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We use the three-dimensional Josephson-junction array system as a model for studying the temperature
dependence of thec-axis resistivity of high-temperature superconductors, in the presence of an external
magnetic fieldH applied in thec direction. We show that the temperature at which the dissipation becomes
different from zero corresponds to a percolation transition of the vortex lattice. In addition, the qualitative
features of the resistivity versus temperature curves close to the transition are obtained starting from the
geometrical configurations of the vortices. The results apply to the casesHÞ0 andH50.

Strong thermal fluctuations and anisotropy make the
physics of the vortex lattice in high-Tc materials much more
rich and complicated than predictions of mean-field
theories.1 This shows up, in particular, in the complicated
structure of the field-temperature (H-T! phase diagram of the
high Tc’s. It seems to be clear that there is a line in theH-T
phase diagram that separates a low-temperature phase
~known as the vortex glass phase2! where vortex lines are
frozen in space, and a high-temperature phase in which the
vortex lines move through the material due to thermal acti-
vation. The passage to the normal state when increasing tem-
perature is likely to be a crossover, instead of a well-defined
transition. We call the curve that separates the low- and high-
temperature phases the irreversibility line~IL !. TheV-I char-
acteristics when an external current is applied perpendicu-
larly to the magnetic field is different above and below the
IL. Below the IL the V-I curves are well fitted by
V;exp@(2Ic /I)

m# with m andI c being two parameters,
2,3 and

the resistivity r of the system—which is defined as
r5 limI→0(V/I )—is strictly zero. Above IL the behavior is
ohmic, i.e.,V;I .4

When the current is applied parallel to the field, the mean
force exerted on the vortices is zero. However there are local
forces—due to misalignment of the local magnetic field—
that may give rise to dissipation. The most important mecha-
nism for dissipation in this configuration at intermediate tem-
peratures is the thermal activation of vortex loops, which
gives a voltageVc;exp@2Ic /I#,

1 implying zero resistivity. In
this work we show that when temperature is increased there
is a phase transition at a temperatureTp that reflects a ther-
modynamic property of the vortex system and is signaled by
the occurrence of a nonzero resistivity. In fact, theI -V char-
acteristic for Y-Ba-Cu-O, when current and magnetic field
are parallel to thec-axis, show the following behavior:5,6 for
small currents and high temperature the response is ohmic,
the range of currents that gives a linear response is reduced
as the temperature decreases, and at a well-defined tempera-
ture Tp the linear behavior disappears. Moreover, theI -V
curves can be scaled on two universal curves, corresponding
to T.Tp andT,Tp respectively.

7 This behavior—similar to
what occurs when the current is applied in theab-plane—
supports the idea of a thermodynamic transition that we iden-

tify with a percolation transition of the vortex system. Ex-
perimentally, it is observed5 that the dissipation in thec axis
appears at different temperatures than in theab plane. This
implies that the ‘‘irreversibility line’’ for a current parallel to
the field is different than that corresponding to theab plane.

Here we explore the following idea. At zero temperature
the vortices are straight lines and the net force on each of
them when a small current in thec axis is present is zero. At
low temperature, vortex lines start to wander and vortex
loops are created due to thermal activation. However, if the
temperature is not too high, vortex loops and vortex lines are
still isolated from each other and dissipation in the linear
regime is zero—except for surface effects~see below!. When
increasing the temperature, vortex lines and thermally gener-
ated vortex loops start to touch each other and for tempera-
tures greater than a critical valueTp , there will be a vortex
path crossing the sample along theab plane. The net force
exerted by the current on this path is different from zero, and
a finite dissipation will be observed. In this way we qualita-
tively see that the existence of paths perpendicular to the
current in the sample—i.e., the transversal percolation of the
vortex lattice—is crucial for the dissipation in thec axis.8

The model used to test this idea is the three-dimensional
~3D! Josephson-junction array on a discrete lattice, that has
been described in detail elsewhere.9,10 The dynamics of the
model is contained in the evolution of the phasesw i(t),
which are defined on the nodes of a cubic lattice and repre-
sent the phase of the order parameter. Between nearest-
neighbor nodes there are Josephson junctions characterized
by a critical currentI 0 and a normal resistanceR0 . The
equations describing the model are

j i i 85I 0sin~w i2w i 82Aii 8!1
1

R0

]~w i2w i 8!

]t
1h i i 8~ t !, ~1!

(
$ i 8%

j i i 85 j ext
i . ~2!

Equation ~1! gives the currentj i i 8 between nearest-
neighbor nodesi and i 8 with phasesw i andw i 8. HereAii 8 is
the vector potential of the external magnetic field, and
h i i 8(t) is an uncorrelated Gaussian noise which incorporates
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the effect of temperature. Equation~2! assures the current
conservation on each node, andj ext

i is the external current
applied at nodei .

The model allows for the existence of vortices, which
consist in singularities of the phasesw(t) around a given
closed path. Self-inductance and disorder effects are not con-
sidered and the system is taken to be isotropic for
simplicity—i.e., I 0 andR0 are taken to be constant through-
out the lattice.

