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We study the microscopic structure of the Josephson current in a single-mode tunnel junction with a wide
quasiclassical tunnel barrier. In such a junction each Andreev bound state carries a current of magnitude
proportional to theamplitudeof the normal electron transmission through the junction. Tremendous enhance-
ment of the bound-state current is caused by the resonance coupling of superconducting bound states at both
superconductor-insulator interfaces of the junction. The possibility of experimental observation of the single
bound-state current is discussed.

The Josephson effect in a tunnel junction deals with co-
herent transmission of Cooper pairs through a tunnel barrier
which separates superconducting electrodes. What is the
mechanism of such a transmission? Conventional theory of
the Josephson effect,1,2 based on the phenomenology of the
transfer Hamiltonian model,3 does not provide adequate
physical description of this process, e.g., similar to the quan-
tum mechanical picture of tunneling of normal electrons. In-
stead, it treats tunneling as a perturbative transition, intro-
ducing a matrix element of coupling of electrons in different
electrodes proportional to the amplitude of single electron
tunneling.4

A more realistic description of Josephson tunneling, based
on the Bogoliubov–de Gennes equation,5 was suggested by
Furusaki and Tsukada.6 The crucial role in this picture is
played by superconducting bound states, similar to Andreev
bound states inSNS junctions.7 A bulk supercurrent, when
approaching the tunnel interface, experiences transformation
into current flowing through superconducting bound states
which provide transmission of Cooper pairs through the bar-
rier. The bound states are induced in the vicinity of the junc-
tion by the discontinuity of the superconducting phase and
they appear as a consequence of the current.8 In a quantum
junction the bound state spectrum consists of a single pair of
levels per transverse mode, with symmetric position of the
levels with respect to the chemical potential. The Josephson
current is distributed among bound states in such a way that
each bound state carries a current proportional to the normal
electron transparency of the junction.

In this paper we show that the above picture of quantiza-
tion of the Josephson coupling is valid only for an extremely
narrow barrier and that the picture is qualitatively different
for any realistic tunnel barrier with large width on an atomic
scale. In the latter case, the structure of the bound-state spec-
trum is determined by the coupling of superconducting sur-
face states situated at the twoSI interfaces of theSIS junc-
tion. In a symmetric junction, the resonance coupling of
these surface states provides tremendous enhancement of the
current flowing through a single bound state, the magnitude
being proportional to theamplituderather than the probabil-

ity of normal electron tunneling. The currents are distributed
among the bound states in such a way that they almost cancel
each other in equilibrium, giving rise to a comparatively
small residual current, including the contribution from the
continuum. This current coincides with the conventional Jo-
sephson current given by Ambegaokar-Baratoff theory.2 The
large current of the single bound state can be revealed under
nonequilibrium conditions when the bound level population
is imbalanced by means of microwave pumping or tunnel
injection.

We consider for the sake of clarity a single mode quantum
constriction with a rectangular potential barrier of lengthL
and heightV ~Fig. 1!. The structure is described by the one-
dimensional~1D! Bogoliubov-de Gennes equation:5

H F S p̂22mD2m̃1Vu~L/22uxu!Gsz1D̂~x!J C5EC, ~1!

with the order parameter matrix given by

D̂~x!5S 0 Dei sgnxf/2

De2 i sgnxf/2 0 D u~ uxu2L/2!; ~2!

FIG. 1. Single-transverse-mode adiabatic junction modeled as a
1-dim SIS junction with a wide barrier of lengthL and heightV.
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m̃5m2E' is the chemical potential shifted by the energy of
the transverse mode,\51.

Consider first an isolatedSI surface, assuming in Eq.~1!
L5`. Constructing the ansatz foruEu,D as a superposition
of eigenfunctions, with complex wave vectors
k65A2m(m̃6 i z) (z5AD22E2) in the superconducting re-
gion and with decay ratesk65A2m@V2(m̃6E)# in the in-
sulating region, we find the dispersion equation, keeping the
difference between electron and hole wave vectors to first
order,

z

E
52

dkk

k21k2
. ~3!

The surface level in Eq.~3! crucially depends on the finite
differencedk5k12k2 of the decay rates of electron and
hole wave functions inside the insulator, while dephasing
inside the superconductor is not important and gives small
corrections omitted in Eq.~3!. The level lies close to the gap
edge within the superconducting gap; assuming a typical re-
lation among the energies of the problem:D!V2m̃<m̃,
one hasD2E'(D3/2V2)(k/k)2. The wave function of the
surface state decays into superconductor on the characteristic
length scalel;j0D/AD22E2 (j0 is the coherence length!
and into insulator on the characteristic length scalel;1/k.

