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Giant Josephson current through a single bound state in a superconducting tunnel junction
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We study the microscopic structure of the Josephson current in a single-mode tunnel junction with a wide
quasiclassical tunnel barrier. In such a junction each Andreev bound state carries a current of magnitude
proportional to theamplitudeof the normal electron transmission through the junction. Tremendous enhance-
ment of the bound-state current is caused by the resonance coupling of superconducting bound states at both
superconductor-insulator interfaces of the junction. The possibility of experimental observation of the single
bound-state current is discussed.

The Josephson effect in a tunnel junction deals with coity of normal electron tunneling. The currents are distributed
herent transmission of Cooper pairs through a tunnel barriermong the bound states in such a way that they almost cancel
which separates superconducting electrodes. What is trgach other in equilibrium, giving rise to a comparatively
mechanism of such a transmission? Conventional theory aggmall residual current, including the contribution from the
the Josephson effetf based on the phenomenology of the continuum. This current coincides with the conventional Jo-
transfer Hamiltonian modél,does not provide adequate Sephson current given by Ambegaokar-Baratoff thécrie
physical description of this process, e.g., similar to the quanlarge current of the single bound state can be revealed under
tum mechanical picture of tunneling of normal electrons. In-nonequilibrium conditions when the bound level population
stead, it treats tunneling as a perturbative transition, introiS imbalanced by means of microwave pumping or tunnel
ducing a matrix element of coupling of electrons in different!Njéction.
electrodes proportional to the amplitude of single electron We consider for the sake of clarity a single mode quantum
tunneling® constriction with a rectangular potential barrier of lengith

A more realistic description of Josephson tunneling, base@nd heightv (Fig. 1). The structure is described by the one-
on the Bogoliubov—de Gennes equationas suggested by dimensional(1D) Bogoliubov-de Gennes equation:

Furusaki and TsukadaThe crucial role in this picture is

played by superconducting bound states, similar to Andreev p2\ .
bound states irBNSjunctions’ A bulk supercurrent, when H(ﬁ> —p+Vo(L/2—|x])
approaching the tunnel interface, experiences transformation

intq curren.t flowing t_hro_ugh supercondu_cting bound statesiin the order parameter matrix given by
which provide transmission of Cooper pairs through the bar-
rier. The bound states are induced in the vicinity of the junc- 0 Aol SIXS12
tion by the discontinuity of the superconducting phase and -

they appear as a consequence of the cufrémta quantum A(X)=| Ag~isoxs2 0 o(Ix|=L12); (2
junction the bound state spectrum consists of a single pair of
levels per transverse mode, with symmetric position of the
levels with respect to the chemical potential. The Josephson
current is distributed among bound states in such a way that
each bound state carries a current proportional to the normal S = S
electron transparency of the junction.

In this paper we show that the above picture of quantiza-
tion of the Josephson coupling is valid only for an extremely \V
narrow barrier and that the picture is qualitatively different
for any realistic tunnel barrier with large width on an atomic
scale. In the latter case, the structure of the bound-state spec- K
trum is determined by the coupling of superconducting sur-
face states situated at the t&d interfaces of theSISjunc-
tion. In a symmetric junction, the resonance coupling of L
these surface states provides tremendous enhancement of the
current flowing through a single bound state, the magnitude FIG. 1. Single-transverse-mode adiabatic junction modeled as a
being proportional to theamplituderather than the probabil- 1-dim SiSjunction with a wide barrier of length and heightv.

o+ A(x)] V=EV¥, (1
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a=u—E, is the chemical potential shifted by the energy of
the transverse modé,=1. 1 =
Consider first an isolate8| surface, assuming in Eql) -
L=c. Constructing the ansatz fbE|<A as a superposition
of eigenfunctions, with complex wave vectors 0.99 | E ]
ke=+v2m(a*i¢) ({=VA?—E?) in the superconducting re- ’ 5
gion and with decay rates. =2m[V—(u=*=E)] in the in- [
sulating region, we find the dispersion equation, keeping the
difference between electron and hole wave vectors to first 0.98
order, 1

>lm
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The surface level in Eq3) crucially depends on the finite Phase ¢/n
difference 6xk=k, — x_ of the decay rates of electron and
hole wave functions inside the insulator, while dephasing

. . : . FIG. 2. Andreev level energies and wave functions in a single-
inside the superconductor is not important and gives small : i
P P 9 mode tunnel junction. Left part: Andreev level enerdi€gh) >0 as

corrections omitted in Eq3). The level lies close to the gap functi . T ol

S . . - . unctions of phase differenag across the junction. Full lines: Long
edge within the Superconductlng gap, assuming a~typ~|cal Ifeéls junction (L=1, V=50); Dashed line: ShorSIS junction
lation among thesenezrgles 02f the problem<V—u<w, (L=0.2, V=270) having the same transparanby as the long
one hasA —E~(A°/2V)(k/«)*. The wave function of the ;nction but showing only a single Andreev level, (Ref. 12.
surface state decays into supercqnductor on the characterisfigynt part: Andreev wave functiorigs|2=|u|?+|o|? for the long
length scald ~ &,A/VA?—E? (&, is the coherence length SISjunction at¢=; each of theu andv components are sym-
and into insulator on the characteristic length sdald/x. metric or antisymmetric around=0, makingE.. nearly “bonding”

