a weakly disordered system, this feature persists even in the absence of an
additional(Schottky barrier on the boundary. The zero-bias conductance of such a junction is smaller only by
a numerical factor than the conductance in the normal s&je Implications for experiments on gated
heterostructures with superconducting leads are discussed.

Since the seminal work of Andrekun the theory of elec- through a resonant configuration is close to unity, and the
tron transport through an ideal interface between a normatonductance is proportional to the probabilityof finding
(N) metal and a superconduct(®), significant efforts were such a configuration. This probability scales exponentially
undertaken to understand the transport in fégljunctions.  with the length of theSmregion, L.
It was showR that a barrier at theN-S interface reduces The zero-bias conductance of thid-Sm-S junction,
strongly the conductance of the boundary between a clea@ns(0), isdetermined by the tunneling of pairs of electrons
normal metal and a superconductor. Later, experiniemits at the Fermi level. Clearly, these tunneling processes are
semiconductor(Sm -superconductor junctions revealed in also facilitated by the same resonant configurations that con-
the differential conductanc&ys(V) a broad maximum at trol single-electron transport. Thus, the conductance
zero bias. This feature was explaifiets an interference ef- Gng(0) is also proportional tav and, therefore, it has the
fect due to the scattering off the Schottky barrier and of thesame exponential dependence ugdoras the does normal
imperfections in the semiconductor. Recent technological adsonductance. If a finite biasV is applied to the junction, the
vances have resulted in fabrication of low-resistance contac®nergiese, , e, of the two electrons in the pair are different:
between a two-dimensional electron g2DEG and a su- €;—e;=2eV. If eV exceeds the width of the resonant level
perconducting lead.Because of the absence of a Schottkywith respect to tunneling, this level cannot provide a large
barrier at the interface, the subgap conductance is determinddnneling coefficient for both electrons. It results in a sharp
by the propagation of electron pairs through the 2DEG itselddrop of the conductance with voltage.
rather than by two-electron tunneling at the interface, and Following Ref. 8, we model transport through the de-
there is no pedkin the differential conductance at zero bias. pleted region as resonant tunneling via isolated localized

The advantage of a gated heterostructure lies in the corstates(impurities. We will show that for a wide range of
trollable level of carrier density in the 2DEG. Depending onlengthsL, it suffices to consider the single-impurity configu-
the density, the 2DEG may behave as a good conductor or @gtions only. In order to calculate the conductance, we first
an insulator with an adjustable localization length. Whereasalculate the contribution to the conductance due to tunnel-
the former case has been extensively studied both theorefing through a single impuritgys(eV) and then sum these
cally and experimentall§,the latter case has received no partial conductances over all the impurities. Each localized
attention as of yet. In this paper we study two-electron transstate is characterized by its energyand by the level widths
port through a disordered insulator. We will show that thel“,% due to the decay into the leftight) lead, see Fig. (B).
zero-bias conductance of thé¢-Sm-Sjunction differs from  The amplitude of electron transmission through the barrier
the conductance of the same structure in the normal state l)a the resonant statéj)(€), and the amplitude of reflec-
a numerical factor only. This is similar to the properties ex-tion, ry(€), at energye are given by the single-channel
hibited in the metallic regime. However, the differential con- Breit-Wigner formula:
ductanceGyg(V) drops abruptly with increasing voltage, in

contrast to the behavior in the metallic regime in the absence e—g+i(IV-TW)

of the Schottky barrier. The development of this feature of ro(e)= e—e+i(TM+10y’

thel-V characteristic under the progressive depletion consti- ! ! '

tutes the signature of the crossover between the metallic and S

insulating regimes. to(e)= —2i \/F|_ I'; _ o)
Deep in the insulating regime, the conductance of the nor- M e—e+i(TV+TY)

