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We study the conduction of a normal-metal–semiconductor–superconductor junction, where the semicon-
ductor is strongly disordered. The differential conductancedI/dV of this structure is predicted to have a sharp
peak atV50. Unlike the case of a weakly disordered system, this feature persists even in the absence of an
additional~Schottky! barrier on the boundary. The zero-bias conductance of such a junction is smaller only by
a numerical factor than the conductance in the normal stateGN . Implications for experiments on gated
heterostructures with superconducting leads are discussed.

Since the seminal work of Andreev1 on the theory of elec-
tron transport through an ideal interface between a normal
~N! metal and a superconductor~S!, significant efforts were
undertaken to understand the transport in realNS junctions.
It was shown2 that a barrier at theN-S interface reduces
strongly the conductance of the boundary between a clean
normal metal and a superconductor. Later, experiments3 with
semiconductor~Sm! -superconductor junctions revealed in
the differential conductanceGNS(V) a broad maximum at
zero bias. This feature was explained4 as an interference ef-
fect due to the scattering off the Schottky barrier and of the
imperfections in the semiconductor. Recent technological ad-
vances have resulted in fabrication of low-resistance contacts
between a two-dimensional electron gas~2DEG! and a su-
perconducting lead.5 Because of the absence of a Schottky
barrier at the interface, the subgap conductance is determined
by the propagation of electron pairs through the 2DEG itself
rather than by two-electron tunneling at the interface, and
there is no peak6 in the differential conductance at zero bias.

The advantage of a gated heterostructure lies in the con-
trollable level of carrier density in the 2DEG. Depending on
the density, the 2DEG may behave as a good conductor or as
an insulator with an adjustable localization length. Whereas
the former case has been extensively studied both theoreti-
cally and experimentally,6 the latter case has received no
attention as of yet. In this paper we study two-electron trans-
port through a disordered insulator. We will show that the
zero-bias conductance of theN-Sm-Sjunction differs from
the conductance of the same structure in the normal state by
a numerical factor only. This is similar to the properties ex-
hibited in the metallic regime. However, the differential con-
ductanceGNS(V) drops abruptly with increasing voltage, in
contrast to the behavior in the metallic regime in the absence
of the Schottky barrier. The development of this feature of
the I -V characteristic under the progressive depletion consti-
tutes the signature of the crossover between the metallic and
insulating regimes.

Deep in the insulating regime, the conductance of the nor-
mal ~N-Sm-N! structure is dominated by tunneling via those
configurations of localized states in the semiconductor layer
that facilitate resonant transmission of electrons.7 An ex-
ample of such a configuration is a state with energy close to
the Fermi level and location symmetric with respect to the
leads. The transmission coefficient for an electron tunneling

through a resonant configuration is close to unity, and the
conductance is proportional to the probabilityw of finding
such a configuration. This probability scales exponentially
with the length of theSmregion,L.

The zero-bias conductance of theN-Sm-S junction,
GNS(0), is determined by the tunneling of pairs of electrons
at the Fermi level.1 Clearly, these tunneling processes are
also facilitated by the same resonant configurations that con-
trol single-electron transport. Thus, the conductance
GNS(0) is also proportional tow and, therefore, it has the
same exponential dependence uponL as the does normal
conductance. If a finite biaseV is applied to the junction, the
energiese1 ,e2 of the two electrons in the pair are different:
e12e252eV. If eV exceeds the width of the resonant level
with respect to tunneling, this level cannot provide a large
tunneling coefficient for both electrons. It results in a sharp
drop of the conductance with voltage.

Following Ref. 8, we model transport through the de-
pleted region as resonant tunneling via isolated localized
states~impurities!. We will show that for a wide range of
lengthsL, it suffices to consider the single-impurity configu-
rations only. In order to calculate the conductance, we first
calculate the contribution to the conductance due to tunnel-
ing through a single impuritygNS(eV) and then sum these
partial conductances over all the impurities. Each localized
state is characterized by its energye j and by the level widths
G l (r )
( j ) due to the decay into the left~right! lead, see Fig. 1~a!.

The amplitude of electron transmission through the barrier
via the resonant state,t ( j )(e), and the amplitude of reflec-
tion, r ( j )(e), at energye are given by the single-channel
Breit-Wigner formula:

r ~ j !~e !5
e2e j1 i ~G l

~ j !2G r
~ j !!

e2e j1 i ~G l
~ j !1G r

~ j !!
,

t ~ j !~e !5
22iAG l

~ j !G r
~ j !

e2e j1 i ~G l
~ j !1G r

~ j !!
. ~1!

