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Vortex structure and Josephson supercurrents in stacked double Josephson junctions
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In Josephson-junction stacks consisting of two junctions having identical maximum Josephson supercurrent
I, the measuret|, vs external magnetic flusp characteristics exhibit two distinct oscillation periods with the
oscillation period ford>®, being smaller than that whe®<®,, where ®, is the flux quantum. The
observations provide clear evidence that a structural phase transformation to a triangular vortex lattice occurs
with increasing®.

In a single Josephson junction, the Josephson vorticemetal and copper concentric shields. External noise sources
(fluxong form a one-dimensiondllD) periodic lattice and, were carefully screened by filters in series with the sample
consequently, modulate the current density distributiorand magnet leads.
within the junction. For a small, single Josephson junction, In what follows we present data taken on four samples.
the Josephson supercurret, vs applied magnetic fieldd, = The sample specifications and the junction parameters are
has the familiar Fraunhofer diffraction behavior; te., listed in Table I. Usually, for a stacked junction consisting of

N junctions having different maximum Josephson supercur-
. rents,N current steps, correspondingltoat zero voltage and
lc=1c(0)[siny/y]. (@) |_, at a bias voltage of @A/e (n=1,2,...N—1) respectively,
occur in thel-V curve at zero magnetic field. By carefully
Herey=wH/Hy=7®/®,, &= uydoLH is the flux thread- controlling the oxidation parameters for the Al@arrier for-
ing the junction,®y= uodoLHg is the flux quantumd,=a  mation, we were able to make stacked double junctions with
+ 2\ is the magnetic lengtha is the barrier thickness,, is  I.=l.;. The insets in Figs. 1 and 2 show theV curve
the London penetration depth, ahds the junction length in measured at 4.2 K and zero applied magnetic field for
the direction perpendicular to the applied magnetic field. Fosamples A and B, respectively, both of which are two-
a large Josephson junction havihg>27\; (\; being the junction stacks. The backward slope of Ih& curves at the
Josephson penetration depth. vs H characteristics deviat- sum gap voltages arises probably from the heating effect. As
ing from the Fraunhofer diffraction pattern have been ob-can be seen in the insets of Figs. 1 and 2, the Josephson
served; the observed behavior can be well accounted for bsupercurrents of both junctions in the stacks are essentially
the theory of Owen and Scalapifo. identical, resulting in simultaneous switching from the super-

Recent technological progress has made it possible to falwonducting to the quasiparticle branches oflthé curve. As
ricate stacked Josephson junctidBdJ of high quality. One  we will see this condition is critical for observations to be
can then study vortex statics and dynamics in this layerediscussed below. Thie. vs H dependence is shown in Fig. 1
superconducting structure. Fundamental studies of fluxon irfor sample A and in Fig. 2 for sample B. The magnetic field
teractions in SJJ's should open a new field of the nonlineawas applied perpendicular to one junction edge and parallel
physics and associated applicatiddn particular, the pos- to the barrier layer. From Fig. 1 we see that the measured
sibility of phase-lock motion of fluxons in SJJ's suggests that . vs H characteristic exhibits two distinct oscillation peri-
an SJJ can function as an efficient radiation source in milli-ods; the oscillation period foH>H, is smaller than that
meter and submillimeter wave cryoelectronic circditsTo ~ whenH<H,, whereH, is the characteristic magnetic field
understand the more complicated vortex dynamics in SJJ’s, eorresponding to the first current minima. These data cannot
knowledge of the vortex statics is essential. In this paper wée represented by the Fraunhofer diffraction pattern calcu-
present an observation of a structural phase transformation tated from Eq.(1) usingy= 7H/H, as shown by the dashed
a triangular lattice in stacked Nb/AI-AIENb/AI-AIO,/Nb  line in Fig. 1. Similar behavior has also been observed on
double Josephson junctions. sample B(see Fig. 2 and samples on other chips, the/

Nb/(AI-AlO,/Nb)y trilayers (N=1) and multilayers
(N=2) were deposited on thermally oxidizét00 Si wafers
by dc magnetron sputtering. The thicknesses of the Nb bas?® K
layer, the Al over layer, and the Nb counter-electrode layer

TABLE |. Sample specifications and the junction parameters at

were 2000, 80, and 2000 A, respectively. The thickness of L b Jo 2

the intermediate Nb layerdy, ranged from 100 to 400 A. sample N um A Alem LA, 7
Using standard photolithography, cross-geometry junctions A 2 20 300 1000 2.00 -0.68
were patterned by combining selective Nb etchimgth a B 2 50 300 700 415 -0.68
CF, plasma and selective Nb anodizatidriThe I-V curves C 2 50 200 80 1.43 —-0.77
were measured across the bottom and top electrodes using p 1 50 640 3.33

the four terminal technique in a LHe Dewer surroundeguby
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FIG. 3. Thel. vs H characteristics for sample C. The dashed
line is calculated from Eq(l) usingy=aH/H,. The inset shows

FIG. 1. The measuredi, vs H characteristics for sample A. ha|.V curve at 4.2 K and zero magnetic field.