Proceeding to calculation of the coupling of surface states
at finite L,` in Eq. ~1!, we construct wave functions by
means of a transfer matrix formalism,9 which yields the fol-
lowing dispersion relation:

E25D2cos2S ubu6a

2 D ~ ubu6a.0!, ~4!

cosa5R̃1D̃ cosf, sinb5D̃ Im~a1a2* !, ~5!

where D̃5AD1D2, R̃5AR1R2, and the transmission
D65ua6u22 and reflectionR6512D6 coefficients of nor-
mal electrons with energy6E are given in terms of the
inverse transmission amplitudes

a65coshk6L2
i

2 S k6

k
2

k

k6
D sinhk6L. ~6!

Equation~4! is valid for all values of the barrier lengthL and
barrier heightsV.10 A numerical solution of this equation is
presented in Fig. 2, which also shows the corresponding
wave functions. To get an explicit expression for the level
energy we consider barriers which are long on the scale of
quasiparticle decayk21 but short on the scale of quasiparti-
cle dephasingudku21: k21!L!udku21@ the last condition is
equivalent to (L/j0)(k/k)!1#. In this case, the junction
transparencyD̃, the dephasing angleb, and the coupling
factora are all small:D̃!1, D12D2'22D̃dkL,

b'2
2kdk

k21k2 , ubu!1, ~7!

a'2AD̃Asin2~f/2!1~dkL/2!2!1. ~8!

The last term in Eq.~8! is essential only in the close vicinity
of f50: ufu;udkuL. Since the energy dispersion ofb can
be neglected, one finds from Eq.~4!

E6
2 5D2F12S ubu

2
6ADUsinf2U D

2G , ~9!

whereubu/26ADusin(f/2)u.0, D'D̃, ufu@udkuL.
The solution presented in Eqs.~4!,~9! generally consists

of two pairs of bandsE(f): 6E1(f) and6E2(f), lying
inside the superconducting gap symmetrically with respect to
the chemical potential. The dephasing angleb determines
the position of the preexisting surface states at the single
SI interface@cf. Eq. ~3!# and the amplitudeAD determines
the level splitting due to coupling via tunneling. All branches
of the bound-state spectrum are fully developed if
ubu/2.AD or kL. lnuk/dku.12

The dispersion of the bandsE(f) determines the current
flowing through the bound states:I52e(dE/df).13 Taking
the derivative of Eq.~4!, one gets under conditions~7!,~8!
the current of the single level in the form

I ~E6!52 sgnE
eDD

2
sinf

3S 16
ubu

2AD
1

Asin2~f/2!1~dkL/2!2
D . ~10!

The first term in Eq.~10! is consistent with calculations
within the tunnel model, coinciding with the Ambegaokar-
Baratoff current of a single-mode junction atT50.2 The sec-
ond term dominates at small transparencyAD!b/2. It pos-
sesses an anomalous square-root dependence on the junction
transparency and anomalous@close to cos(f/2)# dependence
on the phase difference~Fig. 3!. This current corresponds to
the transition of Cooper pair between electrodes with the
probability proportional to the amplitude of the normal elec-

FIG. 2. Andreev level energies and wave functions in a single-
mode tunnel junction. Left part: Andreev level energiesE(f).0 as
functions of phase differencef across the junction. Full lines: Long
SIS junction (L51, V550); Dashed line: ShortSIS junction
(L50.2, V5270) having the same transparancyD as the long
junction but showing only a single Andreev level,E1 ~Ref. 12!.
Right part: Andreev wave functionsucu25uuu21uvu2 for the long
SIS junction atf5p; each of theu and v components are sym-
metric or antisymmetric aroundx50, makingE6 nearly ‘‘bonding’’
or ‘‘antibonding’’ states. In this figure the choice of parameters is
beyond the approximate Eqs.~8!,~9! to achieve suitable resolution.
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tron transition. From a physical point of view, this enhance-
ment of the tunnel current results from resonance coupling of
the surface states with the equal energies situated atSI in-
terfaces of the symmetric junction, Eq.~3!. This resonance
coupling causes large dispersion of the bound state bands, in
analogy with the energy level splitting in the Schro¨dinger
symmetric double well potential.14 We stress that the reso-
nant enhancement concerns only the tunneling of Cooper
pairs, while the normal electron tunneling is nonresonant. In
asymmetric junctions resonance coupling may be destroyed
if the relative shift of preexisting surface levels exceeds the
level splitting due to the tunnel interaction,bADD. A re-
striction on the difference of the order parameters in the left
and right electrodes,uDR2DLu<bADD, results from Eq.~9!
if the term@b2D sin2(f/2)1(DR2DL)

2/D2#1/2 is allowed to
replace the cross termADub sin(f/2)u.

The bound levels in symmetric low-transmission tunnel
junctions carry a current which tremendously exceeds the
known critical Josephson current. However, this current is
not manifested in equilibrium. Indeed, assuming Fermi dis-
tribution nF(E6) for the occupation numbers of the bound
levels, one finds with the assumed accuracy the current of all
bound states

I bound5 (
sgnE,6

I ~E6!nF~E6!5eDD tanh~D/2T!sinf.

