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An ab initio method for calculating electron-phonon coupling parameters is presented. The method is an
extension of the plane-wave-based linear-response method for the calculation of lattice dynamics. Results for
the mass enhancement parameterl and the electron-phonon spectral functiona2F(v) for Al, Pb, and Li are
presented. Comparisons are made to available experimental data.

The electron-phonon interaction in metals plays an impor-
tant role in a variety of experimentally accessible quantities
including the enhancement of the electron mass, the phonon
lifetime arising from electron-phonon scattering, electrical
and thermal conductivities, and the superconducting transi-
tion temperature. The electron-phonon spectral function
a2F(v) measures the effectiveness of phonons with energy
v to scatter electrons from one part of the Fermi surface to
another part. Once it and the Coulomb pseudopotentialm*
are determined for a superconducting material, all of the
thermodynamic properties of the superconductor, including
the superconducting gap as a function of temperature, the
transition temperature, and the discontinuity in the specific
heat atTc , can be computed.1 In addition, transport proper-
ties of materials in the normal state can be calculated from
the closely related spectral functiona tr

2F(v).
The ability to accurately calculate electron-phonon cou-

pling parameters has long been a sought-after goal. It is a
formidable task requiring knowledge of the low-energy elec-
tronic excitation spectrum, the complete vibrational spec-
trum, and the self-consistent response of the electronic sys-
tem to lattice vibrations.Ab initio calculations of electron-
phonon coupling parameters have proceeded along two
distinct lines. In the rigid ion2 ~RI! and rigid muffin tin3

~RMT! schemes, the screened electron-phonon potential is
approximated by neglecting changes in the potential every-
where except within the atomic sphere of the displaced atom.
While these non-self-consistent approximations appear to be

adequate for many transition metals,4 their validity has been
questioned in some cases, especially for anisotropic or low-
density-of-states materials.5–7 An alternative to the RI and
RMT methods is the frozen-phonon total-energy method.8 In
this approach, the electron-phonon matrix elements are
evaluated using the self-consistently screened potentials cor-
responding to frozen-in phonon displacements. The primary
drawback of the frozen-phonon approach is that only phonon
wave vectors that are commensurate with the lattice and that
correspond to reasonably sized supercells can be considered.
This makes it difficult to determine accurately quantities that
involve integrations over the phonon wave vectorq through-
out the Brillouin zone. These include, for example, the
electron-phonon mass enhancement parameterl, the phonon
density of statesF(v), and the electron-phonon spectral
functiona2F(v).

Recently, linear-response theory within the framework of
density-functional calculations has been shown to be an ef-
ficient and powerful alternative to the frozen-phonon method
for calculating lattice dynamical properties of solids.9

Atomic displacements are treated as perturbations, and the
electronic response to the perturbation is calculated self-
consistently. Perturbations of arbitrary wave vectorq can be
treated without using supercells. The linear-response method
has been implemented with a variety of different basis sets
for representing the electronic wave functions, and it has
been successfully applied to the study of lattice dynamics in
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a wide range of systems including semiconductors,9,10

metals,11–13 ferroelectrics,14 and surfaces.15

In this paper, we extend the plane-wave-based density-
functional linear-response method to the calculation of
electron-phonon coupling parameters. A similar method
based on linearized muffin-tin orbitals was recently pre-
sented in Ref. 16. The use of a plane-wave basis has the
advantage of simplicity both in terms of formalism and
implementation. We apply our method to the calculation of
the electron-phonon spectral functiona2F(v) for several el-
emental metals: Al, which is a well-studied weak-coupling
superconductor; Pb, which is the prototypical strong-
coupling superconductor; and Li, which is not observed to
have a superconducting phase, but which earlier calculations
have found to have a moderate electron-phonon mass en-
hancement parameter.

For notational simplicity, we consider the case of a single
atom of massM per unit cell. The electron-phonon matrix
element for scattering of an electron from a Bloch statenk to
another Bloch staten8k8 by a phonon of frequencyvk2k8n is

g~nk,n8k8,n!5S \

2Mvk2k8n
D 1/2^cnku êk2k8n•¹RVscucn8k8&,

~1!

whereêk2k8n is the phonon polarization vector, and¹RVsc is
the gradient of the self-consistent potential with respect to
atomic displacements. The linewidth of phononqn arising
from electron-phonon scattering is given by

gqn52pvqn (
n,n8,k,k8

d~Enk2EF!d~En8k82EF!

3dk2k82qug~nk,n8k8,n!u2, ~2!

whereEF is the Fermi energy.
For many applications, the quantity of interest involves a

sum or average of the electron-phonon coupling strength
over wave vectors throughout the Brillouin zone. For ex-
ample, the spectral functiona2F(v), which plays an impor-
tant role in the strong-coupling theory of superconductivity,
is given by

a2F~v!5
1

2pN~EF!(qn
d~v2vqn!

gqn

\vqn
. ~3!