The tunneling widthsG l (r )
( j ) depend exponentially on the dis-

tance of the impurity from the middle of the barrier,xj @see
also Fig. 1~a!#:

G l
~ j !5E0e

2~L12xj !/a0, G r
~ j !5E0e

2~L22xj !/a0, ~2!

PHYSICAL REVIEW B 15 MARCH 1996-IIVOLUME 53, NUMBER 12

530163-1829/96/53~12!/7630~4!/$10.00 R7630 © 1996 The American Physical Society



wherea0 is the localization radius of the impurity state, and
the energyE0 can be estimated asE0.\2/ma0

2 , with m
being the electron mass in theSmlayer. The Andreev reflec-
tion probability can be expressed6 in terms of the one-
electron amplitudest ( j )(e) and r ( j )(e). The corresponding
contributiongNS(eV;xj ,e j ) of localized statej to the con-
ductance is

gNS~eV;xj ,e j !5
2e2

p\U t ~ j !~eV!t ~ j !* ~2eV!

11r ~ j !~eV!r ~ j !* ~2eV!
U2. ~3!

~We will restrict our discussion to the most interesting re-
gime of the bias being small compared to the superconduct-
ing gap.!

Now we sum up the contributions to the conductance
from different impurities. Assuming that the density of the
localized statesr is independent of energy, we obtain

GNS
~1!~eV!5rWE

2`

`

de jE
2L/2

L/2

dxjgNS~eV;xj ,e j !. ~4!

HereW is the width of the barrier.
The calculation of the conductance is thus reduced to the

integration in Eq.~4!, with the help of formulas~1!–~3!. The
result of this calculation is presented in Fig. 2 and the limit-
ing cases are discussed later. In the low-bias limit,
eV!G1 , we find

GNS
~1!5

e2

\
~ra0WG1!FG~3/4!2

Ap
1

G~1/4!2

96Ap
S eVG1

D 2G , ~5!

whereG1[E0e
2L/a0 is the level width of a state localized at

xj50, andG(x) is theG function. It is instructive to express
this result in terms of the normal state conductance of the
same junction:

GN
~1!5

e2rW

p\ E
2`

`

de jE
2L/2

L/2

dxjgN~eV;xj ,e j !,

gN~eV;xj ,e j !5
e2

p\
ut ~ j !u2. ~6!

A simple calculation based on~1! and ~6! gives8,9

GN
~1!5

e2

\
~pra0WG1!. ~7!

Comparing Eqs.~5! and ~7! we obtain

GNS
~1!5GN

~1!F0.2710.049S eVG1
D 2G . ~8!

Results~5! and ~7! can be easily understood. The contri-
bution of the single-site resonant states to bothGN and
GNS is determined by the number of the states with the en-
ergy near the Fermi level within the strip of widthG1 and
positioned within the strip of widtha0 around the middle of
the barrier, so thatG l.G r . Therefore, the factorra0WG1 is
just the number of such states. Result~8! at V50 was ob-
tained independently in Ref. 10.

Let us estimate the domain of parameters within which
the mechanism of tunneling through rare single resonant
states dominates over direct tunneling through the potential
barrier created by the depletedSmlayer. The contribution of
the latter mechanism can be estimated asGN

dir;(e2/
\)(kFW)e22L/a0, wherekF is the Fermi wave vector in the
N lead. Thus direct tunneling is irrelevant for not too short
barriers:

L@a0lnSma0kF
\2r D . ~9!

This condition is easily met in the experimental situation.7,11

FIG. 1. Schematic picture of theN-Sm-Sjunction with~a! single
localized state and~b! two-impurity chains.

FIG. 2. Voltage dependence of the differentialN-Sm-Sconduc-
tance contributed by single-impurity configurations,GNS

(1)(V).
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The linear conductanceGNS
(1)(0) differs only by a numeri-

cal factor fromGN
(1) because the optimal configurations con-

tributing to both quantitites are the same. It changes drasti-
cally when the the bias increases,eV@G1 . In this regime we
obtain, from Eq.~4!,

GNS
~1!~V!5GN

~1!
G1

eV
. ~10!

