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We have studied the three-dimensional Ising spin glass with a6J distribution by Monte Carlo simulations.
Using larger sizes and much better statistics than in earlier work, a finite-size scaling analysis shows quite
strong evidence for a finite transition temperatureTc with ordering belowTc . Our estimate of the transition
temperature is rather lower than in earlier work, and the value of the correlation length exponentn is somewhat
higher. Because there may be~unknown! corrections to finite-size scaling, we do not completely rule out the
possibility thatTc50 or thatTc is finite but with no order belowTc . However, from our data, these possi-
bilities seem less likely.

The question of whether there is a finite transition tem-
peratureTc in an Ising spin glass in three dimensions has
aroused a lot of interest for the last two decades,1 and the
consensus of opinion has changed several times. About one
decade ago, several pieces of work2–5 seemed to show that
there is a finiteTc , and this conclusion has generally been
restated since then.6 However, on closer inspection, the case
is not completely closed. For example, the work of one of
us,2 henceforth referred to as BY, is unable to rule out the
possibility thatTc50 and the correlation lengthj diverges
exponentiallyas T→0, as happens in the two-dimensional
Heisenberg ferromagnet. The data is also consistent with a
line of critical points terminating atTc.1.2, as occurs in the
Kosterlitz-Thouless-Berezinskii theory of the two-
dimensionalXY ferromagnet. In this scenario there would be
no long-range spin-glass order belowTc . Furthermore, re-
cent results of Marinariet al.7 were found to be consistent
bothwith a finite Tc and with a zero-temperature transition
where the correlation length diverges exponentially,
j;exp(A/T4). We therefore feel there are three possible sce-
narios consistent with existing work:~i! Tc is finite and there
is spin-glass order at lower temperatures,~ii ! Tc is finite but
there is a line of critical points~i.e., no spin-glass order! at
lower temperatures,~iii ! Tc50 and the correlation length
diverges exponentially asT→0. During the last decade
available computer power has increased enormously so,
given these uncertainties, it is useful to look at the problem
again. The calculations presented here are similar to those of
BY, but we are able to study larger system sizes in the tem-
perature range of interest and obtainmuchbetter statistics by
averaging over many more samples. As a result, unlike BY,
we are able to see clear evidence forordering below a finite
Tc .

The Hamiltonian is

H52(
^ i , j &

Ji j SiSj , ~1!

where the spinsSi take values61 and the nearest-neighbor
interactionsJi j take values61 with equal probability. The

simple cubic lattice containsN5L3 spins and has periodic
boundary conditions. In some previous work,$Ji j % was gen-
erated so that the the number of ferromagnetic couplings is
exactly the same as that of antiferromagnetic couplings. We
do not impose such a condition in the present work.

The Monte Carlo simulation uses a multispin coding
technique8 in which each spin and bond is represented by a
single bit of a computer word. On a 32 bit machine we then
flip in parallel 32 spins~on the same lattice site but in dif-
ferent samples with different realizations of the disorder!.
For this method to be efficient thesamerandom number is
used for each bit.9 We use a shift register random number
generator,10,11 commonly known as R250. The code runs at
27 million spin updates per second on one node~IBM 390
RISC workstation! of the SP2 computer at the Maui High
Performance Computing Center. Since we need many more
than 32 samples, we ran the same code independently on
many nodes at the same time. Each node produces its own
output file from which the final averaging is easily done
using a Unix Shell script. Monte Carlo simulations of ran-
dom systems thus provide an example where parallel com-
puting can be done in a trivial~and almost perfectly efficient!
way. The total CPU time used for the data presented here is
about nine node years. To get good statistics we average over
a large number of samplesNs , where for each sizeNs is at
least the value in the third column in Table I. Aftert0 sweeps
for equilibration, an additional 2t0 sweeps are carried out for

TABLE I. For each sizeL we show the largest value oft0
~where, as explained in the text, the simulation ran for 3t0 sweeps!
and the minimum number of samplesNs .

L Largestt0 Minimum Ns

6 43105 8192
8 13106 8192
12 83106 6880
16 153106 3392
24 53106 2080
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measurements. For each size, the largest value oft0 used is
also shown in Table I~this is for the lowest temperature: at
higher temperatures many fewer sweeps are generally
needed!.

As usual,2 for each realization of the bonds, two copies of
the system are studied with different initial values of the
spins and different random numbers for generating the spin
flips. Of particular importance is the overlap between the two
copies,

q5
1

N (
i51

N

Si
~1!Si

~2! , ~2!

where the labels ‘‘1’’ and ‘‘2’’ denote the copies. From mea-
surements ofq we compute the Binder ratio12,2

g5
1

2 F32
^q4&

^q2&2G , ~3!

where the averagê•••& denotesbotha thermal average for
a given set of bonds and an average over the disorder.13 At
high temperatureg→0, whereasg→1 in the spin-glass
phase, at least if there is a unique thermodynamic state.

Becauseg is dimensionless it has the finite-size scaling
form2

g5g̃@L1/n~T2Tc!# ~4!

and so isindependent of Lat Tc . An advantage ofg is that
its behavior is qualitatively different for each of the three
scenarios discussed above:~i! the curves forg will intersect
at Tc and splay out again at lowerT ~with the larger sizes
having the larger values, the opposite of the situation above
Tc), ~ii ! the curves forg will come together atTc and then
stick together at lowerT, ~iii ! the curves will merge once
j@L, but data for larger sizes will merge to this common
curve at successively lower temperatures.