~11!

This current is twice bigger than the magnitude of the Jo-
sephson current calculated for a single-mode junction within
the tunnel model2 and beyond it.15 However, in order to get
the total current one has to take into account the contribution
from the continuum

I cont5
e

pE dE$@ utN~f!u22utA~f!u2#2~f→2f!%nF~E!.

~12!

The normal transmission amplitudetN in Eq. ~12! has the
form:

tN5D̃
E@~E2j!a1e

if/22~E1j!a2e
2 if/2#

D2~cosa1cosb!22E2cosb12i jE sinb
, ~13!

where j5AE22D2. The Andreev transmission amplitude
tA is symmetric inf and drops out of Eq.~12!, which to-
gether with Eqs.~7!, ~8!, and~13! yields

I cont52
eD

2
D tanh~D/2T!sinf52

1

2
I bound. ~14!

The calculation presented above, as well as the results of
direct numerical calculations in Fig. 3, uncover a remarkable
fact, namely that the Josephson current in a symmetric junc-
tion with an extended tunnel barrier results from cancellation
of large resonant currents flowing through individual bound
states. This situation resembles the situation in a normal
junction: while individual scattering states of electrons carry
a finite current, the total current through the junction is equal
to zero in equilibrium due to cancellation of currents of the
modes incident from the right and from the left. To reveal the
net current of a single mode, one has to create a current
imbalance, connecting the junction to reservoirs with differ-
ent chemical potentials. In a similar way, creation of current
imbalance in the Josephson junction by means of nonequi-
librium population of the bound states is able to reveal the
current of a single bound state. For example, it is possible to
equalize the level populations within one of the bound level
pairs ~e.g., 6E2) by means of resonant electromagnetic
pumping, as suggested in Ref. 11. In principle, one might
then suppress the current of this level pair and thereby reveal
the current of the second pair of levels (6E1), which will
show up in a Josephson current enhanced by the factor of
ubu/2AD, flowing in the same direction as the equilibrium
current. Suppression of the current of the other level pair
6E1 , by a proper choice of the frequency of the pumping
field, will show up in an enhanced current flowing in the
opposite direction. Another possibility is to inject excess
quasiparticles into one of the bound levels by means of tun-
nel coupling to an additional normal electrode, i.e., to use a
three-terminal device similar to the one suggested by van
Weeset al.,16 in order to reveal the currents of individual
Andreev states in aSNSjunction ~see also Ref. 17!.

A crucial condition for observing the current of a single
bound state in experiment is sufficient resolution of the
bound level structure, with respect to both junction asymme-
try and level broadeningG: bADD>uDR2DLu,G. Combi-
nation of the resolution condition with the condition of a
long junction yields:b2D>uDR2DLu,G. An estimate of the
rate of quasiparticle recombination due to electron-phonon
scattering in the superconducting banks yieldsG/D;1022 at
the critical temperature, decreasing exponentially at low tem-
perature .18 The factorb2 depends on the height of the tunnel
barrier and varies between (D/m)2,b2,D/m in junctions
with high (V;m) and low (V2m;D) tunnel barriers. In
line with these estimates, one might expect to observe the
effect—giant Josephson current, Eq.~10!—in junctions with
very low tunnel barriers.

FIG. 3. dc Josephson currents in a single-mode tunnel junction
at T50 ~long SIS junction: D'2.431029, b'331022).
I15I (2E1) and I25I (2E2) are giant Josephson currents asso-
ciated with individual Andreev levels.I bound5I11I2 is the small
residual current from compensating giant bound-state currents.
I cont is the continuum contribution to the current@Eq. ~12!#.
I J5I bound1I cont is the ~total! Josephson current of the junction.
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A more realistic approach, however, would be to increase
the energy level splitting, increasing theb factor by making
SNI wells at the interfaces. Precisely such aSNINSstruc-
ture is realized in a gate controlled S-2DEG-S device19

where the tunnel barrier is produced in the quantum 2DEG
constriction by the gate potential. The advantage of such a
device is the potential possibility to control the asymmetry of
the junction by varying the relative size of normal regions.
For a symmetricSNINSstructure we find the same result for
the bound-state spectrum as in Eq.~4!, but with a factor
b54d/j0 (d!j0 , whered is the width of normal region!
corresponding to a preexisting surface state in eachSNI
well.20 This can easily provide a sufficiently largeb factor,
sayb;0.1. The asymmetry due to different effective length
of the normal regions does not destroy the effect provided
udR2dLu!j0AD.

In conclusion, we have studied a microscopic mechanism
of Josephson current transport in single-mode tunnel junc-
tions with wide quasiclassical tunnel barriers. We found that
each Andreev bound state in such junctions carries a giant
current proportional to the amplitude of normal electron
transmission through the junction. Experimental observation
of the current of a single bound state is possible under non-
equilibrium conditions.
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