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Transverse ultrasound attenuation provides a weakly coupled probe of momentum current correlations in
electronic systems. We develop a simple theory for the interpretation of transverse ultrasound attenuation
coefficients in systems with nodal gap anisotropy. Applying this theory we show how ultrasound can delineate
between extended-s andd-wave scenarios for the cuprate superconductors.

The development of gaps with nodal anisotropy is a re-
current property of highly correlated electron systems. Bulk
probes, such as the NMR relaxation rate,1 specific heat,2 and
penetration depth3,4 indicate that gap nodes may be present
in a wide variety of strongly correlated systems including
heavy fermions, strong coupling, and cuprate
superconductors5–7 and the narrow gap Kondo insulators
CeNiSn and CeRhSb.8 However, with a few noted
exceptions,9,10we have no direct information about the sym-
metry of the gap in these strongly correlated systems.

A versatile, but much under-utilized tool for probing elec-
tronic gap nodes is the use of transverse ultrasound attenua-
tion. This method has been successfully used to locate the
gap lines and point nodes in superconducting UPt3 .

11 Sur-
prisingly, very little work has been done to enable the model-
independent interpretation of transverse ultrasound measure-
ments. In this paper we revisit this old problem, highlighting
those aspects of ultrasound attenuation that are model inde-
pendent and relevant to future experiments.

Ultrasound attenuation probes the relaxation of electronic
momentum in a model-independent fashion. This informa-
tion is encoded in the ‘‘viscosity tensor,’’ a high symmetry
tensor with very few independent components. Here we de-
velop a simple theory which links these components to the
location of the gap nodes. We illustrate this theory in a vein
of current interest, cuprate superconductivity, showing how
ultrasound measurements can provide an unambiguous fin-
gerprint of gap zeros lying on the diagonal of the Brillouin
zone.12

In a metal, the phonon strain fieldui j (x) couples linearly
to the electron stress tensors i j (x)

HI52E d3xs i j ~x!ui j ~x!. ~1!

This coupling is model independent. The stress tensor
s i j (x) describes the flow of electronic momentum: its diver-
gence governs the rate of change of electronic momentum
density¹ js

i j (x)52 Ṗi(x). When a sound wave propagates
through a crystal, the dissipation rate is13

Ė52E d3xs i j ~x!u̇i j . ~2!

In linear responses i j5h i jkl u̇kl whereh i jkl is the viscosity
tensor. The sound attenuation coefficient is defined as the
ratio of the time average energy dissipation to twice the en-
ergy flux in the wave,14

a~qW ,û!5
q2

rcs
h̄ where h̄5h i jkl ûi q̂ j q̂kûl , ~3!

r is the mass density andcs is the speed of sound with wave
vector qW and polarizationû. From the coupling~1!, it is
straightforward to obtain the Kubo formula for the viscosity
tensor:

h i jkl ~qW !52 limv→0

1

iv
^s i j ~q!skl~2q!&, ~4!

with q5(qW ,v1 id).
In typical ultrasonic measurements, wavelengthsl are

hundreds of microns and substantially exceed the electronic
mean-free paths (l e), so the attenuation is safely in the hy-
drodynamic limit,l e!l. In this case the momentum depen-
dence of the viscosity tensor is irrelevant, permitting us to
take the limitqW→0.12

Like the elasticity tensor, the symmetry properties of the
viscosity tensor significantly reduce the number of its inde-
pendent components.15 This tensor is symmetric, not only in
the first and second pair of indices, but also under the inter-
change of these pairs:

h iklm5hkilm5h ikml5h lmik. ~5!

Symmetry under the crystal point group further reduces the
number of independent components. For example, inversion
symmetry eliminates those components with an odd number
of identical suffixes, e.g.,hxxxy50, hxyyy50. In a square or
cubic environment, 90° rotation symmetry restricts the vis-
cosity tensor to the form

h i jkl5A~d ikd j l1d i ld jk!1C̃d i jdk j1Bd i jd jkdkl ~6!

with no sum on indices implied, so for a cubic or square
lattice the ultrasound attenuation is proportional to

h̄5A1B (
i51,d

ûi
2q̂i

21C~ û•q̂!2, ~7!

whereC5C̃1A andd is the dimension. We shall restrict our
attention to transverse ultrasound attenuation, for which the
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last term vanishes. In other words, in a cubic crystalline en-
vironment, there are only two independent transverse ultra-
sound attenuation coefficients. In a two-dimensional hexago-
nal system, 60° rotation symmetry means thatB must also
vanish. In a three-dimensional hexagonal system, polynomial
terms involvingûz and q̂z must be added to the above ex-
pression, giving

h̄5A1B~ ûz
21q̂z

2!1Cûz
2q̂z

2 , ~8!

where we have dropped terms which vanish for transverse
ultrasound. These strong symmetry constraints mean that
only a few different propagation directions are required to
measure the full electronic viscosity tensor.

