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A theory of magnetic Compton scattering is formulated. The cross section is found to be insensitive to
orbital effects, in agreement with recent experiments on transition-metal and rare-earth ferromagnets. When the
transferred energy is sufficiently small to generate substantial corrections to the impulse approximation, the
sensitivity to orbital moments of ordinary nonresonant magnetic scattering is recovered.

In x-ray Compton scattering from bound electrons,1,2 the
size of the momentum transfer,q5k12k2 , is large with re-
spect to the reciprocal of the~average! interparticle separa-
tion: qur12r2u@1; coherence effects are therefore negli-
gible, and one-particle properties are probed. Also, the
energy transfer,\v5\(v12v2), greatly exceeds the outer-
electron binding energy; the impulse approximation~IA ! ap-
plies, yielding the double-differential cross section3
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directly related to the Compton profile, that is, the projection
of the electron momentum density along the scattering wave
vector. Here,w(p) stands for the electron ground-state wave
function in momentum space;e1 and e2 denote photon po-
larizations. For simplicity, the cross section has been written
out for a single electron.

Equation~2! is obtained by considering theA2 term ~the
coupling to the electron diamagnetic current! in the interac-
tion Hamiltonian, which is taken in the weakly relativistic
limit 4 and treated in the lowest order Born approximation.
@The coupling is weak:r 05e2/(mc2)5a|e .] Corrections to
theA2 scattering arise from the couplings of radiation to the
electron paramagnetic current, thep•A term, and spin. The
latter is known to result in a cross section proportional to the
spin-polarized momentum distribution in a ferromagnetic
solid, as predicted by Platzman and Tzoar5 and observed by
Sakai and Ono.6

The paramagnetic term enters the scattering amplitude to
second order in perturbation theory and, far from an absorp-
tion threshold, can be written as a transverse current
operator7,8

2 igeiq•r
i

\k1
2 S k12k2

v1

v2
D3p•e2*3e1 ,

with k12k2v1 /v2.q, andg5(\v1)/(mc2). As shown by
Trammell,9

eiq•rq3p5g~q•r !q3p1g8~q•r !q3@r ~q•p!1~L3q!#,
~2!

with g(x)5(eix21)/(ix), displaying the angular momen-
tum contribution to the current.

Such a feature of expression~2! has led to the theoretical
prediction10,11 that magnetic Compton scattering should pro-
vide information on both spin and orbital magnetization den-
sities; including the possibility of a separation of the two
contributions. The technique could thus complement mag-
netic x-ray diffraction12,13 and dichroism.14

Experiments aimed at verifying these theoretical ideas
were reported by Collinset al.10 Data collected on metallic
iron and cobalt were shown to agree well with the predic-
tions.~Notice that in these systems the orbital contribution to
the magnetic moment is small with respect to its spin coun-
terpart.! However, significant departures from the expected
values were observed in HoFe2 , a ferrimagnet with domi-
nant orbital magnetization. This ambiguous outcome was
clarified by further experimental work showing that magnetic
Compton scattering arises solely from the spin magnetization
in the sample.15,16 These experiments detected the charge-
magnetic interference~see below!, by employing 45–50 keV
ingoing circularly polarized photons,\v.5 keV, and re-
versing the direction of the external~aligning! magnetic field
~asymmetric ratio!. To date no satisfactory theoretical expla-
nation for the lack of orbital information in magnetic Comp-
ton scattering has been put forward.

For weakly bound electrons, those that determine the
magnetic properties of the material, the IA yields accurate
results.3 As will be shown, this approximation severely re-
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stricts the form of the electron current operator. As a result,
the scattering response function is seen to contain no infor-
mation on the orbital magnetization density. Corrections to
the IA, which are very small for magnetic Compton scatter-
ing, can be calculated by time-dependent perturbation
theory.17 The potential the electrons are moving in, absent in
the IA, comes into play; its action results in a ‘‘bending’’ of
electron motion, thus displaying the onset of an evolution
towards the nonresonant x-ray scattering regime, where the
orbital momentum is indeed observable.13

X-ray scattering.Neglecting the coupling of radiation to
electron spin, the cross section for nonresonant x-ray scatter-
ing is given by7,8
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where j runs over all electrons in the target.
In momentum space, the intensity of interference scatter-

ing takes the form

(
p1p2 , f

Mg→ f~p1 ,p2 ,q!@q3~p11p2!•~h1h* !
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where

Mg→ f~p1 ,p2 ,q!5^gup12\q&^p1u f &^ f up2&^p22\qug&
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with h5(e23e1* )(e2* •e1). ~To simplify the notation, the ex-
pression has been written for a single electron, omitting un-
essential factors.! General features of the scattering process
upon reversal of an external magnetic field can be deter-
mined by analyzing the behavior of Eq.~4!.