We numerically integrate Eqs.~1! and ~2! in time. Volt-
ages at different points of the sample are calculated as the
temporal mean value of the time derivative of the phases
w. The resistivity of the sample in a given direction is cal-
culated by injecting a small external current~typically
around;1/20 of the critical current of the junctions! by one
of the faces of the sample and withdrawing it from the op-
posite face. The small value of the external current is chosen
in order to be in the linear regime, in which the voltage drop
is proportional to the applied current.

The boundary conditions~BC! are taken to be open in the
ab plane. However, if open BC in thec axis are used, there
will be a finite force on an isolated vortex at a finite tempera-
ture if the top and bottom ends of the vortex are not aligned.
The dissipation—which is nonzero even in the linear
regime—caused by this net force turns out to be independent
of the thickness of the sample,10 and in this sense, is only a
surface effect. In order to eliminate this spurious surface ef-
fect it is crucial to use BC for thec direction that assure that
each vortex line leaving the sample at a given point of the
bottom plane reenters at the same point of the top plane.
Strict periodic BC on the phasesw have this property, how-
ever, we would obtain that the voltage difference between
top and bottom planes is identically zero. We use, instead,
open BC for the mean value of the phases in the top (w̄T)
and bottom (w̄B) planes, and periodic BC for all the phase
differenceswT

i 2wT
j andwB

i 2wB
j . This guarantees the peri-

odicity of the vortex configurations and permits the calcula-
tion of thec-axis resistivity.

We have to define a criterium for percolation: in our
model there is a typical length which is the lattice parameter
a. Distances smaller thana cannot be resolved. Flux conser-
vation implies that every flux line going into a unit cell of
our lattice also goes out of the cell. When two vortices go
into the same elemental cell we cannot tell which one of the
two outgoing vortices corresponds to each one of the ingoing
vortices. We interpret this situation as the meeting of two
vortex lines. In a real material this corresponds to two vortex
lines being at a distance lower than the core size of the vor-
tex. At high enough temperatures the vortex structure may
percolate perpendicularly to the applied field: starting from
one side of the sample we can follow a vortex line and arrive
at the opposite side of the sample. Due to the finite size of
the systems used and the dynamical evolution, percolation is
not expected to occur every time, but only at a given fraction
of the total time, which depends on temperature. We evaluate
the probability that there exists a vortex line crossing the
system from one side to the opposite as a function of tem-
perature. Because a sharp percolation transition can only be
seen in the thermodynamic limit, we do scaling with the size
of the system.

In Fig. 1~a! we show the resistivity of a cubic

(Lab3Lab3Lc , Lab5Lc[L) sample for an external field of
0.2 ~in units of quantum fluxes per plaquette! as a function of
temperature~which is measured in units of the Josephson
energy of the junctions! for three different sizes of the sys-
tem:L58, 16, and 24. For comparison, the resistivity when
the current is applied perpendicularly to the field is also
shown for the case ofL58. It is clearly seen that the onset
temperature for the dissipation in thec-axisTp is higher than
that corresponding to theab plane.11 Figure 1~b! shows the
probability that the vortex lines have percolated through the
sample along theab plane. We see a percolation transition
aroundTp that becomes narrower the greater the size of the
system. This indicates that there exists a sharp percolation
transition in the thermodynamic limit. As an additional
check, in the inset of Fig. 1~b! the data of Fig. 1~b! are
plotted versus a rescaled variablex̃: x̃5Lab

a $1/22@1
2exp(2D/T)]Lc%, wherea50.7, andD53.75 are numeri-
cally found parameters. This scaling comes up by using a
simple model for the percolation.12 It strongly suggest that a
~percolative! thermodynamical phase transition is occurring
in the system.

By comparing Figs. 1~a! and 1~b! it can be seen that the
temperatureTp wherec-axis resistivity starts to be different
from zero is the same temperature at which the percolation
probability becomes finite. This indicates—as qualitatively
discussed above—that the percolation transition is a neces-
sary condition for the existence of dissipation in thec direc-
tion. Moreover, Tp decreases with the thickness of the
sample. The form of this dependence is obtained by putting
x̃50, and solving forT as a function ofLc . We thus obtain
for largeLc the resultTp;1/ln(Lc).

In addition, we would like to have a more quantitative
estimation of the resistivity, based on the geometrical con-
figurations of the vortex system. This can be accomplished in

FIG. 1. ~a! Resistivity along thec axis ~solid circles! and along
theabplane~open circles!, and~b! probability of percolation across
the sample for a cubic lattice of sizeL vs temperature~in units of
the Josephson energy of an individual junction!. Inset: percolation
probability vs scaled temperaturex̃ ~see the text for definition!.
Different symbols correspond to different sizes of the sample.
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the following way. Consider a sample of sizeLc (Lab) in the
c~ab! direction. The resistivityr of the sample in thec di-
rection is proportional to the number of pathsn that cross the
sample in theab plane per unit of area, times the velocityv
this path acquires under the external force, divided by the
external current densityj : r;nv/ j . The velocity v is
given—using a viscous fluid argument—by the external
force F divided by a total viscosityh, which is equal to a
specific viscosity coefficienth0 times the total length of the
vortex path, which we will calll , i.e., v5F/h0l . The force
F is given in term of the external current and the size of the
system:F; jL ab . We obtainr;nLab /h0l . The coefficient
h0 depends on temperature; however, on small ranges near
the percolation threshold we will take it as a constant. The
determination ofn and l is a difficult task, because the per-
colation paths across the sample are not uniquely defined due
to the crossing of vortex lines@see Fig. 2~a!#. We will use the
following estimation: we assume thatn3 l3Lab3Lc is the
volumeS of the percolation cluster in a sample of volume
Lab3Lab3Lc . The value ofS can be easily evaluated from
the numerical simulation. We obtainr;S/h0l

