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Percolation transition of the vortex lattice and c-axis resistivity
in high-temperature superconductors
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We use the three-dimensional Josephson-junction array system as a model for studying the temperature
dependence of the-axis resistivity of high-temperature superconductors, in the presence of an external
magnetic fieldH applied in thec direction. We show that the temperature at which the dissipation becomes
different from zero corresponds to a percolation transition of the vortex lattice. In addition, the qualitative
features of the resistivity versus temperature curves close to the transition are obtained starting from the
geometrical configurations of the vortices. The results apply to the ¢hgds andH=0.

Strong thermal fluctuations and anisotropy make theify with a percolation transition of the vortex system. Ex-
physics of the vortex lattice in higli; materials much more perimentally, it is observédhat the dissipation in the axis
rich and complicated than predictions of mean-fieldappears at different temperatures than in dbheplane. This
theoriest This shows up, in particular, in the complicated implies that the “irreversibility line” for a current parallel to
structure of the field-temperaturki{T) phase diagram of the the field is different than that corresponding to tteplane.
high T.’s. It seems to be clear that there is a line in M Here_we explore t.he fo_llowmg idea. At zero temperature
phase diagram that separates a low-temperature pha%e vortices are straight lines and the net force on each of
(known as the vortex glass ph3sevhere vortex lines are them when a small current'm theeaxis is present is zero. At
frozen in space, and a high-temperature phase in which t|18W temperatutre(,j \Ollortetx llr?es sltartt_to tWa”d:f and V(:crttﬁx
vortex lines move through the material due to thermal actj-00Ps are created due 1o thermal activation. However, 1f the
vation. The passage to the normal state when increasing ter%gmperature Is not too high, vortex Iogp; anq vortex Imt_as are

ot . ' till isolated from each other and dissipation in the linear

perature is likely to be a crossover, instead of a well-define

- . Tegime is zero—except for surface effe(dee below. When
transition. We call the curve that separates the low- and hlghi'ncreasing the temperature, vortex lines and thermally gener-
temperature phases the irreversibility lifte). TheV-I char-

o . , . ated vortex loops start to touch each other and for tempera-
acteristics when an external current is applied perpendiCly,es greater than a critical valif,, there will be a vortex

larly to the magnetic field is different above and_below thepath crossing the sample along thk plane. The net force
IL. Below the IL the V-I curves are well fitted by exerted by the current on this path is different from zero, and
V~exg(—I./1)*] with u andl ; being two parametersiand 4 finite dissipation will be observed. In this way we qualita-
the resistivity p of the system—which is defined as tively see that the existence of paths perpendicular to the
p=lim,_o(V/l)—is strictly zero. Above IL the behavior is current in the sample—i.e., the transversal percolation of the
ohmic, i.e.,vV~1.% vortex lattice—is crucial for the dissipation in tieeaxis®

When the current is applied parallel to the field, the mean The model used to test this idea is the three-dimensional
force exerted on the vortices is zero. However there are locdBD) Josephson-junction array on a discrete lattice, that has
forces—due to misalignment of the local magnetic field—been described in detail elsewhé&r@.The dynamics of the
that may give rise to dissipation. The most important mechamodel is contained in the evolution of the phasgét),
nism for dissipation in this configuration at intermediate tem-which are defined on the nodes of a cubic lattice and repre-
peratures is the thermal activation of vortex loops, whichsent the phase of the order parameter. Between nearest-
gives a voltagd/.~exd —1./1],* implying zero resistivity. I neighbor nodes there are Josephson junctions characterized
this work we show that when temperature is increased therby a critical currentl, and a normal resistancg,. The
is a phase transition at a temperatiigethat reflects a ther-  equations describing the model are
modynamic property of the vortex system and is signaled by o
the occurrence of a nonzero resistivity. In fact, tRé char- ., i 1 ¢ —¢) "
acteristic for Y-Ba-Cu-O, when current and magnetic fieldl" =!oSin(¢'—¢" —A" )+ o= ————+7" (), (1)
are parallel to the-axis, show the following behavior® for 0
small currents and high temperature the response is ohmic, L
the range of currents that gives a linear response is reduced 20 = e 2
as the temperature decreases, and at a well-defined tempera- i}
ture T, the linear behavior disappears. Moreover, the . . h i
curves can be scaled on two universal curves, corresponding .Equat|on (1)_ glvgs t_ e current et\’Neen ne_grgst-
to T>T, andT<T, respectively. This behavior—similar to Neighbor nodes andi’ with phasesp' ande" . HereA" is
what occurs when the current is applied in tieplane— th_e vector potential of the external magnetic field, and
supports the idea of a thermodynamic transition that we idens" '(t) is an uncorrelated Gaussian noise which incorporates

0163-1829/96/5@)/538(4)/$06.00 53 R538 © 1996 The American Physical Society



53 PERCOLATION TRANSITION OF THE VORTEX LATTICE AND . .. R539

the effect of temperature. Equatic() assures the current 9
conservation on each node, ajig, is the external current L=8
applied at node.