The dashed line and the solid line are calculated from @&g.

using y=mH/H, and using Eq.(11), respectively(see the text .
The right inset shows thé-V curve at 4.2 K and zero magnetic I vs H dependence of sample A measured at different tem-

field; uoHo=0.78 mT. The left inset shows a stacked double Peraturessee Fig. 3. As seen in Fig. 5, while\, increases

Josephson-junction structure schematically. Filled ellipses repfrom about 10um at 4.2 K to 14um at 6.5 K, the oscillation

resent equilibrium fluxon positions of the vortex lattice in the two behavior is essentially similar.

barriers. To understand the observed anomaldps/s H depen-
dence, we consider a symmetric stacked double Josephson

curve of which also display the simultaneous switching bejunction structure as shown schematically in the inset of Fig.

havior. For comparison, the measutigdss H characteristics 1. The structure consists of a base, middle, and top supercon-

for two more samples are shown in Fig.(Sample § and  ducting(S) layers of thicknes®,, b andb,, and two insu-

Fig. 4 (sample D which are from a two-junction stack and a |ating (1) barrier layers of thickness, respectively. The

single junction, respectively. The correspondiny curves  coupled sine-GordoriSG) equations describing the vortex
at 4.2 K and zero magnetic field are shown as the insets igtatics in such a system &dre

the figures. The inset of Fig. 3 shows that there is an addi-

tional current step occurring at a bias voltage af& im- d?¢, 1

plying that the maximum Josephson supercurrents of the two D F(sinq&ﬁ 7 Sing,), (29

junctions in this stack are not matched. The dashed lines in J

Figs. 3 and 4 are calculated from Edl) using y 2 L

=mH/H,. Clearly, for these two samples thevs H depen- 2 . .

dence can be described by Ed) quite well. axz x_ﬁ(S'n¢2+ 7 SiNgy). (2b)
From Table | we see that the length of all junctions stud-

ied here satisfies <2\ ;. Therefore, all of them are in the The coupling constany=s/d is determined by the thickness

small junction limit, and finite-dimension effects may be ne-of the middleS layer, where the coupling parameteis

glected. Moreover, all the measurkdvs H curves are sym-

metric about the vertical axis, hence the self-field effect is

not important. The observed change in the oscillation period

is therefore an intrinsic property associated with a transforthe magnetic lengtl is

mation in the vortex structure in the matched, stacked double

s=—\_/sinh(b/\|), (33

junctions. The validity of this conclusion is supported by the d=a-+\_cothb/\ )+ X\ coth(by/\|), (3b)
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FIG. 2. Thel. vs H dependence for sample B. The dashed line  FIG. 4. Thel. vs H dependence for sample D. The dashed line
is calculated from Eq(l) usingy=wH/Hy; uoH,=0.34 mT. The s calculated from Eq(1) usingy=wH/Hy; ugHo=0.25 mT. The
inset shows thé-V curve at 4.2 K and zero magnetic field. inset shows thé-V curve at 4.2 K and zero magnetic field.
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x—x°
(;Si(x):w—Zan‘( K ,k), (i=1,2 (8)

where am is the Jacobi elliptic amplitudk,is the corre-
sponding modulugassociated with the applied magnetic
field): k determines the detailed shape of the current distri-
bution within the junction. Whek<1, the Josephson vorti-
ces form a densely packed array; the current distribution has
the familiar sinusoidal shape with a wavelength= 7k ;.

As k increases, the spatial period of the lattice is given by
A =2k\;K(k), whereK(k) is the complete elliptic integral

of the first kind. The magnetic interjunction coupling is de-
scribed by the interaction Hamiltoniahl;,. Since the cou-
pling constanty is negative, the interaction between fluxons
in different barriers is repulsive. By minimizing the total
energy, the relative spatial displacement of the fluxon posi-
tions in the two barriers is shown to ¥e

I (mA)

c

FIG. 5. Thel. vs H dependence for sample A at 5.6 and 6.4 K.
The solid line is calculated from Eql) usingy=wH/H,.

and the Josephson penetration depth is defined as

_ 1/2 _
whereJ, is the maximum Josephson current density.

It is worth noting that Egs(2) have an exact solution for
two special casesh; = ¢, (in phas¢ and ¢, = — ¢, (out of
phasé. The corresponding magnetic lengths®are

As a result, if more than two fluxons are present, the fluxons
in the two junctions will form a triangular lattice as sche-
matically shown in the left inset in Fig. 1.