When an external magnetic field is reversed, the eigen-
states of the system are turned into their complex conjugates
with the same eigenvalues.~As we are dealing with spin-
diagonal matrix elements, spin labels are omitted throughout
this work.! Then the property:̂c* up&5^2puc& results in
Mg*→ f* (p1 ,p2 ,q)5Mg→ f(2p2 ,2p1 ,2q). In a system
with inversion symmetry, the ground state has and the final
state can be taken to have,definite parity. Using the relation
^2puc&56^puc&, we have Mg→ f(2p2 ,2p1 ,2q)
5Mg→ f(p2 ,p1 ,q), that is,

Mg*→ f* ~p1 ,p2 ,q!5Mg→ f~p2 ,p1 ,q!. ~6!

Notice that in Eq.~4! the terms proportional toh1h* and
h2h* contain factors which are, respectively, symmetric
and antisymmetric under exchange ofp1 andp2 . From Eq.
~6!, we immediately conclude that, if parity is a good quan-
tum number, the (h1h* ) term remains unchanged, whereas
the (h2h* ) term changes sign upon reversal of an external
magnetic field.

The symmetric part~present for arbitrary polarization! of
Eq. ~4! gives a nonvanishing asymmetric ratio only when

ug& does not have a definite parity; this is the case of non-
centrosymmetric structures. The antisymmetric part~circular
polarization! yields a nonvanishing asymmetric ratio, irre-
spectively of the properties of the ground state under parity
transformations; ifug& has definite parity, the matrix element
changes sign upon field reversal and we have a genuine mag-
netic effect ~orbital magnetism!. The foregoing derivation
formalizes and adds to Blume’s remarks7 on the symmetry of
Eq. ~3!.

Compton scattering.Magnetic Compton scattering is
best analyzed by rewriting the interference cross section,
Eq. ~3!, after discarding the terms proportional to
exp@ iq•(r j2r j 8)#, jÞ j 8, as their contribution can be ne-
glected at large momentum transfers.18 We have
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with the response function given by
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(q3p commutes witheiq•r). Here,H̃5H2Eg , with H the
electron Hamiltonian:H5( j pj

2/2m1V, whereV includes
one- and two-body potentials, neglecting the spin-orbit inter-
action.

In the Compton regime, the energy transfer is much larger
than any energy associated with the ground-state magnetic
electrons; the ‘‘collision time’’ (;v21) is, therefore, very
short. A suitable time-dependent perturbation expansion of
the cross section is obtained from expression~8! when com-
bined with the identity
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To first order, the response function is then given by
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Centrosymmetric structures.The zeroth-order term,
F j
(0)(q,t), readily yields the scattering intensity in the IA; we

find ~again, unessential factors are omitted!
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When ug& is an eigenstate of the parity operator~we are
seeking a genuine magnetic effect!, then the reversal of an
external magnetic field results in

^g* up&^pug* &5^gup&^pug&. ~14!

The asymmetric ratio vanishes in this case;no orbital mag-
netism is detectable in the IA, irrespectively of the experi-
mental conditions, i.e., choice of photon polarization and
scattering geometry. The physical content of this result will
now be illustrated by analyzing the structure of the orbital
current in the IA regime.

Consider the general response function for interference
scattering at large momentum transfers

e2 i\q2t/2mF j~q,t !5h•^guq3Jj~q,t !r j
†~q!ug&

1h* •^gur j~q,t !q3Jj
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with Jj (q,t)5eiHt /\Jj (q)e
2 iHt /\, and similarly for r j .