mal (N-Sm-N structure is dominated by tunneling via those . . 0 . )
configurations of localized states in the semiconductor layef he tunneling widthd" ;) depend exponentially on the dis-
that facilitate resonant transmission of electrbnsn ex-  tance of the impurity from the middle of the barrief, [see
ample of such a configuration is a state with energy close t@/so Fig. 1a)]:

the Fermi level and location symmetric with respect to the ) (L2 0 (-2l
leads. The transmission coefficient for an electron tunneling I'"=Eqe e, T=Eqe o, (2)
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08 wherel';=E e~ 2 is the level width of a state localized at
x;=0, andI'(x) is thel” function. It is instructive to express
@ this result in terms of the normal state conductance of the
N Sm S same junction:
e pr L/2
de; J dxjgn(eVix;,ej)
L— j JIN A€
T > .,
07| L L i e 2
2 J 2 gn(eVixj,g)= %“(M - (6)
A simple calculation based aofl) and (6) give$®
2
€ (b) Gl(\ll):g(ﬂpaowrl)- (7)
N Sm S Comparing Egs(5) and(7) we obtain
£, 2
i B~ eV
P EaE W Ge=Gy’| 0.27+0.04 ®
T L8 - T T,
7774 L x; ; L - _ ,
"5 r 5 Results(5) and(7) can be easily understood. The contri-
bution of the single-site resonant states to b@&kg and
Gy is determined by the number of the states with the en-

ergy near the Fermi level within the strip of widifh, and
positioned within the strip of widtlag around the middle of

FIG. 1. Schematic picture of thé-Sm-Junction with (a) single
localized state an¢b) two-impurity chains.

tained independently in Ref. 10.

wherea, is the localization radius of the impurity state, and
the energyE, can be estimated aB,=#%2/ma3, with m
being the electron mass in tignlayer. The Andreev reflec-
tion probability can be expressedn terms of the one-
electron amplitudes;,(e) andrj)(€). The corresponding
contributiongng(eV;X; ,€;) of localized statg to the con-
ductance is

) barriers:
2¢°| t(eVt(—eV) |
fill+r eV (—ev)|

Ons(eViX; €)= €]

(We will restrict our discussion to the most interesting re-
gime of the bias being small compared to the superconduct—
ing gap)

Now we sum up the contributions to the conductance Gy
from different impurities. Assuming that the density of the Gy
localized statep is independent of energy, we obtain

0.3

L/2
Gii(eV)= pr dejf degNS(evXJ,e) (4)
0.2

HereW is the width of the barrier.
The calculation of the conductance is thus reduced to the
integration in Eq(4), with the help of formulagl)—(3). The 0.1

L>agln

magke
h2p |-

the barrier, so thaf|=T", . Therefore, the factopagWI'; is
just the number of such states. Req@) at V=0 was ob-

Let us estimate the domain of parameters within which
the mechanism of tunneling through rare single resonant
states dominates over direct tunneling through the potential
barrier created by the deplet&inlayer. The contribution of
the latter mechanism can be estimated G&'~(e%

) (keW)e~ 230 wherek is the Fermi wave vector in the
N lead. Thus direct tunneling is irrelevant for not too short

(€)

This condition is easily met in the experimental situatidh.

result of this calculation is presented in Fig. 2 and the limit- (4%
ing cases are discussed later. In the low-bias limit, . . . . , r
eVv<TI, we find 6 R R o 2 4 6
2 2 2 2
GN1%=e—(paoWF1) T'(3/4 + T'(1/4) —_ (5) FIG. 2. Voltage dependence of the differentdSm-Sconduc-
f \/; 96\/; tance contributed by single-impurity configuratio@{(V).
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The linear conductandg(((0) differs only by a numeri- After one finds the partial conductangg s of a single
cal factor fromG{! because the optimal configurations con- two-impurity “chain,” the net contributiorG{{(e V) of these
tributing to both quantitites are the same. It changes drastichains to the total conductance can be calculated in a manner
cally when the the bias increased/>T';. In this regime we  similar to that used previously for the single-impurity con-

obtain, from Eq.(4), figurations:
(1) <1>F1 GZ(eV)=p’W ) de; de; dy; - dx: g dx
GNs(V)=GN' oy (10) NS P R e et P
The main contribution t&{(V) comes not from the impu- XOns(eViej €)X X LYY )- (13
rities located near the middle of the barrier but rather from
ones shifted closer to th®lead. The formulas for the reflection and transmission ampli-