In addition tog, we also computed the spin-glass~SG!
susceptibility,

xSG5N^q2&, ~5!

and P(q), the distribution ofq. These have the finite-size
scaling forms,2

xSG5L22hx̃SG@L
1/n~T2Tc!#, ~6!

and

P~q!5Lb/nP̃@Lb/nq,L1/n~T2Tc!#, ~7!

whereb is the order parameter exponent and is related to
h, which gives the power-law decay of the correlations at
the critical point by

b

n
5
1

2
~d221h!. ~8!

Because of theL22h prefactor in Eq.~7!, the data forxSG
does not distinguish between the three scenarios in such a
direct way as the data forg.

It is very important to ensure that enough Monte Carlo
sweeps have been carried out to equilibrate the sample. Fol-
lowing BY we compare the results forg obtained, as de-
scribed above, from the overlap between two replicas with
the results obtained from one replica at two different times
~see BY for details!. BY found that these two estimates ap-
proach the equilibrium value from opposite directions as the
length of the simulation increased. Once the two values
agreed, they did not change further if more sweeps were
carried out. We have also tested this by doing the run for
L58,T50.9618 for an order of magnitude longer time than
needed for the two estimates to agree. Again we find that
there is no subsequent change within our~much smaller!
errors.

Our data forg is shown in Fig. 1 and an enlarged view of
the region where the curves for different sizes intersect is
shown in Fig. 2. From Fig. 2 one sees clear evidence for
splaying out of the data below a temperature of about 1.10.
EstimatingTc to be approximately 1.10 from the intersection
point we can scale most of the data according to Eq.~4! with
n52.0, see Fig. 3. The only point which does not lie on a
common curve is the result forL524,T51.1948, which is
significantly higher. One can see from Fig. 1 that this point
has almost the same value ofg as the data forL516 at the

FIG. 1. Results for the Binder ratiog, defined in Eq.~3!, for
different sizes and temperatures. The lines are smooth curves
through the data and are only intended as guides to the eye.

FIG. 2. An enlarged view of the data in Fig. 1 in the crucial
region where the curves come together.
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same temperature. This data point being rather higher than
expectedmay reflect corrections to finite-size scaling, and
indicate that the true critical temperature is higher than the
straightforward estimate based on data forg with L<16.

Once Tc has been estimated one can obtainb/n, or
equivalentlyh, from the expected scaling form ofP(q) at
criticality given by Eq.~7! with T5Tc . The corresponding
plot is shown in Fig. 4 forT51.1113 ~well within the
bounds of our estimate ofTc), and hasb/n50.3 which cor-
responds toh520.4 from Eq.~8! with d53.

We have also performed finite-size scaling plots forxSG

according to Eq.~6!. This data does not locateTc precisely,
so we have used the sameTc as obtained from the scaling
plot for g in Fig. 3, i.e.,Tc51.10. Furthermore the value of
h is constrained by requiring that the data scales atTc and
from Fig. 4 this givesh520.4. The only remaining param-
eter isn and the best fit, shown in Fig. 5, is forn51.6.

The values forn obtained fromg andxSG are somewhat
different. If we try to usen52.0 in the data forxSG or
n51.6 in the data forg, the fit is visibly worse. Presumably

this difference indicates that corrections to finite-size scaling
are not negligible for the range of sizes that we can study.
Taking into account all the data we estimate

Tc51.1160.04,

n51.760.3,

h520.3560.05. ~9!

As discussed above, theL524 data indicates thatTc may be
higher than that estimated from the intersections ofg for
L<16. This is reflected in the estimated error forTc in Eq.
~9!. The estimated errors inn andh then come largely from
the uncertainty inTc . Our value ofTc is rather lower than
earlier estimates which were close to 1.2, and the value of
n is higher, previous estimates generally being in the vicinity
of 1.3. Our value ofh is not very different from earlier
estimates.

To conclude, we have found evidence for a finite transi-
tion temperature with spin-glass order belowTc , scenario~i!
above. However, it is difficult to estimate the size of system-
atic errors, such as possible correlations in the random num-
bers ~though we believe that these are very small11!, and
corrections to finite-size scaling. Because of this, and be-
cause the crossing of the data forg that we observe in Fig. 2
is rather small, we cannot rule out for sure the other two
possibilities, i.e. scenario~ii ! in whichTc is finite but there is
no spin-glass order at lower temperature, or scenario~iii ! in
which Tc50. However, from our data, these possibilities
now seem less likely.

Since the present study required a substantial computer
effort, an investigation of larger sizes, which is necessary to
confirm scenario~i! beyond reasonable doubt, may need a
better algorithm than single spin-flip Monte Carlo. There are
already some promising results from the ‘‘replica exchange’’
method14 ~where, in addition to local moves, global moves
are made which cause the temperature of the system to cycle
up and down!.

FIG. 3. A scaling plot forg according to the form in Eq.~4!.

FIG. 4. A scaling plot forP(q) at T51.1113~which is close to
the the critical point! according to the form in Eq.~7!. According to
Eq. ~8!, the valueb/n50.3 corresponds toh520.4.

FIG. 5. A scaling plot forxSG according to the form in
Eq. ~6!.
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