Transverse-current and charge densities are given by

q3Jj~q!5e2 iq•r jq3pj ,

and

r j~q!5e2 iq•r j ,

respectively.
The nature of the current operator is determined by its

time evolution. As observed, the interaction time is very
short in the Compton regime; the potential terms,V, do not
play any role and the time dependence of operators is con-
trolled by the kinetic part of the Hamiltonian:
H→H05( j pj

2/2m. We have

eiH0t/\q3Jj~q!e2 iH0t/\5e2 iq•r j ~ t !q3pj , ~16!

with

r j~ t !5r j~0!1
pj t

m
;

that is, the current generated by freely moving electrons. It
contains no orbital magnetism. The angular momentum part
of Eq. ~2! is lost; this can be checked by substituting Eq.~16!
into ~15!; r j drops out of the expressions and we recover the
matrix element of Eq.~11!

e2 i\q2t/2m^gue2 ipj •qt/mq3pj ug&•~h1h* !,

which is invariant upon field reversal whenug& has definite
parity.19

The first order term, as from Eq.~12!, is conveniently
split into symmetric and antisymmetric components
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with fa(p1 ,p2 ,q,t)52fa(p2 ,p1 ,q,t). ~The explicit form of
the symmetric part is not required in the following.!
up(1)&5up1

(1)
•••pN

(1)& denotes anN-particle plane-wave state.
Consider the case of a ground state with definite parity.

By applying the rules previously given, it is readily shown
that the antisymmetric part of Eq.~17! changes sign upon
field reversal (g→g* ), thus describing a genuine magnetic
effect. The result is interpreted as follows. Adding
F j
(1)(q,t) to the cross section amounts to considering the

probability that the electron is scattered by the potentialV
within a lapse of timev21. As Compton scattering is very
fast, the probability is very small~corrections are of the or-
der: «el /«q;1023, that is, the ratio between a magnetic-
electron characteristic energy and the recoil energy, as shown
below! and the effect not observable in practice. The anti-
symmetric part~circular polarization! of Eq. ~17! has, how-
ever, an important meaning: the functionfa is nonzero only
for p1Þp2 , thus displaying the ‘‘bending’’ of electron mo-
tion. Upon reducing the photon energy transfer, higher order
terms become significant in Eq.~9!; when\v is of the order
of the magnetic electron ground-state characteristic energies,
the complete time-evolution operator is required to describe
its propagation; bound electron motion and full orbital mag-
netization are recovered. This is the case of x-ray magnetic
scattering.

Noncentrosymmetric structures.Compton scattering in
noncentrosymmetric structures, as described byF j

(0)(q,t) for
a parity-broken ground state, remains to be discussed. Equa-
tion ~14! is no longer valid in this case; the asymmetric ratio
~for arbitrary polarization! reads
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The quantityu^p(1)ug&u2 is not invariant upon reversal of or-
bital motion when parity is broken, and the cross section
provides information on the asymmetry of the electron wave
function ~projected along the scattering wave vector! in mo-
mentum space.

Moment analysis.The accuracy of the IA in centrosym-
metric structures can be assessed by evaluating the exact
momentsMn of the dynamic structure factor for interference
scattering; they are given by

Mn~q!5 i n
dn

dtn
e2 i\q2t/2m(

j
F j~q,t ! U

t50
.

Assuming inversion symmetry to hold, we find that
M050; furthermore, we have
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M15m21~h1h* !•^gu(
j
q3pj~q•pj !ug&, ~20!

and
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with «q5(\q)2/2m, the recoil energy.20 For interference
scattering,M2 is the lowest moment containing the potential
V. ~In the case of pure charge scattering, theA2 term alone,
V makes its first appearance inM3 .

3! M1 and the
V-independent terms ofMn , with n>2, are correctly repro-
duced by the IA, that is, byF j

(0) . It is straightforward to
verify that first-order corrections to the IA, as given by
F j
(1) , correctly reproduce theV-dependent part ofM2 .
An order of magnitude estimate of the size of the correc-

tions to the IA, responsible for a nonvanishing asymmetric

ratio in centrosymmetric systems, can be inferred from
M2 , taken in the large-q limit. We find
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^q̂3p~ q̂•p!&
;

«el
«q

, ~22!

with «el a magnetic-electron characteristic energy. The same
result can be obtained by evaluating the corresponding quan-
tity for higher momenta.@Notice that the correction to the IA
for pure charge scattering are found to be of the order:
(«el /«q)

2.3#
To summarize, this work has provided an explanation for

the absence of an orbital contribution to magnetic Compton
scattering. Within the IA, very accurate in describing the
process, orbital magnetic effects are seen to vanish. Correc-
tions to the IA cross section bear a reminiscence of bound
electron orbital motion, however, as shown by the moment
analysis, these contributions are very small and not observ-
able in practice.
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