The model allows for the existence of vortices, which
consist in singularities of the phasegt) around a given
closed path. Self-inductance and disorder effects are not con-
sidered and the system is taken to be isotropic for
simplicity—i.e., 1o and R, are taken to be constant through-
out the lattice.

We numerically integrate Eq$l) and (2) in time. \Volt- 1

p (arb. units)

ages at different points of the sample are calculated as the ;? 2t
temporal mean value of the time derivative of the phases § z

¢. The resistivity of the sample in a given direction is cal- S 1t

culated by injecting a small external currefiypically o g
around~ 1/20 of the critical current of the junctionby one % ks

of the faces of the sample and withdrawing it from the op- E éo
posite face. The small value of the external current is chosen 8

in order to be in the linear regime, in which the voltage drop %0

is proportional to the applied current.
The boundary conditiond8C) are taken to be open in the
ab plane. However, if open BC in theaxis are used, there g 1. (q) Resistivity along thes axis (solid circles and along
will be a finite force on an isolated vortex at a finite tempera-the ap plane(open circley and(b) probability of percolation across
ture if the top and bottom ends of the vortex are not alignedihe sample for a cubic lattice of sizevs temperaturdin units of
The dissipation—which is nonzero even in the linearthe Josephson energy of an individual juncliomset: percolation
regime—caused by this net force turns out to be independemtobability vs scaled temperatube (see the text for definition
of the thickness of the sampteand in this sense, is only a Different symbols correspond to different sizes of the sample.
surface effect. In order to eliminate this spurious surface ef-
fect it is crucial to use BC for the direction that assure that (LayXLapX L., Layy=L.=L) sample for an external field of
each vortex line leaving the sample at a given point of thed.2 (in units of quantum fluxes per plaquéttes a function of
bottom plane reenters at the same point of the top plandemperaturewhich is measured in units of the Josephson
Strict periodic BC on the phaseshave this property, how- energy of the junctionsfor three different sizes of the sys-
ever, we would obtain that the voltage difference betweeriem:L=8, 16, and 24. For comparison, the resistivity when
top and bottom planes is identically zero. We use, insteadhe current is applied perpendicularly to the field is also
open BC for the mean value of the phases in the tpp) ( shown for the case df =8. It is clearly seen that the onset
and bottom ) planes, and periodic BC for all the phase temperature for the dissipation in theaxis T, is higher than
differencese’ — ¢} and o5 — @L. This guarantees the peri- that corresponding to thab plane:* Figure Ib) shows the
odicity of the vortex configurations and permits the calcula-Probability that the vortex lines have percolated through the
tion of the c-axis resistivity. sample along tha&b plane. We see a percolation transition
We have to define a criterium for percolation: in our aroundT, that becomes narrower the greater the size of the
model there is a typical length which is the lattice parametegystem. This indicates that there exists a sharp percolation
a. Distances smaller thaa cannot be resolved. Flux conser- transition in the thermodynamic limit. As an additional
vation implies that every flux line going into a unit cell of check, in the inset of Fig. (b) the data of Fig. () are
our lattice also goes out of the cell. When two vortices goplotted versus a rescaled variabbe x=Lg,{1/2—[1
into the same elemental cell we cannot tell which one of the- exp(—A/T)]'<}, where @=0.7, andA=3.75 are numeri-
two outgoing vortices corresponds to each one of the ingoingally found parameters. This scaling comes up by using a
vortices. We interpret this situation as the meeting of twosimple model for the percolatiof.It strongly suggest that a
vortex lines. In a real material this corresponds to two vortexpercolative thermodynamical phase transition is occurring
lines being at a distance lower than the core size of the vorin the system.
tex. At high enough temperatures the vortex structure may By comparing Figs. (& and Xb) it can be seen that the
percolate perpendicularly to the applied field: starting fromtemperaturel’, wherec-axis resistivity starts to be different
one side of the sample we can follow a vortex line and arrivefrom zero is the same temperature at which the percolation
at the opposite side of the sample. Due to the finite size oprobability becomes finite. This indicates—as qualitatively
the systems used and the dynamical evolution, percolation ®@iscussed above—that the percolation transition is a neces-
not expected to occur every time, but only at a given fractiorsary condition for the existence of dissipation in thdirec-
of the total time, which depends on temperature. We evaluatgon. Moreover, T, decreases with the thickness of the
the probability that there exists a vortex line crossing thesample. The form of this dependence is obtained by putting
system from one side to the opposite as a function of temx=0, and solving fofT as a function oL.. We thus obtain
perature. Because a sharp percolation transition can only Her largeL . the resultT,~1/In(L,).
seen in the thermodynamic limit, we do scaling with the size In addition, we would like to have a more quantitative
of the system. estimation of the resistivity, based on the geometrical con-
In Fig. 1@ we show the resistivity of a cubic figurations of the vortex system. This can be accomplished in
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H=0.2.
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FIG. 2. Schematic two-dimensional representation of percola- 1 , . . :
tion paths(broken line$ of vortex lines (solid lineg across the | ~Lclap/H - In this way we obtain the following scaling

sample for the cased=0 (a) andH>0 (b). Note in (a) the two O the resistivity near the percolation threshold:
different percolation paths with the same end points, ang)inhe