We now turn to the relationship between the quasiparticle
gap structure and the electron viscosity tensor. The electron
contribution to ultrasonic attenuation only becomes substan-
tial at low temperatures in a regime where a quasiparticle
description of the excitations is valid. For a fluid of quasi-
particles with dispersionEkW , the quasiparticle group velocity
is vW kW5¹kWEkW . The traceless stress tensor pertinent to trans-
verse ultrasonic measurements is then

s i j5(
kWs

ckWs
†

skW
i j
ckWs , ~9!

whereckWs
† creates a quasiparticle of momentumkW and

skW
i j

5
1

2
~kivkW

j
1kjvkW

i
!2

1

d
d i j kW•vW kW ~10!

is the momentum flux of a single quasiparticle. The quasi-
particle contribution to the viscosity tensor is then

h i jkl5(
kW

S 2
] f

]Ek
D tkWskW

i j
skW
kl , ~11!

where f is the Fermi distribution function andtkW is the re-
laxation time of the quasiparticle. From this relation, we see
that a simple expression for the viscosity for transverse ul-
trasound is

h̄5
1

4(kW S 2
] f

]Ek
D tkW~@vW kW•û#@kW•q̂#1@kW•û#@vW kW•q̂# !2.

~12!

We shall consider the situation where the temperature is
low enough for the quasiparticles to be entirely concentrated
within the gap nodes of the excitation spectrum. To simplify
our discussion, we shall assume that the gaps are small
enough in comparison with the Fermi energy, that to a good
approximationvW pW'vFp̂F(]EpW /]epW ), where epW and vF are
respectively the ‘‘bare’’ energy and Fermi velocity of the
excitations prior to gap formation. Consider the case where
the gap nodes are simple points in momentum space, located
at positionspW o( i ). The attenuation from a given node will
depend on the orientation of the sound wave vector and po-
larization. If neither of these vectors is perpendicular to
pW o( i ) then the quasiparticles at the node can couple to the
sound wave. In this configuration, the node is‘‘activated’’
@Fig. 1~a!#. If, however, either the wave vector directionq̂ or
the polarizationû are perpendicular to the node, it is‘‘inac-

tive’’ and quasiparticles at the bottom of the node will not
couple to the ultrasound@Fig. 1~b!#. In this configuration, the
attenuation produced by the node is strongly suppressed. For
most orientations of the ultrasound, the nodes are ‘‘acti-
vated,’’ and their contribution to the ultrasound attenuation
may be written as

h̄A5~vFpF!2(
i

@ û• p̂o~ i !#
2@ q̂• p̂o~ i !#

2Ai~T!, ~13!

where

Ai~T!5@2Ni~E!G i~E!#21

5E
upW 2pW o~ i !u,L

ddp

~2p!d S 2
] f

]EpW
D S ]EpW

]epW
D 2tpW ~14!

is the thermal average of the inverse product of twice the
relaxation rateG i(E) and the quasiparticle density of states
Ni(E) in the gap node.

Suppose instead the gap node is ‘‘inactive,’’ with the po-
larization vectorû at right angles topW o( i ), then the contri-
bution to the ultrasonic attenuation contains the additional
factor cos2(u), where cosu5(k̂•û). In this case

h̄ I~ i !5~vFpF!2@ q̂• p̂o~ i !#
2B i~T!, ~15!

where

B i~T!5cos2upW@2Ni~E!G i~E!#21

5E
upW 2pW o~ i !u,L

ddp

~2p!d S 2
] f

]EpW
D S ]EpW

]epW
D 2tpWcos2upW

2 .

~16!

For a point node where the size of the node grows linearly
with energy,B i(T);T2Ai(T). A similar result holds for a
line node which lies in a plane. It thus follows that if a

FIG. 1. ~a! The nodes are ‘‘activated’’;~b! q̂ or û are perpen-
dicular to the nodes, the nodes are ‘‘inactive.’’

R2996 53J. MORENO AND P. COLEMAN



configuration can be found where all nodes are simulta-
neously inactive, then the ultrasonic attenuation will exhibit
a relaxation rate a factor ofT2 smaller. Such a situation will
occur for point nodes situated at 90° to each other. It will
also occur for line nodes lying in a plane, or lying in many
planes that intersect at 90°. If the nodes do not lie in such
90° configurations, then ultrasound attenuation will not show
an anisotropic dependence of the power laws.

To illustrate this discussion, we now make a more detailed
application to a two-dimensional model relevant to the cu-
prate superconductors. A number of recent experiments have
provided strong evidence for an anisotropic gap with nodes
at the Fermi surface.4,16Superconducting interference experi-
ments sensitive to the phase of the gap function17 support an
order parameter withd-wave symmetry with nodes lying at
45° to thea andb axis. Ultrasound measurements provide a
complimentary approach which is sensitive to the precise
location of the nodes. In particular, it offers the potential to
distinguish between adx22y2 state and an anisotropics-wave
state with nodes located either side of the 45° position, and
there are no ambiguities associated with the interpretation of
results for bilayer compounds.