2Lc . The need
to estimate the value ofl remains. This lengthl depends both
on temperature and the size of the system. As we said, a
direct numerical determination ofl is difficult due to inde-
terminacies at the crossing points of the vortex lines. We will
use the most crude estimation~see Fig. 2!: when the mag-
netic fieldH is close to zero—i.e.,H,Hcross, whereHcrossis
a crossover field which is defined below—we takel;Lab .
However, forH.Hcross, percolation proceeds via the exter-
nal field generated vortices and the length of a percolation
path is much larger, and can be estimated to be

l;LcLab /H
21/2. In this way we obtain the following scaling

for the resistivity near the percolation threshold:

r;S/Lab
2 Lc for H,Hcross, ~3!

r;S/Lab
2 Lc

3 for H.Hcross. ~4!

This scaling is expected to be valid only close to the perco-
lation threshold.

The crossover fieldHcross is estimated asHcross;1/Lc
2 ,

and corresponds to the zero-temperature lattice parameter of
the vortex structure being equal to the thickness of the
sample.~The value of this field is about 20 G for a 1mm
thick sample.! For the valueH50.2 used in Fig. 1 we find
the case ofH@Hcross for all the values ofLz considered.

In order to check the previous estimations, in Fig. 3~a! we
compare the values ofrLab

2 Lc
3 and S versus temperature

whenLab is varied between 16 and 30, forH50.2. In Fig.
3~b! rLab

2 Lc
3 andS versus temperature are compared when

Lc is varied between 12 and 24, for the same fieldH50.2.
The only free parameter of the fitting is a global factor,
which is the same in Figs. 3~a! and 3~b!. The agreement
between the numerically calculated values and the estimated
ones close to the threshold is fairly good if we take into
account all the approximations made in order to obtain Eqs.
~3! and~4!. A more precise estimation of the resistivity using
only the geometrical configurations of vortex lines seems to
be difficult because of the following facts: the percolation
paths across the sample are not uniquely defined@see Fig.
2~a!#, and the real movement of vortex lines under the exter-
nal force will depend on the cutting energy. The viscosity
h0 is not a constant, but a function of temperature. In addi-
tion, the supposition of a phenomenological viscous motion
of vortex lines may not be accurate at low temperatures,
when vortices creep.

The existence of two resistive transitions~in the c axis
and the ab plane! has been experimentally observed in
Y-Ba-Cu-O.6 The values of the two characteristic tempera-

FIG. 2. Schematic two-dimensional representation of percola-
tion paths~broken lines! of vortex lines ~solid lines! across the
sample for the casesH50 ~a! andH.0 ~b!. Note in ~a! the two
different percolation paths with the same end points, and in~b! the
percolation through the externally generated vortex lines.

FIG. 3. Numerically calculated resistivity timesLab
2 Lc

3 ~solid
symbols! and volume of the percolation clusterS ~open symbols! vs
temperature for different sizes of the sample (Lab3Lab3Lc), and
H50.2.
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tures depend on the pinning, vortex elasticity, and magnetic
field. In Y-Ba-Cu-O, as the thickness of the sample increases
the two temperatures become closer to each other. In our
simulations we find that the temperature at which the perco-
lation transition occurs decreases as;1/ln(Lc),

12 as it can be
deduced from the scaling in inset of Fig. 1~b!.

The thermal excitations in the form of vortex lines cross-
ing the sample along theab plane destroy the phase coher-
ence along thec axis. ForT.Tp the coherence lengthjc is
of the order of the mean distance between percolation paths,
i.e., jc;Lc /n

1/2. We conclude that the mechanism that leads
to the 2D-3D transition in high-Tc materials with moderate
anisotropy is the percolation of vortex line perpendicular to
the external field.

In summary, for a model high-temperature superconductor
we have shown by using qualitative arguments and numeri-
cal simulations, that the onset of the resistivity in thec di-

rection is related to a percolation transition of vortex lines in
theab plane. The results hold forHÞ0 andH50. A quali-
tative estimation of the resistivity near the threshold, and its
finite-size scaling has been given. For the sizes of the isotro-
pic systems used, the percolation transition occurs at a higher
temperature than the resistive transition in theab plane, and
corresponds to a thermodynamic transition that should be
characterized by critical exponents different from those ob-
tained for the vortex glass transition when current is applied
parallel to theab plane. We expect these results to be valid
also for anisotropic systems, at least in the case of moderate
anisotropy, as in Y-Ba-Cu-O.
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