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Phases of two coupled Luttinger liquids
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A model of two interacting one-dimensional fermion systeftisuttinger liquids”) coupled by single-
particle hopping is investigated. Bosonization allows a number of exact statements to be made. In particular,
for forward scattering only, the model contains two massless boson sectors and an Ising-type critical sector. For
general repulsive interactions, there is a spin excitation gap and ditype pairing or orbital antiferromag-
netic fluctuations dominate. It is argued that the same behavior is also found for strong interactions. A possible
scenario for the crossover to a Fermi liquid in a many-chain system is discussed.

The properties of a strictly one-dimensional interactinglowing steps:(i) Introduce bonding and antibonding opera-
fermion system are by now rather well understdddthe  tors via o= (¥rs1+ Prso)/V2) Yren=(thrs1— Prs2)N2;
typical phenomenologycalled “Luttinger liquid™) is char- (i) introduce charge and spin boson fields .o, corre-
acterized by a separation of the dynamics of spin and charggponding to the 0 andr fermions, following the standard
and by interaction-dependent power laws in many correlatioprocedure; (i) form the linear combinations
functions, and is thus quite different from Fermi-liquid be- ¢ . —($ .+, )/\V2 (v=p,0). The noninteracting
havior familiar from higher-dimensional systems. On thepyamiltonian(includingt, ) then takes the form
other hand, the effects of coupling between parallel chains,
present in any reajuasione-dimensional system, are still a
subject of debat&-° Considerable effort has been devoted to Ho= TE S | dx
the understanding of the properties of many coupled chains,
however, it is in many respects unclear how to connect these
results to the strictly one-dimensional case. A possible bridgg nerert
between the single- and many-chain cases are(and pos-
sibly three, four, et¢.coupled chains. The two-chain case is
also of relevance for experiments on ,Gu0s,’
(VO),P,0,,% and possibly the blue bronZen this last case Hm:} f xS g<yz>{ iz (o, )2~ 12
three-dimensional phonons certainly play an important)role 4 y=* ™

The two-chain model has thus attracted considerable in- 2
terest, both analyticall{~**and numerically*~*¢ Neverthe- 900m =
less, there is little general information on the low-lying ex- 2(ma)?
citations or on the possible ground-state phases. In the
present paper, | investigate this problem for a small inter-
cham hoppmg |.ntegr_al and sma_II mtrachgm interaction, butHere @ is a short distance cutoff,d 0, =il ,
with their relative size left arbitrary. Using the standard )~ @ g h afi By ; RBfV 1
bosonization procedure, a rather complete picture of the difggz)_goooo 7907”7_0' an use the ng a |ons. of Ret. =
ferent possible phases and the excitation spectrum wifabcd IS the coupling constant for an interaction scattering
emerge. It will further be shown that the low-energy proper-Wo particles from statesa(b) into (d,c). Initially, all the
ties found for weak interactions also exist in the Strong-g_’s in Eq. (3) equalg,, but renormallzatlon will give rise to
interaction limit, suggesting that weak and strong interactiorflifferences. At energy scales higher thanan additional
are in the same phase of the coupled-chain model. process of typ@(Z), also exists and is responsible for the

The model | consider is given by the Hamiltonian fact that g, is not renormalized in the purely one-

dimensional problent, =0 (this process also only involves
) the p_ ando_ fields). At energies belovi, the g{),,. pro-
H=H,+ Hz—hf dx(ys sz +H.C. (1) cess becomes, however, forbidden due to energy and mo-
mentum conservation, and E@) is then indeed the full
Here H,, are the (identica) Hamiltonians of the two forward scattering Hamiltonian.
chains!? each characterized by a Fermi veloaity and for- One now can notice that the, and o, parts of the
ward and backward scattering interactign andg,, t, is Hamiltonian remain bilinear, and the corresponding fields are
the interchain hopping amplitude, antl; is the fermion thus massless. On the other hand, there are nontrivial inter-
field operator for right{=+) or left (r=—) going particles action effects for the coupled_ and o_ fields: one finds
of spins on chaini. To start, | neglect the backward scatter- coupled  Kosterlitz-Thouless-type  renormalization-group
ing g;. The following analysis is then initially identical to equations forg$? . and g‘® 2> For the initial conditions
that of Ref. 10. The Hamiltonian is transformed by the fol- appropriate here, these equations always scale to strong cou-