HereN(EF) is the electronic density of states at the Fermi
level. The dimensionless electron-phonon mass enhancement
parameter also involves a sum over modes and can be ex-
pressed as the first inverse frequency moment of the spectral
function: l52*dva2F(v)/v.

In this work, the electronic wave functionscnk and eigen-
valuesEnk are calculated using theab initio pseudopotential
local-density formalism. The electron-ion interaction is rep-
resented by soft separable pseudopotentials,17 and the single-
particle wave functions are expanded in a plane-wave basis
set. The Wigner form of the exchange and correlation func-
tional is employed,18 and in the case of Pb and Li, the partial
core correction is used to handle the nonlinearity of the ex-
change and correlation interaction between the core and va-
lence charge densities.19 Unless otherwise indicated, the cal-
culations are performed at lattice constants that are

determined within the local-density approximation~LDA !
and that are in good agreement with the experimental values.

The phonon frequencies and polarization vectors are cal-
culated using linear-response theory. The second-order
change in the total energy, and hence the dynamical matrix,
depends only on the first-order change in the electronic
charge density. The linear response of the electronic density
to atomic displacements is determined self-consistently by
solving a Bethe-Salpeter equation as discussed in Ref. 11.
We have generalized the method to include corrections for
the overlap between core and valence charge densities.12 The
electron-phonon matrix elements,g(nk,n8k8,n), are easily
computed from the first-order change in the self-consistent
potential.

The doubly constrained Fermi surface sums in Eq.~2! are
performed using dense meshes of 1300 and 728k points in
the irreducible Brillouin zones~IBZ! of the fcc and bcc struc-
tures, respectively. Thed functions in energy are replaced by
Gaussians of width 0.02 Ry. Because of the large number of
k points sampled, the results are not very sensitive to the
Gaussian width. Phonon wave vectors are sampled on
coarser meshes of 89 and 140 points in the fcc and bcc
IBZ’s, respectively.

To test the accuracy of the method, we consider first the
simple metal Al. The LDA gives very good structural prop-
erties for fcc Al, and the linear-response method yields pho-
non dispersion curves in excellent agreement with experi-
ments throughout the Brillouin zone.11 The a2F(v) for Al
calculated in this work is shown in Fig. 1~solid line!, along
with results from two experiments~long- and short-dashed
lines!.20 Extraction of a2F from conventional McMillan-
Rowell tunneling spectroscopy is not possible for Al since it
is too close to an ideal BCS superconductor. Instead the ex-
perimental spectral functions shown in Fig. 1 were extracted
from proximity electron tunneling data.20 Unfortunately, the
inversion of this type of tunneling data involves the introduc-
tion of additional fitting parameters characterizing the prox-
imity layer. This introduces uncertainties in the extracted
spectral functions, as evidenced by the differences between
the two experimentally determineda2F functions shown in
Fig. 1. The calculated spectral function agrees reasonably
well with the experimental curves.

The value of the electron-phonon mass enhancement pa-
rameter determined from the first inverse-frequency moment
of the calculated spectral function isl50.438, which is in
good agreement with other linear-response16 and frozen-
phonon calculations,21 and with heat capacity data.22 Within
Eliashberg theory,Tc is a functional of the spectral function
a2F(v) and the Coulomb parameterm* . Using the calcu-
lateda2F as input into the Eliashberg equations, we find that
a m* of 0.162 is needed to obtain the measured transition
temperature ofTc51.18 K. The same value ofm* yields a
gap equal to the experimental value of 0.180 meV. This con-
sistency between independent fits to the gap and toTc is a
measure of the accuracy of our results fora2F.

We consider next the case of the strong-coupling super-
conductor Pb, for which high-quality conventional tunneling
data are available. From the theoretical standpoint, the im-
portance of relativistic effects in Pb make it a more difficult
system to treat than Al. The present calculations for Pb are
performed in the scalar relativistic approximation. The pho-
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non dispersion curves are shown in Fig. 2. Overall, there is
good agreement between calculated~solid lines! and
measured23 ~circles! phonon frequencies, and the calculation
is able to reproduce some subtle features in the dispersion
curves such as the Kohn anomaly in the longitudinal mode
along theG to K direction. Note, however, that there are
significant quantitative discrepancies between the calculated
and measured frequencies for the low-energy transverse
mode, especially in the regions nearX andK. The minima in
both the longitudinal and transverse modes atX are not ob-
served in other fcc metals, and they suggest the presence of
very-long-range forces. Indeed, as shown by the dashed
curves in Fig. 2, an eighth-neighbor Born–von Karman fit24

to the measured frequencies is unable to reproduce the dis-
persion nearX, especially in the case of the longitudinal
mode. Over the years, a number of exotic mechanisms have
been proposed to explain the unusual shape of the dispersion

curves in Pb.25 Our preliminary results obtained using the
frozen-phonon approach indicate that differences between
the calculated and measured frequencies are significantly re-
duced if the spin-orbit interaction is taken into account.

