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A model of two interacting one-dimensional fermion systems~‘‘Luttinger liquids’’ ! coupled by single-
particle hopping is investigated. Bosonization allows a number of exact statements to be made. In particular,
for forward scattering only, the model contains two massless boson sectors and an Ising-type critical sector. For
general repulsive interactions, there is a spin excitation gap and eitherd-type pairing or orbital antiferromag-
netic fluctuations dominate. It is argued that the same behavior is also found for strong interactions. A possible
scenario for the crossover to a Fermi liquid in a many-chain system is discussed.

The properties of a strictly one-dimensional interacting
fermion system are by now rather well understood.1,2 The
typical phenomenology~called ‘‘Luttinger liquid’’3! is char-
acterized by a separation of the dynamics of spin and charge
and by interaction-dependent power laws in many correlation
functions, and is thus quite different from Fermi-liquid be-
havior familiar from higher-dimensional systems. On the
other hand, the effects of coupling between parallel chains,
present in any realquasi-one-dimensional system, are still a
subject of debate.4–6Considerable effort has been devoted to
the understanding of the properties of many coupled chains,5

however, it is in many respects unclear how to connect these
results to the strictly one-dimensional case. A possible bridge
between the single- and many-chain cases are two~and pos-
sibly three, four, etc.! coupled chains. The two-chain case is
also of relevance for experiments on Sr2Cu4O6,

7

(VO)2P2O7,
8 and possibly the blue bronzes9 ~in this last case

three-dimensional phonons certainly play an important role!.
The two-chain model has thus attracted considerable in-

terest, both analytically10–13and numerically.14–16Neverthe-
less, there is little general information on the low-lying ex-
citations or on the possible ground-state phases. In the
present paper, I investigate this problem for a small inter-
chain hopping integral and small intrachain interaction, but
with their relative size left arbitrary. Using the standard
bosonization procedure, a rather complete picture of the dif-
ferent possible phases and the excitation spectrum will
emerge. It will further be shown that the low-energy proper-
ties found for weak interactions also exist in the strong-
interaction limit, suggesting that weak and strong interaction
are in the same phase of the coupled-chain model.

The model I consider is given by the Hamiltonian

H5H11H22t'E dx~c rs1
† c rs21H.c.!. ~1!

Here H1,2 are the ~identical! Hamiltonians of the two
chains,1,2 each characterized by a Fermi velocityvF and for-
ward and backward scattering interactiong2 and g1 , t' is
the interchain hopping amplitude, andc rsi is the fermion
field operator for right (r51) or left (r52) going particles
of spins on chaini . To start, I neglect the backward scatter-
ing g1 . The following analysis is then initially identical to
that of Ref. 10. The Hamiltonian is transformed by the fol-

lowing steps:~i! Introduce bonding and antibonding opera-
tors via c rs05(c rs11c rs2)/A2, c rsp5(c rs12c rs2)/A2;
~ii ! introduce charge and spin boson fieldsfr,s;0,p corre-
sponding to the 0 andp fermions, following the standard
procedure; ~iii ! form the linear combinations
fn65(fn06fnp)/A2 (n5r,s). The noninteracting
Hamiltonian~including t') then takes the form

H05
pvF
2 (

n5r,s
a56

E dxFPna
2 1

1

p2 ~]xfna!2G , ~2!

wherePna is the momentum density conjugate tofna , and
the interaction is

H int,25
1

4E dx(
g56

gg
~2!F 1p2 ~]xfrg!22Prg

2 G
1

g00pp
~2!

2~pa!2
E dx cos2ur2~cos2fs21cos2us2!.

~3!

Here a is a short distance cutoff,]xubg5pPbg ,
gg
(2)5g0000

(2) 1gg0pp0
(2) , and I use the notations of Ref. 11:

gabcd
(2) is the coupling constant for an interaction scattering
two particles from states (a,b) into (d,c). Initially, all the
g’s in Eq. ~3! equalg2 , but renormalization will give rise to
differences. At energy scales higher thant' an additional
process of typeg0p0p

(2) also exists and is responsible for the
fact that g2 is not renormalized in the purely one-
dimensional problemt'50 ~this process also only involves
the r2 ands2 fields!. At energies belowt' the g0p0p

(2) pro-
cess becomes, however, forbidden due to energy and mo-
mentum conservation, and Eq.~3! is then indeed the full
forward scattering Hamiltonian.