Proceeding to calculation of the coupling of surface statesr “antibonding” states. In this figure the choice of parameters is
at finite L<<c0 in Eq. (1), we construct wave functions by beyond the approximate Eq&),(9) to achieve suitable resolution.
means of a transfer matrix formalishwhich yields the fol-
2
[

lowing dispersion relation:
EEX . )
7| (Blxa>0), @ Wwhere|g|/2 \D|sin(@/2)| >0, D~D, |$|>|sx|L.
o B The solution presented in Eg&t),(9) generally consists
cosex=R+D cosp, sinB=D Im(a,a*), (5)  of two pairs of band¥(¢): =E,(¢) and =E_(¢), lying
- ~ o inside the superconducting gap symmetrically with respect to
where sz\/D+D,, R= VR:R-, and the transmission the chemical potential. The dephasing angledetermines
D.=la.|"* and reflectiorR. =1—D.. coefficients of nor-  the position of the preexisting surface states at the single
mal electrons with energy-E are given in terms of the g interface[ctf. Eq. (3)] and the amplitude/D determines
inverse transmission amplitudes the level splitting due to coupling via tunneling. All branches
P of the bound-state spectrum are fully developed if
a.=coshc.L—3 T_—K—)sinth. 6) |B|/2>\D or kL>In|«/Sx|.*?
= The dispersion of the band¥ ¢) determines the current
Equation(4) is valid for all values of the barrier lengthand  flowing through the bound statek=2e(dE/d¢).® Taking
barrier heightsv.° A numerical solution of this equation is the derivative of Eq(4), one gets under conditior§),(8)
presented in Fig. 2, which also shows the correspondinghe current of the single level in the form
wave functions. To get an explicit expression for the level

energy we consider barriers which are long on the scale of I(EL)=— sgrEEADsinqs

EZ=A2 , 9)

sinf
2

E?=A%cog

quasiparticle decax ! but short on the scale of quasiparti- 2
cle dephasingsx| 1: k~1<L<|8k| [ the last condition is
equivalent to /&) (k/k)<1]. In this case, the junction | 1+ |8l 1 (10)
transparencyD, the dephasing anglg, and the coupling _2\/5 VsirP(p/2) + (8kL12)? '
factor a are all smallD<1, D, =D _~=2DdxL, The first term in Eq.(10) is consistent with calculations
2kSk within the tunnel model, coinciding with the Ambegaokar-
B~ a2 |8]<1, (7)  Baratoff current of a single-mode junctionBt 0.2 The sec-
ond term dominates at small transparen@<,8/2. It pos-
a~2\/5\/sin2(¢/2)+(5KL/2)2<1. ) sesses an anomalous square-root dependence on the junction

transparency and anomalojdose to cosf/2)] dependence
The last term in Eq(8) is essential only in the close vicinity on the phase differendgig. 3). This current corresponds to
of $=0:|¢|~|dk|L. Since the energy dispersion gfcan the transition of Cooper pair between electrodes with the
be neglected, one finds from E@) probability proportional to the amplitude of the normal elec-
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The normal transmission amplitud® in Eq. (12) has the
form:

\_= E[E-Ha.e??—(E+fa_e ¥
- A%(cosa+ cog) — 2E°cogB+ 2i ¢E sing’

(13

where £é=E?—A?. The Andreev transmission amplitude
t” is symmetric ing and drops out of Eg(12), which to-
gether with Eqs(7), (8), and(13) yields