The main contribution toGNS
(1)(V) comes not from the impu-

rities located near the middle of the barrier but rather from
ones shifted closer to theS lead.

Result ~10! can be understood using the following argu-
ments. Consider the impurity lying at the Fermi level,
e j50, that is completely decoupled from the normal lead,
G l50. The tunneling of an electron pair between the super-
conductor and the impurity mixes the statesu0& and u2&,
corresponding to zero and two electrons occupying the im-
purity. As the result, the fourfold degeneracy of the impurity
level is partially lifted: two singly occupied states still have
energy e j50, but the other two states,u0&2u2& and
u0&1u2&, are split by 2G r symmetrically with respect to the
Fermi level. The even wave function is the ground state of
the impurity, and the smallest excitation energy~to the singly
occupied state! is G r . Let us now turn on a small coupling
between the impurity and the normal lead,G l!G r . This cou-
pling enables the electron to tunnel from the Fermi level in
theN lead to the impurity level. This tunneling is resonant if
the potential drop on the contacteV is close to the energy of
excitation, ueV2G r u&G l . A similar consideration is valid
for all the impurities with energiesue j u&G r . Now, we find
the impurities that give the maximal contribution to the con-
ductance. The transmission coefficient is close to unity for
the impurities withG r5eV, i.e., ateV.G1 the optimal im-
purities are shifted towards the superconducting lead. The
energies of these impurities may lie in the strip of widthG r
about the Fermi level. The coordinatexj of the impurity may
deviate from its optimal value by no more than
6a0G l /G r , as follows from the conditionueV2G r u&G l ,
and Eq.~2!. This consideration shows that the number of
relevant impurities is of the order ofra0G lG r /eV, which
with the help of Eqs.~2! and~7! immediately yields Eq.~10!.

As the barrier length is increased, the dominant mecha-
nism of electron transport shifts from the single-state con-
figurations to the configurations containing ‘‘chains’’ of two
localized states.8 These configurations are more complex
than the ones considered before, nevertheless Eq.~3! is still
valid. The only difference is that the one electron reflection
and transmission amplitudes now depend upon the energies
e j l,e j r and positionsr j l, r j r of the two impurities, see Fig.
1~b!. Each impurity is characterized by its coupling to the
nearestlead, see Fig. 1~b!,

G~ j l !5E0e
2~L12xj l

!/a0, G~ j r !5E0e
2~L22xj r

!/a0. ~11!

The coupling between the two impurities is given by

hj l j r5E1S a0
ur j l2r j ru

D 1/2e2ur j l2r j r
u/a0, ~12!

where the energyE1 is of the order ofE0 .

After one finds the partial conductancegNS of a single
two-impurity ‘‘chain,’’ the net contributionGNS

(2)(eV) of these
chains to the total conductance can be calculated in a manner
similar to that used previously for the single-impurity con-
figurations:

GNS
~2!~eV!5r2WE E E

2`

`

de j rde j ldyj lE2L/2

L/2

dxj rE2L/2

xj r
dxj l

3gNS~eV;e j r,e j l,xj l,xj r,yj l2yj r !. ~13!

The formulas for the reflection and transmission ampli-
tudes enteringgNS for an arbitrary impurity pair are quite
cumbersome. Fortunately, the dominant part of the average
~13! comes from the impurity pairs with sufficiently large
energy difference,ue j l2e j ru@hj l j r. This means that one of
the two impurities serves as a resonant level for the incoming
electron, while the second impurity provides a virtual state
that modifies the escape rate from the resonant level into the
lead. Therefore, for the relevant ‘‘chains’’ the reflection and
transmission amplitudes are given by Eq.~1! with the level
widths renormalized by the tunneling through a virtual state.
Depending on which component of the pair is in resonance,
we find

e j→e j l, G l
~ j !→G~ j l !, G r

~ j !→G~ j r !S hj l j r
e j l2e j r

D 2
~14a!

if the left impurity is in resonance, or

e j→e j r, G l
~ j !→G~ j l !S hj l j r

e j l2e j r
D 2, G r

~ j !→G~ j r !

~14b!

if the right impurity is the resonant one. The corresponding
contributions togNS are obtained from Eqs.~3! and ~1! by
the substitutions~14a! and ~14b!, respectively.