2 1
HV{I+?(3X¢VQ)2:|| (2)

2 v=p,0

a==x

v« 1S the momentum density conjugatedq,, and
the interaction is

f dx cos2f, (cos2p, +cos2, ).
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pling, and the standard interpretattBthen is that there is a and its triplet analog. It seems appropriate to call this form
gapAg~t, exp(— 7 /|g,|) for both thep_ ando_ degrees “d wave” because pairing amplitudes of the “transverse”
of freedom. modes 0 andr intervene with opposite sign. The bosonic
That things are actually a bit more subtle can be seeform of this operator igg~e'%+sing, . sin,_ . The corre-
noting that theo_ part of the Hamiltonian is the continuum sponding susceptibilities diverge li&2< 574 Because for
transfer matrix of a two-dimensional classicdly model g,>0 one hask<1 this divergence is subdominant com-
with twofold anisotropy field cos, [theXY spins then are  pared to the CDVY, and SDW, ones. It may seem surprising
(S=cosf,, sing,)]. """ This model has Ising-type Sym- that the exponents do not tend to zerogas-0, however,
metry, with order parameter sf._, and the symmetry of gne should notice that the power laws are valid Tor A,
the Hamiltonian ~under the duality transformation ang pecausa — 0 for g,— 0 there is a nontrivial crossover
¢;- 0, implies that the model is critical. The duality i the noninteracting limit. In all other pairing correlations,
symmetry is related to the fact that the left- and right-going« ¢_\yave” superconductivity in particular a plus instead of
fermions are independently invariant under spin rotation, i.€ she minus sign in Eq(4), the leading divergent terms cancel
there is a chiral SI2)xSU(2) symmetry in the fermionic ang one therefore has exponential decay of correlation func-
model. tions and finite susceptibilities a&— 0.

What are the physical properties of the pure forward scat- gq negativeg, the picture changes quite drastically, be-

. P X _
tering model? First, there are massless modes inpthe .5,se now scaling goes g@WH_w’ and consequently

and o, channels, giving a total specific heat the Ising order parameter is eps . Now K>1, and the
C(M)=(7TR) (1N, + 1, + L), where:2 the totzal dominant divergent susceptibility is then easily found to be
charge and spin velocities are given bf, =vE— (92 /) standard s-wave superconductivity, with exponent
andu, =v, and the factor 1/ in the last term comes from o/ —5)/4. The subdominant divergence occurs for orbital
the Ising critical behaviofwith central charge=1/2 (Ref. antiferromagnetic operatd’s of the form o' ¥
T . . STt —
20)]. The gompres§|lb|hty |zs determined by t'h]eF mode; _lylf:solr/f—sw and its triplet analogthe spin nematic
only and given byx proup+2/4K, wherep, is the equi- Consider now the backscattering interactign. 1 will
librium particle density andK®=(7ve—0,)/(mve+02).  oniy treat the repulsive casg,>0. In a purely one-
Similarly, thg(Drgde weight of the-zero-frequency peak in gimensional system this then scales to zero as
the conductivity isop=4u,, K. As in the one-chain cade, {(E)=0,/[1+g,/(mve)In(ue /E)] when the running cut-

these relations can in particular be used to determine thgg £ goes to zero. In the coupled chain problem, the one-
coefficientk which determines power laws of different cor- 4 ansional scaling breaks down fe~t, . For srr;allti

relation functions. ok . . !
the effectivegy =g, (t,) will then indeed be a perturbation.
Naturally, the present model does not have broken sym; g1 =091(t1) P