2
percolation through the externally generated vortex lines. p~SILgpke  for H<H oss ()
p~SIL2 LS for H>H e (%)
the following way. Consider a sample of sizg (L ;) in the Th_is scaling is expected to be valid only close to the perco-
c(ab) direction. The resistivity of the sample in thec di-  lation threshold. _ _ ,
rection is proportional to the number of pathshat cross the The crossover fielH ¢ oss is estimated asd o6~ 1/L¢,

sample in theab plane per unit of area, times the velocity ~and corresponds to the zero-temperature lattice parameter of
this path acquires under the external force, divided by théhe vortex structure being equal to the thickness of the
external current densityji: p~nv/j. The velocity v is  sample.(The value of this field is about 20 G for adm
given—using a viscous fluid argument—by the externalthick sample. For the valueH=0.2 used in Fig. 1 we find
force F divided by a total viscosityy, which is equal to a the case oH>Hfor all the values oL, considered.
specific viscosity coefficient, times the total length of the ~ In order to check the previous estimations, in Fig) 3ve
vortex path, which we will call, i.e.,v=F/g5,l. The force compare the values ofL2L3 and S versus temperature

F is given in term of the external current and the size of thewhenlL,, is varied between 16 and 30, fetr=0.2. In Fig.
system:F~jL,,. We obtainp~nL,,/nol. The coefficient  3(b) pLgbLg and S versus temperature are compared when
70 depends on temperature; however, on small ranges near, is varied between 12 and 24, for the same fidle 0.2.

the percolation threshold we will take it as a constant. TheThe only free parameter of the fitting is a global factor,
determination ofh andl is a difficult task, because the per- which is the same in Figs.(® and 3b). The agreement
colation paths across the sample are not uniquely defined dutween the numerically calculated values and the estimated
to the crossing of vortex lindsee Fig. 2a)]. We will use the  ones close to the threshold is fairly good if we take into
following estimation: we assume that<| X L,,X L. is the  account all the approximations made in order to obtain Egs.
volume S of the percolation cluster in a sample of volume (3) and(4). A more precise estimation of the resistivity using
LapXLapXLe. The value ofS can be easily evaluated from only the geometrical configurations of vortex lines seems to
the numerical simulation. We obtajn~S/70%L.. The need be difficult because of the following facts: the percolation
to estimate the value dfremains. This lengthdepends both paths across the sample are not uniquely defisee Fig.

on temperature and the size of the system. As we said, 2(a)], and the real movement of vortex lines under the exter-
direct numerical determination dfis difficult due to inde- nal force will depend on the cutting energy. The viscosity
terminacies at the crossing points of the vortex lines. We willy, is not a constant, but a function of temperature. In addi-
use the most crude estimatigsee Fig. 2 when the mag- tion, the supposition of a phenomenological viscous motion
netic fieldH is close to zero—i.eHl <H s, WhereHssis  of vortex lines may not be accurate at low temperatures,
a crossover field which is defined below—we tdkel .. when vortices creep.

However, forH>H s percolation proceeds via the exter- The existence of two resistive transitiofia the c axis

nal field generated vortices and the length of a percolatiomnd the ab plane has been experimentally observed in
path is much larger, and can be estimated to ber-Ba-Cu-O° The values of the two characteristic tempera-
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tures depend on the pinning, vortex elasticity, and magneticection is related to a percolation transition of vortex lines in
field. In Y-Ba-Cu-0O, as the thickness of the sample increasethe ab plane. The results hold fdi #0 andH=0. A quali-

the two temperatures become closer to each other. In ouative estimation of the resistivity near the threshold, and its
simulations we find that the temperature at which the percofinite-size scaling has been given. For the sizes of the isotro-
lation transition occurs decreases-a$/In(L,),'* as it can be  pic systems used, the percolation transition occurs at a higher
deduced from the scaling in inset of Figbl temperature than the resistive transition in #beplane, and

~ The thermal excitations in the form of vortex lines cross-corresponds to a thermodynamic transition that should be
ing the sample along thab plane destroy the phase coher- characterized by critical exponents different from those ob-
ence along the axis. ForT>T, the coherence lengify is  (ained for the vortex glass transition when current is applied

of the order of the mean distance between percolation pathsy g e to theab plane. We expect these results to be valid
i.e., é&.~Ls/nY2 We conclude that the mechanism that leads

AR : . also for anisotropic systems, at least in the case of moderate

to the 2D-3D transition in higf-, materials with moderate ; ;

. . . N ; anisotropy, as in Y-Ba-Cu-O.
anisotropy is the percolation of vortex line perpendicular to
the external field. We acknowledge D. Ljpez and F. de la Cruz for helpful

In summary, for a model high-temperature superconductodiscussions and critical reading of the manuscript. E.A.J. is
we have shown by using qualitative arguments and numerisupported by CONICET. C.A.B. is partially supported by
cal simulations, that the onset of the resistivity in thdi-  CONICET.
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