eA ) 1
| con=— 7D tanhA/2T)sing= — EI bound- (14

The calculation presented above, as well as the results of
FIG. 3. dc Josephson currents in a single-mode tunnel junctiogjirect numerical calculations in Fig. 3, uncover a remarkable
at T=0 (long SIS junction: D~2.4x10"%, p~3x10"%).  fact namely that the Josephson current in a symmetric junc-
l.=1(-E,) andl_=I(-E_) are giant Josephson currents asso-tjon with an extended tunnel barrier results from cancellation
ciated with individual Andreev leveldpoui=1. +1_ is the small ¢ 5146 resonant currents flowing through individual bound
residual current from compensating giant bound-state currentsyaseq This situation resembles the situation in a normal
:°°:“‘| 1S thel Co.nt':huuT ; Cogmbmr']on o the tcuf"t'f]'ﬁgq' (t1_2)]. junction: while individual scattering states of electrons carry
3= oound™ cont S the (tota) Josephson current of the junction. a finite current, the total current through the junction is equal
. . . . . to zero in equilibrium due to cancellation of currents of the
tron transition. From a physical point of view, this enhance-,qes incident from the right and from the left. To reveal the
ment of the tunnel current results from resonance coupling ofat current of a single mode, one has to create a current
the surface states with the equal energies situatesll @-  jmpajance, connecting the junction to reservoirs with differ-
terfaces of the symmetric junction, E(R). This resonance gnt chemical potentials. In a similar way, creation of current
coupling causes large dispersion of the bound state bands, jgnajance in the Josephson junction by means of nonequi-
analogy with the energy level splitting in the Schiger jinrium population of the bound states is able to reveal the
symmetric double well potentiaf. We stress that the reso- . rrent of a single bound state. For example, it is possible to
nant enhancement concerns only the tunneling of CoOp&lyajize the level populations within one of the bound level
pairs, while the normal electron tunneling is nonresonant. "bairs (e.g., *E_) by means of resonant electromagnetic
asymmetric junctions resonance coupling may be destroye umping, as suggested in Ref. 11. In principle, one might
if the relative shift of preexisting surface levels exceeds thgpop, suppress the current of this level pair and thereby reveal
level splitting due to the tunnel interactioByDA. Are-  the current of the second pair of levels E.,), which will
striction on the difference of the order parameters in the lefshow up in a Josephson current enhanced by the factor of
and right electrod¢$AR—AL|sﬁ\/5A, results from Eq(9) | g|/2yD, flowing in the same direction as the equilibrium
if the term[ 8°D sin(4/2) + (Ar—A)*/A%*]"?is allowed to  cyrrent. Suppression of the current of the other level pair
replace the cross terqiD| 8 sin(¢/2)). +E, , by a proper choice of the frequency of the pumping
The bound levels in symmetric low-transmission tunnelfield, will show up in an enhanced current flowing in the
junctions carry a current which tremendously exceeds thepposite direction. Another possibility is to inject excess
known critical Josephson current. However, this current isyuasiparticles into one of the bound levels by means of tun-
not manifested in equilibrium. Indeed, assuming Fermi disne| coupling to an additional normal electrode, i.e., to use a
tribution ng(E..) for the occupation numbers of the bound three-terminal device similar to the one suggested by van
levels, one finds with the assumed accuracy the current of allveeset al.’® in order to reveal the currents of individual
bound states Andreev states in 8N Sjunction (see also Ref. 17
A crucial condition for observing the current of a single
bound state in experiment is sufficient resolution of the
I bound™ 2+ I(E-)ne(E.)=eAD tanh(A/2T)sing. bound level structure, with respect to both junction asymme-
ST, (11) try and level broadenind': ,8\/5A>|AR—AL|,F. Combi-
nation of the resolution condition with the condition of a

. . . . 2 _ .
This current is twice bigger than the magnitude of the JO_Iong junction yields;3°A=|Ag—A,|,I'. An estimate of the

sephson current calculated for a single-mode junction withif & Of. qu§5|part|cle recombma‘uon due t'o electrog—zphonon
the tunnel modéland beyond it® However, in order to get Scattering in the superconducting banks yidlda~10"" at
' - ﬁhe critical temperature, decreasing exponentially at low tem-

perature*® The factor8? depends on the height of the tunnel
barrier and varies between\ (u)?<B2<A/u in junctions
with high (V~u) and low (V—u~A) tunnel barriers. In
€ line with these estimates, one might expect to observe the
— N 2_ 1A 21 (b — ’
Icom_wf dE{[ )"~ XA (8 PINe(B). effect—giant Josephson current, Efj0)—in junctions with
(12 very low tunnel barriers.

from the continuum
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A more realistic approach, however, would be to increase In conclusion, we have studied a microscopic mechanism
the energy level splitting, increasing tigefactor by making  of Josephson current transport in single-mode tunnel junc-
SNI wells at the interfaces. Precisely suctS&lINSstruc-  tions with wide quasiclassical tunnel barriers. We found that
ture is realized in a gate controlled S-2DEG-S deWice each Andreev bound state in such junctions carries a giant
where the tunnel barrier is produced in the quantum 2DEGurrent proportional to the amplitude of normal electron
constriction by the gate potential. The advantage of such gansmission through the junction. Experimental observation

device is the potential possibility to control the asymmetry ofof the current of a single bound state is possible under non-
the junction by varying the relative size of normal regions.gqilibrium conditions.

For a symmetriS NIN Sstructure we find the same result for

the bound-state spectrum as in Hd), but with a factor We gratefully acknowledge discussion with A. Slutskin,
B=4d/&, (d<&,, whered is the width of normal region R. Shekhter, H. Takayanagi, and J. Nitta. One of the authors
corresponding to a preexisting surface state in eadh  (G.W.) acknowledges computational assistance by A. Bern-
well.2° This can easily provide a sufficiently larggfactor,  tsson during the initial stages of this work. This work has
say8~0.1. The asymmetry due to different effective lengthbeen supported by the Swedish Natural Science Research
of the normal regions does not destroy the effect providedCouncil (NFR), and by the NUTEK/NFR Interdisciplinary
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