. ; . .
metry ground states, but as in the one-chain case there a%m*ultaneously, 92 15 _renorma_llze(_j 093 =0,-9./2
divergent susceptibilities of different types, indicating incipi- + 91/2- The backscattering Hamiltonian takes the form
ent instabilities. | first consideg,>0. To obtain the long- g

v_vavelength(low-energy asymptotics of correlation func.- Hint 1:_12 f dx{cos2p, ., (OS2, +COS2p,_
tions one has to analyze the consequences of the nonlinear 2(ma)

term in Eqg. (3) which scales to strong coupling
(gé%lmﬂoo). A semiclassical treatment is appropriate, and

then the energy is minimized by, =0 (there are different g’{f g
—— dx
4

—C0s20,,_)—C0S20,_C0S20,,_}

1
degenerate solutions which all lead to identical physical re- ?{(ﬁx¢p+)2+(ﬁx¢o+)2}
sults. Following standard argumentsong-range order of
the 6, field implies exponentially decaying,  correla-
tions. On the other hand, from the Ising analogy for ¢the
sector correlations of the order parametegfginand its dual
sing,_ then decay as ' whereas correlation of the non- First, thed, -6, _ interaction now breaks the self-duality of
ordering cog,_ and co#,_ fields decay exponentially. the ¢, fields. As cos2,_ already has a nonzero expecta-
These points have not been appreciated in previous work offon value from theg, interaction, one now also finds a gap
this model. Consider now, for example, charge density oscilin the o modes, of orderA ,=(g7/g3)Ag. In the Ising
lations which are out of phase between the two chains, demodel language, this corresponds to a deviation from criti-
scribed by the operatoOcpy,~e€ ?r+cosp,,sind,_ .21  cality, long-range order, and exponentially decayingdsin
From the massless modes the CD\sbrrelations then decay correlations. Secondly, the forward scattering interaction also
asr (24 giving rise to a susceptibility diverging as leads to a nonzero expectation value of afs2
T(2K=5)/4 The analogous spifSDW.,,) correlations obey the +C0s2h,_—c0s¥,_ which by spin rotation invariance has
same power law, whereas in-phase correlations decay expt® be positive. The leading order effect of the first term in Eq.
nentially. (5) then is to open a gap also in the degrees of freedom,
Similar considerations apply to BCS-type instabilities. It given, up to numerical factors, by, . In the presence of the
turns out that long-range correlations exist for the pairingbackscattering interactiamere thus is a gap in all the mag-
operator netic excitations
In correlation functions, to leading order one now re-
_ _ places¢,. by its classical valuer/2. One then finds for
Osar= 2 S, ~sobhs 50~ Y- s+ 57) @ g,>0 a decay of the S€correlations as ~ Y, giving rise

2 2
_Hp+_Ha'+
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to a divergence of the corresponding susceptibilityterchain exchange a mapping onto an effective single-chain
as TY*=2 where now K?=(mvg—g,+0,/2)/(mvg  hard core boson model can be made, leading again to the
+g,—0,/2). On the other hand, the CDWand SDW, op- same low-energy properties as in the weak-coupling fifit.
erators contain the Ising disorder field, and therefore thesBecent numerical results'® confirm this point.

correlations decay exponentially. A divergent density re- The exponent&—1 and K—1)/2 valid for the single-
sponse  exists for correlations of the form and double-chain problems suggest thatNachains coupled
<[OCDW7r(r)]Z[OCDWn—(O)]2>occosiz(kF0+ka)r]r72Ka13 pe- by near-neighbor interchain hopping one might have an
cause here the operator 4ip_~1/2 appears. Perturbative @nomalous exponenK(—1)/N atT<t, . To see how such a
and symmetry arguments show that the same contributionehav'or can possibly arise, in ana_llogy to the two-cha_ln case
also exists in the density correlations¢n(r)n(0)) one can go to momentum space in the_ transverse direction.
o4 2(keo ke, )r]r~ 2%, in analogy with the & oscillations The noninteracting bosonized Hamiltonian then is

of a single chain. However, at least for weak interactions TUE

(K—1) the corresponding susceptibility is much weaker HO:T 2 dx
than the S@ pairing, i.e.,the two-chain model has predomi- e

nant pairing fluctuations even for purely repulsive

; i nell,23 ; ; ;
:jnit/zr?((:e“rﬁnssuscemtitt)n; riesg:)Tirg;ctar;e:riti:‘\é?ré I;t;e rlliiligl?g e forward-scattering interactions which for states at the Fermi
9 P y 9 yp 'energy are consistent with both energy and momentum con-

with exponentK/2—2. The precise boundary between the o\ 2400 The analog of the first term in E8) then is
two regimes can be determined from the scaling equations of

Ref. 17 and is given bg,=2g,. This again is an Ising-type ng q
X

e +i(a¢ )? (6)
VkL 71_2 X VkL .