Similar to the case of single-impurity configurations, it is
convenient to express the result in terms of the contribution
of two-impurity chains to the normal conductance. This con-
tributionGN

(2) , is given by8

GN
~2!~eV!5r2WE E E

2`

`

de j rde j ldyj lE2L/2

L/2

dxj rE2L/2

xj r
dxj l

3gN~eV;e j r,e j l,xj l,xj r,yj l2yj r !, ~15!

where the partial conductancesgN are obtained from Eqs.~6!
and ~1! by the substitution of~14a! and ~14b!. Simple inte-
gration in Eq.~15! yields

GN
~2!53Ap

2
rL2E1GN

~1! , ~16!

where GN
(1) is the single-impurity result, Eq.~7!. Two-

impurity chains dominate the conductance8,9 if the disor-
dered region is long enough:

L*a0S m

\2r D 1/2. ~17!
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~We used here the estimateE1;E0;\2/ma0
2 .) Deep in the

insulating regime, where the separate impurity states overlap
weakly, the parameter\2r/m is small, and condition~17! is
more restrictive than~9!.

If the length of the barrier increases further, more com-
plex configurations may contribute. The effects associated
with these configurations have not been observed experimen-
tally for the normal conductance and we will not consider
their contributiton toGNS.

Now we present our results for the two-impurity contri-
bution toN-Sm-Sconductance obtained by performing the
integration in Eq.~13!. At zero bias, we found

GNS
~2!~0!5

G~3/4!2

Ap
GN

~2!'0.27GN
~2! . ~18!

It is important to emphasize that the relationships between
the contributions to theN-Sm-SandN-Sm-Nconductances
are identical for one- and two-impurity configurations, see
Eq. ~8!. This is because within the optimal two-impurity
chains only one level is in resonance, and the other level is
responsible only for the tunneling width. The same argument
also applies for the one-dimensional chains consisting of a
larger number of impurities. Therefore, we believe that the
relationGNS(0)50.27GN is a universal property of disor-
dered junctions for which the conductivity occurs via the
tunneling through quasi-one-dimensional chains containing
an arbitrary number of impurities.

For a finite bias, however, the relationship beweenGNS
(2)

and GN
(2) is quite different from Eq.~10!: the differential

conductanceGN
(2) drops only logarithmically with the in-

crease ofV. The strongest variation of the conductance,

GNS
~2!~eV!5GNS

~2!~0!
4a0

2

3L2
ln2S G2

eVD , ~19!

occurs in the regionG1&eV&G2 . Here G2[E0exp(2L/
2a0)5G1exp(L/2a0) is the characteristic width of a resonant
level formed by a two-impurity chain.

The reason for the logarithmic dependence~19! is the
following. As we already discussed, the transmission coeffi-
cient for two-electron tunneling through the localized level is
close to unity, if two conditions are met:~i! the tunneling

ratesG l ,G r are approximately the same, and~ii ! the differ-
ence between the energies of the two tunneling electrons is
less than the level width,eV,G l ,r . For the single-impurity
configuration, the first condition can be met only for the
impurities located in the vicinity of the middle of the barrier,
therefore, the sharp drop occurs ateV;G1 . However, for the
two-impurity configuration, the first condition can be satis-
fied for various configurations$xj l,xj r%. The largest level

width compatible with the condition~i!, G25G1e
L/2a0, cor-

responds to the largest separationX5L/2 between the two
impurities. On the other hand, condition~ii ! restricts the
separation from below,X*a0ln(eV/G1), which eventually
leads to Eq.~19!.

Comparison of Eq.~10! with Eq. ~19! shows that even if
at low biases conductance is dominated by single-impurity
channels, a crossover to the two-impurity chain configura-
tions may occur at largereV. This crossover from a sharp
function ~10! to a much slower logarithmic dependence~19!
takes place at voltage

eV*.
e2l

l2 G2 , l[
L

2a0
2 lnS m

\2r D .
At this bias, the optimal configurations changes from single
impurity to two-impurity chains. To observe the crossover,
the junction parameters should satisfy the condition

1!l!S m

\2r D 1/2.
In conclusion, we studied the conductance of theN-Sm-S

junction whereSm is a strongly disordered semiconductor.
The electron transport is due to resonant tunneling through
the levels localized inSm. We find that at zero-biasN-Sm-S
conductance is proportional to the conductance of the same
junction in the normal state,GNS(0)50.27GN . At larger
biases, the conductanceGNS(V) drops drastically. This drop
represents the signature of Andreev reflection in a junction
with a strongly disordered semiconductor.
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