Using the symmetry arguments advanced above, if the
wave vectorqW forms an anglef with the x axis, the trans-
verse ultrasound attenuationaT(f), will have the form

aT~f!5@aT~p/4!2aT~0!#sin22f1aT~0!. ~17!

Suppose the quasiparticle excitation spectrum has the BCS

form EpW5AepW
2
1DpW

2. Using the results obtained above, this
leads to

a~qW ,û!

aN~qW ,û!
5

1

^P2~qW ,û!&
E dvS 2

] f

]v D t~v!

tN

3E
0

2p dup

2p
ReSAv22uDpu2

v DP2~qW ,û!,

~18!

whereP(qW ,û)5( p̂•û)( p̂•q̂) andaN andtN are the normal
attenuation and relaxation times.

To represent thed-wave order parameter we have chosen
the function

Dd~up!5Ddcos2up . ~19!

The anisotropics wave is represented by

Ds~up!5DsFs~up!1^D&, ~20!

whereFs(up)5ucos(2up)u2(2/p). We have treated impurity
scattering in the standard self-consistentT-matrix
approximation.18

For a pured-wave state~Fig. 2! the transverse ultrasound
attenuation is proportional toT1.5 when the angle is zero~the
wave vector and polarization of the sound wave are parallel
to the symmetry axis of the crystal! and it is proportional to
T3.5 when the angle isp/4. When there is a finite density of
impurities a flat region appears in both attenuation coeffi-
cients~the impurities induced a finite density of quasiparticle
states at zero temperature!, but at higher temperatures the
power laws are unchanged. Then, in accord with our earlier
arguments,

FIG. 2. Ultrasound attenuation for ad-wave state at two angles:
f50 ~solid line! andf5p/4 ~dashed line!. In the inset the ratio
r5as(p/4)/as(0) as a function of (T/Tc)

2.

FIG. 3. Ultrasound attenuation for two extendeds-wave states:
Ds(up)5D0ucos2upu at anglesf50 ~dot-dashed line! andf5p/4
~dashed line!, and Ds(up)5D0@ ucos2upu2(2/p)# at f50 ~solid
line! andf5p/4 ~dotted line!.
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aT~p/4!

aT~0!
}
T3.5

T1.5
5T2. ~21!

Even considering nonresonant scattering~taking the cotan-
gent of the scattering phase shiftc51! this ratio shows a
quadratic behavior.

The results for a pures-wave state are very different~Fig.
3!. We have chosen two different anisotropics waves,

^D&5 2
p Ds and ^D&50. Unlike d-wave pairing, here the

anomalous scattering off impurities is finite and resonant
scattering does not ever develop.19 Consequently, the attenu-
ation for ans-wave gap with nodes at 45° is even more
anisotropic, it is finite when the angle is zero, and ap-
proaches zero whenf5p/4. On the other hand, when the
nodes of the gap function depart fromp/4 the ultrasound
attenuation anisotropy disappears, in fact at temperatures
close enough toTc , the attenuation atf5p/4 actually be-
comes bigger than atf50. In neither caseis the ratio
aT(p/4)/aT(0) proportional toT2.

The generality of our approach lends itself naturally to
many other strongly correlated systems with point nodes.
One particularly interesting case is the narrow gap Kondo
insulators, CeNiSn and CeRhSn, where Miyakeet al.20 have
suggested point nodes on thec axis as an explanation of the
unusual NMR relaxation rate and the anisotropy of the con-

ductivity. There are several other strongly correlated super-
conductors that deserve examination, such as V3Si and
UPd2Al 3 which exhibitT3 NMR relaxation rates character-
istic of gap lines. The heavy fermion superconductor
UBe13 is noteworthy here; early ultrasound measurements,

21

found no anisotropy, despite the clear suggestion of line
nodes from NMR measurements.22 This result suggests the
presence of domains with different orientations, and it would
be interesting to repeat the measurements using field cooling
to obtain an aligned single domain superconductor.

This paper has emphasized the model-independent aspects
of ultrasound attenuation as a probe of nodal gap structure.
This attenuation is independent of the mechanism driving
superconductivity and sensitive only to the intrinsic symme-
tries of quasiparticle excitation spectrum. Its tensorial char-
acter permits the measurement of several independent com-
ponents at the same time. The simple methods developed
provide an economic way to extract vital information about
the gap anisotropy in a general class of gap-anisotropic sys-
tems, and they appear to provide a discriminating tool for
elucidation of gap structure in the cuprates.
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