Following standard argumeffs | now only consider

critical line. The triplet susceptibilitieGspin density wave or Hint 2= 2
triplet superconductivity are suppressed by the spin gap.
The spin gap gives rise to “anomalous flux quantizatidh,” Where ¢, is the Fourier transform o, with respect to
and there is also a gap for single-particle excitations. k, . The important point here is thahly the mode at %0 is

The power laws discussed above apply in the temperaturaffected by the interactions. A standard calculation then leads
region belowA,. In the intermediate regioA,<T<t, the  to a decay of CDW correlations as2~ <~ YN | giving rise
g3 _ term in Eq.(3) has little effect, and one then can to a susceptibility behaving ag~N. Similarly, the
obtain the temperature dependence of different correlatiosingle-particle Green function decays as! °, with
functions from a purely bilinear Hamiltonian. For example, §=(K+ 1/K—2)/4N, leading to a singularity of the momen-
for CDW,, susceptibilities one finds a power lai¥* 1”2, tum distribution function afk— k| °.28 In the limit of a large
whereas in the one-dimensional regidrt, one has a be- number of coupled chains the anomalous exponents now
havior asTK ™. The important point here is that in the in- vanish, and in particular one recovers a Fermi-liquid-like
termediate region the interaction-dependent exponent isomentum distribution function in this description. More re-
smaller than in the high-temperature region, i.e., betow alistically, vg is k, dependent. The model then can still be
the system behaves more closely like a Fermi liquid than asolved, even though details are more complicated. The lead-
high temperatures. ing 1N corrections to Fermi-liquid theory still hold, and in

| now consider the strongly interacting case. For suffi-addition thex=0 mode becomes the zero sound mode of a
ciently strong intrachain interactions, i.e., small parametefFermi liquid, well separated from a particle-hole quasicon-
K, of the individual chains, single-particle hopping is renor-tinuum.
malized to zero, however, simultaneously particle-hole tun- Clearly, a number of interactions have been neglected in
neling processes appedt. Introducing ¢,.=(¢,, this argument.  First, there are  Cooper-type
+,,)/\/2, where,, , are the boson fields of the indi- [(k,—k)—(k’,—k’)] and possibly nesting interactions, the
vidual chains, for the purely forward scattering case, thes@rototype of which is given by tth)%)mT term in Eq.(3). By
terms take the formJ cos2p, (cos2p, +cosd, ). One analogy with that case | expect these interactions to give rise
again has a duality symmetry,_«—6,_, and the same to a gap of orderA,, and to ordered ground states for
types of power-law correlations as in the weak-coupling casél— <. Thus the power laws of the preceding paragraphs are
appear. Introducing now intrachain backscattering, the dualvalid in the temperature regiahy<T<t, . Moreover, there
ity symmetry is broken and, again as in the weak-couplingare interactions that involve at least one state not exactly at
case, only S@ correlations (exponent 1/K,) and &g the Fermi energy. Though these interactions cannot directly
charge correlationgexponent X,) remain. The types of affect the low-energy physics, they in general will lead to
possibly divergent response functions and the scaling relaenormalizations of,. The above arguments remain valid if
tions between different exponents are thus identical for weakhese renormalizations are nonsingular. To which extent this
and strong interaction. This strongly suggests thisttype of is correct is currently under investigation.
behavior actually holds for arbitrary interaction strength In conclusion, | have investigated the phase diagram and
Note that the density correlations decay more slowly than thexcitation spectrum of two Luttinger liquids coupled by
pairing correlations only foK ,<1/2. This typically corre- single-particle hopping, and proposed a possible extension to
sponds to rather strong repulsion: for example, in the onemany coupled chains. The conclusions are valid for small
dimensional Hubbard model one reach€s=1/2 only for  hopping amplitude, but the same types of divergent re-
infinite repulsior® Another interesting strong-coupling sponsesd-type superconductivity andk¢ charge density in
model is the t-J ladder.”™ Here in the limit of strong in- the case of repulsioroccur for both weak and strong inter-

1
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actions, suggesting that this type of behavior is to be found
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