The Eliashberg function for Pb is plotted in Fig. 3. The
calculations~solid line! yield the two-peak structure seen in
the data~circles!,26 but there are differences in the peak lo-
cations and heights, especially in the case of the lower-
frequency peak. The mass enhancement parameter is calcu-
lated to bel51.20, which is significantly lower than the
tunneling result of 1.55. These discrepancies are due in part
to the errors in the calculated transverse-mode phonon fre-
quencies. Note that the location of peaks in the spectral func-
tion is determined to a large extent by the location of peaks
in the phonon density of statesF(v) @i.e., by thed functions
in frequency in Eq. ~3!#. The overestimation of the
transverse-mode frequencies in our calculation results in an
upward shift of the lower-frequency peak in bothF(v) and
a2F(v). We have also computed the spectral function using
the phonon frequencies generated from the Born–von Kar-
man fit to the data along with the calculated phonon
linewidths.27 The resultinga2F(v) is plotted as a dashed
line in Fig. 3. Using the empirical force constants, which
accurately describe the dispersion of the transverse modes,
we obtain good agreement with the experimental results in
the low-frequency regime. On the other hand, since the
Born–von Karman fit does not yield accurate frequencies for
the longitudinal mode, the resulting spectral function is less
accurate than the first-principles result in the high-frequency
regime. It appears that in order to improve our description of
the electron-phonon coupling in Pb, it will be necessary to
modify the computational method to take into account the
relativistic spin-orbit coupling interaction.

Finally, we examine the electron-phonon coupling in bcc
Li. The lack of a superconducting transition in Li has been a
longstanding puzzle. Both frozen-phonon28 and RMT ~Ref.
29! calculations have suggested that the electron-phonon
coupling strength in Li is similar to that in Al. This would

FIG. 1. Electron-phonon spectral function for Al. Results from
the present calculation are represented by the solid line. Results
from proximity electron tunneling spectroscopy experiments are in-
dicated by the long- and short-dashed lines.

FIG. 3. Electron-phonon spectral function for Pb. The results
based on the calculated frequencies are shown as a solid line, those
based on the frequencies obtained from the force-constant fit are
given by the dashed line, and the results from the inversion of
tunneling data are plotted as circles.

FIG. 2. Phonon dispersion curves for Pb. The solid lines connect
frequencies calculated at the sampled wave vectors, and the circles
indicate the experimentally measured frequencies. The dashed line
is an eighth-neighbor Born–von Karman fit to the measured fre-
quencies.
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suggest a transition temperature on the order of 1 K if a value
of m*'0.15 is assumed. Experimentally, however, no tran-
sition is observed, at least down to 6 mK.30

The LDA tends to underestimate the lattice constant of
alkali metals. For Li, the calculated lattice constant of 3.41 Å
is about 2.3% smaller than the measured value of 3.49 Å. We
have performed calculations at both values of the lattice con-
stant. The phonon frequencies calculated at the experimental
lattice constant are plotted in Fig. 4. Overall, the frequencies
agree well with the neutron diffraction data,31 and subtle fea-
tures such as the crossing of the longitudinal and transverse
modes along theG to H direction are reproduced by our
calculations. At the LDA lattice constant, the calculated pho-
non frequencies increase by up to 8%. This is consistent with
recent supercell calculations carried out at the LDA lattice
constant determined without including core corrections~3.35
Å!.32 In that case, a constant scale factor of about 0.86 was
needed to bring the theoretical results in line with the experi-
mental frequencies.

The mass enhancement parameters in Li are calculated to
be l50.45 and 0.51 at the experimental and~core-
corrected! LDA lattice constants, respectively. These values
are similar to results obtained earlier within the RMT ap-
proximation or using the frozen-phonon method. Using our
result fora2F(v) as input into the Eliashberg equations, we
have calculated the superconducting transition temperature
as a function of the Coulomb pseudopotential. As shown in
Fig. 5, an unphysically large value ofm*'0.28 is required
in order to suppressTc below the experimental limit. The
observed absence of superconductivity in Li therefore re-
mains an open problem. The resolution of this puzzle may

require consideration of the low-temperature crystal structure
of Li, in which the electron-phonon interaction may be
weaker,28 as well as the role of many-body interactions such
as electronic correlations and spin fluctuations.33

In summary, we have presented an accurate and efficient
method for calculating electron-phonon coupling parameters
from first principles. The electronic response to the atomic
displacements is determined self-consistently and phonons of
arbitrary wave vector can be treated. This method, which is
an extension of the plane-wave-based linear-response
method for calculating lattice dynamics, is applicable to a
wide range of materials. Results for the mass enhancement
parameterl and the electron-phonon spectral function
a2F(v) for Al are in excellent agreement with available
experimental data. In the case of Pb, there are larger discrep-
ancies between our results and the tunneling data, but we
attribute this to the neglect of the spin-orbit interaction in our
calculations. The present results for the mass enhancement
factor in bcc Li are in accord with earlier calculations, indi-
cating that further theoretical investigations are needed to
resolve the question of the absence of a superconducting
transition in this material.
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