Result(10) can be understood using the following argu- tudes enteringgys for an arbitrary impurity pair are quite
ments. Consider the impurity lying at the Fermi level, cumbersome. Fortunately, the dominant part of the average
€;=0, that is completely decoupled from the normal lead,(13 comes from the impurity pairs with sufficiently large
I',=0. The tunneling of an electron pair between the superenergy differencele; —¢; |>h;; . This means that one of
conductor and the impurity mixes the stai€ and |2), the two impurities serves as a resonant level for the incoming
corresponding to zero and two electrons occupying the imelectron, while the second impurity provides a virtual state
purity. As the result, the fourfold degeneracy of the impurity that modifies the escape rate from the resonant level into the
level is partially lifted: two singly occupied states still have lead. Therefore, for the relevant “chains” the reflection and
energy €;=0, but the other two states,0)—|2) and transmission amplitudes are given by E#) with the level
|0)+2), are split by 2", symmetrically with respect to the widths renormalized by the tunneling through a virtual state.
Fermi level. The even wave function is the ground state oDepending on which component of the pair is in resonance,
the impurity, and the smallest excitation enefgythe singly  we find
occupied stateis I', . Let us now turn on a small coupling )
between the impurity and the normal ledg<<I’, . This cou- G (i @ (i) Wi
pling enables the electron to tunnel from the Fermi level in e—e, =T W, T =T P
the N lead to the impurity level. This tunneling is resonant if v (143
the potential drop on the conteeV is close to the energy of
excitation, |eV—T",|<T;. A similar consideration is valid if the left impurity is in resonance, or
for all the impurities with energiege;|<T",. Now, we find
the impurities that give the maximal contribution to the con- () i
ductance. The transmission coefficient is close to unity for §—e€,, =T € —€
the impurities withl",=eV, i.e., ateV>1I"; the optimal im- . (14b)
purities are shifted towards the superconducting lead. The
energies of these impurities may lie in the strip of widith  if the right impurity is the resonant one. The corresponding
about the Fermi level. The coordinatgof the impurity may  contributions togys are obtained from Eqg3) and (1) by
deviate from its optimal value by no more than the substitution§14g and(14b), respectively.
+aol,/T',, as follows from the conditiojeV—T,|<T, Similar to the case of single-impurity configurations, it is
and Eq.(2). This consideration shows that the number ofconvenient to express the result in terms of the contribution
relevant impurities is of the order gfa,l’\I’,/eV, which  of two-impurity chains to the normal conductance. This con-
with the help of Egs(2) and(7) immediately yields Eq(10). tribution G{?), is given by

As the barrier length is increased, the dominant mecha-
nism of electron transport shifts from the single-state con- * L2 %),
figurations to the configurations containing “chains” of two GF\IZ)(GV)ZPZWJ f fﬁwdeirdeiudyhfﬁuzdxjrﬁuzdxh
localized state§. These configurations are more complex
than the ones considered before, neverthelesg3as still Xgn(eViej €%, X .Y} ~Yj ) (15
valid. The only difference is that the one electron reflection
and transmission amplitudes now depend upon the energi@éere the partial conductancgg are obtained from Eqs6)
€;,.€; and positions' | , r; of the two impurities, see Fig. and(1) by the substitution of143 and(14h. Simple inte-