From the above analysis, the anomaldys/s H depen-
dence shown in Figs. 1 and 2 can be understood qualitatively.

d,=d+s=a+ cothbo/A) If the barrier energies for both junctions in the stack are

+ X\ tanb/2\ ), for ¢=¢, (59 identical, the magnetic field distribution is symmetric with

respect to theZ=0 plane(see the left inset in Fig.)lwhen

and d<P,; for this case, an in-phase, = ¢,) solution to Egs.
(2) is adequate. This symmetry breaks down when
d_=d-s=a+\ cothlbg/\L) d>d,.1% Since the interaction between fluxons in the

neighboring junctions is repulsive, if there are two Josephson
vortices present, the total free energy will be minimized

A general solution corresponds to an effective magneti?Vnen the two vortices, one in each barrier, have a relative
length dgg such thatd, <der<d_ . By examining the first displacement in th& direction;” at high field it would be of
integral of Eqs.(2), it is easy to verify that Eqs2) can be order half the vortex spacing. The additional phase modula-
represented by the following Hamiltonian: tion in thez direction results in a more rapid field modulation

in the x direction; the effective magnetic length; becomes
larger thand, given by Eq.(5a), resulting in a smaller os-

+ A coth(b/2\), for ¢p1=— ¢ps. (5b)

1 & [1(dg;\2 \rge :
H=Hqy+ Hm:f > 15| ==| +1—cos¢;| dx cillation period. _ _
o =1[21| dx On the other hand, if the maximum Josephson supercur-
' do- d rents for the two junctions in the stack are not equal, due to
_ ﬂ ﬁ , (6) the difference between the two barrier free energies, the in-
o dx dx phase solution is absent wh@<®,; when ®>d,, the

) . ) . fluxons can reside in the junction having the smaller barrier
where we have introduced the dimensionless coordinates energy. As a result, thé, vs H characteristic exhibits no

=X/\y, I=L/\y and transition in the low-field region; i.e., the behavior resembles
_ that of a single junction. This is the case observed in sample
=Ny /(1= P2 (77  C(see Fig. 3

In the spirit of the above analysis, we can semiquantita-
We emphasize that upon adding the kinetic energies(@q. tively discuss thd . vs H data for sample A which is in the
[along with Eq.(7)] is the exact Hamiltonian describing the small junction limit. In this limit, k—0, K(k)—/2, and
coupled sine-Gordon system. Similar equations were deg) ;= ,/7d.4H;* from Eq.(7) we have
scribed earlier with the coupling constant introduced as a

phenomenological parametér!? Sinced;/dx is directly der=d.d_/d. (10)
related to the magnetic field, the coupling is essentially mag-
netic in nature. We may then use a function form similar to Ed) to deduce

In the absence of the coupling, each junction in the stackhe effective magnetic length. We note that wher<®,
is described by the unperturbed sine-Gordon equation. Ah, should depend orH according to Eq.(1) with y
exact solution to the unperturbed SG equation describing the wH/Hy. The corresponding fit yields the characteristic
periodic 1D vortex lattice fs field Hy. To fit the data ford>®, we introduce a fitting
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parametetv to account for the change in the effective mag-d, given by Eq.(5a), it can be shown that the lower critical

netic lengthde, i.e., in EqQ.(1) we use field H; of a two-junction stack s
y=mlvH/Ho=(v=1)]. (11) Hey= (2/m) (2D od /7 pngd s ) V2= (2/m) (2L Hgd /) Y2
A phase amounting ter(v—1) is introduced in expression (12

(11) to model the phase shift associated with the addition of . . .
the extra fluxon? gbviously, wherH = H,, the first current Clearly, theH; of a two-junction stack is larger than that of

minima are recovered. By means of a least squares Optim\%i(t:r? r_l‘r_lp()arabllz? S';gll_? Jvlﬂ/nstl?nt'hwztal:o norter:H?tdgcreis;s
zation procedure the fitting yields=d./d, =1.51. The see Fg. owever, the g parameterdepends

I. vs H curve calculated from Eqgl) and (11) using v=1 on I-Ir-1 OSTJ%VI;’]Z?klyWe have observed an anomalouss H
for H<Hy andv=1.51 forH>H, is shown in Fig. 1 as the Y: e

solid line. The agreement between the theoretical and experg_epe'ndence n Jpsephson junction stacks consisting of two
mental results is satisfactory. junctions having identical Josephson supercurrents. The ob-

The above argument is further supported by comparinqsiervatlons are consistent with a structural phase transforma-

L on involving a relative displacement of the fluxon positions
the measured characteristic f'dw"(B.) (for sample B ar_1d in the two junctions which occurs with increasihg
Ho(D) (for sample D. Experimentally, we find

Ho(B)/Ho(D)~1.4. In the small junction limit, using &15 We are grateful to A. Patashinski for valuable discussions
A, \.~800 A, the theoretical ratitio(B)/Ho(D)=do/d,  and E. D. Rippert, C. Thomas, and S. Maglic for assistance.
=(a+2\)/d;~1.6. Thereforeg,~ ¢, is a good approxi- This work was supported by NASA Innovative Research

mation whend <®,. Whend®>®,, the effective magnetic Project Program under Contract No. NAGW-2859, and the

length is given by Eq(10); hencedey/d,=d_/d~1.68,  Northwestern Materials Research Center under NSF Grant
which is close to the observed rati=dey/d . =1.51. Using DMR91-20501.
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