1(b). Each impurity is characterized by its coupling to the gration in Eq.(15) yields

nearestlead, see Fig. (b), T
(2)_ o2 (1)
F(jl):Eoef(LJerjl)/ao, F(jr):EOef(LfZXjr)/aol (11) GN 3\[2PL E1GN ) (16)

ho. )2
e o
L

i

The coupling between the two impurities is given by where G{) is the single-impurity result, Eq(7). Two-
impurity chains dominate the conductafef the disor-
a \" dered region is long enough:
hij,=Eil ——7] e Irj,=rj,l/ao, (12
' Irj, =il m )1/2
= JRE—
where the energ¥, is of the order ofg,. L=a, h2p| (7
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(We used here the estimaig~E,~%%/ma3.) Deep in the ratesl'|,I", are approximately the same, afig) the differ-
insulating regime, where the separate impurity states overlapnce between the energies of the two tunneling electrons is
weakly, the parametét?p/m is small, and conditiof17) is  less than the level widtle V<T'| ;. For the single-impurity
more restrictive thar(9). configuration, the first condition can be met only for the
If the length of the barrier increases further, more com-impurities located in the vicinity of the middle of the barrier,
plex configurations may contribute. The effects associatetherefore, the sharp drop occurseat~1I";. However, for the
with these configurations have not been observed experimetwo-impurity configuration, the first condition can be satis-
tally for the normal conductance and we will not considerfied for various configurationgx;.x; }. The largest level

their contributiton toGys. width compatible with the conditiofi), I',=T";e~?%, cor-
Now we present our results for the two-impurity contri- responds to the largest separatdrL/2 between the two

bution to N-Sm-Sconductance obtained by performing the impurities. On the other hand, conditidfi) restricts the

integration in Eq(13). At zero bias, we found separation from belowX=agIn(eVT;), which eventually

) leads to Eq(19).
I'(3/4) Comparison of Eq(10) with Eq. (19) shows that even if
N

at low biases conductance is dominated by single-impurity
o _ ) ) channels, a crossover to the two-impurity chain configura-

It is |mpqrtant to emphasize that the relationships betweeggng may occur at largeeV. This crossover from a sharp

the contributions to théN-Sm-Sand N-Sm-Nconductances  fnction (10) to a much slower logarithmic depender(ds)

are identical for one- and two-impurity configurations, seekes place at voltage

Eqg. (8). This is because within the optimal two-impurity

chains only one level is in resonance, and the other level is e N L m

responsible only for the tunneling width. The same argument eV = vrz, A= 2an |n<%) :

also applies for the one-dimensional chains consisting of a 0

larger number of impurities. Therefore, we believe that theAt this bias, the optimal configurations changes from single

relation Gys(0)=0.27Gy, is a universal property of disor- impurity to two-impurity chains. To observe the crossover,

dered junctions for which the conductivity occurs via thethe junction parameters should satisfy the condition

tunneling through quasi-one-dimensional chains containing

Gi2(0)= GP'~0.27GY . (19

. . o m \ 12
an arbitrary number of impurities. 1<A<| .
For a finite bias, however, the relationship bewez{ Ap
and G is quite different from Eq/(10): the differential In conclusion, we studied the conductance of th&m-S

conductanceG(’ drops only logarithmically with the in- junction whereSmis a strongly disordered semiconductor.
crease olV. The strongest variation of the conductance,  The electron transport is due to resonant tunneling through
2 the levels localized irsm We find that at zero-biaNl-Sm-S
G(2>(e\/)=G<2)(O)ﬁln2<2) (19) conductance is proportional to the conductance of the same
NS SYU3L2 T lev)” junction in the normal stateGyg(0)=0.27Gy. At larger

occurs in the regiom’;<eV<T,. Here I'y=E,exp(-L/ biases, the conductan& (V) drops drastically. This drop

2ay)=T"1exp/2a,) is the characteristic width of a resonant re_E)r:eser;ts thle Z!gnzzture dOf An_dree(;/ rt:flechon In & junction
level formed by a two-impurity chain. with a strongly disordered semiconductor.
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