One now can notice that ther1 and s1 parts of the
Hamiltonian remain bilinear, and the corresponding fields are
thus massless. On the other hand, there are nontrivial inter-
action effects for the coupledr2 and s2 fields: one finds
coupled Kosterlitz-Thouless-type renormalization-group
equations forg00pp

(2) andg2
(2) .10,17 For the initial conditions

appropriate here, these equations always scale to strong cou-
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pling, and the standard interpretation10 then is that there is a
gapD0't'exp(2p2vF /ug2u) for both ther2 ands2 degrees
of freedom.

That things are actually a bit more subtle can be seen
noting that thes2 part of the Hamiltonian is the continuum
transfer matrix of a two-dimensional classicalXY model
with twofold anisotropy field cos2fs2 @theXY spins then are
(S5cosfs2 , sinfs2)#.

18,19 This model has Ising-type sym-
metry, with order parameter sinfs2 , and the symmetry of
the Hamiltonian under the duality transformation
fs2↔us2 implies that the model is critical. The duality
symmetry is related to the fact that the left- and right-going
fermions are independently invariant under spin rotation, i.e.,
there is a chiral SU~2!3SU(2) symmetry in the fermionic
model.

What are the physical properties of the pure forward scat-
tering model? First, there are massless modes in ther1

and s1 channels, giving a total specific heat
C(T)5(pT/3)(1/ur111/us111/2vF), where the total
charge and spin velocities are given byur1

2 5vF
22(g2 /p)

2

andus15vF , and the factor 1/2 in the last term comes from
the Ising critical behavior@with central chargec51/2 ~Ref.
20!#. The compressibility is determined by ther1 modes
only and given byk215pr0

2ur1/4K, wherer0 is the equi-
librium particle density andK25(pvF2g2)/(pvF1g2).
Similarly, the ~Drude! weight of the zero-frequency peak in
the conductivity iss054ur1K. As in the one-chain case,6

these relations can in particular be used to determine the
coefficientK which determines power laws of different cor-
relation functions.

Naturally, the present model does not have broken sym-
metry ground states, but as in the one-chain case there are
divergent susceptibilities of different types, indicating incipi-
ent instabilities. I first considerg2.0. To obtain the long-
wavelength~low-energy! asymptotics of correlation func-
tions one has to analyze the consequences of the nonlinear
term in Eq. ~3! which scales to strong coupling
(g00pp

(2) →`). A semiclassical treatment is appropriate, and
then the energy is minimized byur250 ~there are different
degenerate solutions which all lead to identical physical re-
sults!. Following standard arguments1 long-range order of
the ur2 field implies exponentially decayingfr2 correla-
tions. On the other hand, from the Ising analogy for thes2

sector correlations of the order parameter sinfs2 and its dual
sinus2 then decay asr21/4 whereas correlation of the non-
ordering cosfs2 and cosus2 fields decay exponentially.
These points have not been appreciated in previous work on
this model. Consider now, for example, charge density oscil-
lations which are out of phase between the two chains, de-
scribed by the operatorOCDWp'eifr1cosfs1sinus2 .

21

From the massless modes the CDWp correlations then decay
as r2(312K)/4, giving rise to a susceptibility diverging as
T(2K25)/4. The analogous spin~SDWp) correlations obey the
same power law, whereas in-phase correlations decay expo-
nentially.

Similar considerations apply to BCS-type instabilities. It
turns out that long-range correlations exist for the pairing
operator

OSCd5(
s
s~c2,2s,0c1,s,02c2,2s,pc1,s,p! ~4!

and its triplet analog. It seems appropriate to call this form
‘‘ d wave’’ because pairing amplitudes of the ‘‘transverse’’
modes 0 andp intervene with opposite sign. The bosonic
form of this operator isOSCd'eiur1sinfs1sins2 . The corre-
sponding susceptibilities diverge likeT(2/K25)/4. Because for
g2.0 one hasK,1 this divergence is subdominant com-
pared to the CDWp and SDWp ones. It may seem surprising
that the exponents do not tend to zero asg2→0, however,
one should notice that the power laws are valid forT,D0 ,
and becauseD→0 for g2→0 there is a nontrivial crossover
in the noninteracting limit. In all other pairing correlations,
‘‘ s-wave’’ superconductivity in particular a plus instead of
the minus sign in Eq.~4!, the leading divergent terms cancel
and one therefore has exponential decay of correlation func-
tions and finite susceptibilities asT→0.

For negativeg2 the picture changes quite drastically, be-
cause now scaling goes tog00pp

(2) →2`, and consequently
the Ising order parameter is cosfs2 . Now K.1, and the
dominant divergent susceptibility is then easily found to be
standard s-wave superconductivity, with exponent
(2/K25)/4. The subdominant divergence occurs for orbital
antiferromagnetic operators22 of the form c1sp

† c2s0

2c1s0
† c2sp and its triplet analog~the spin nematic!.
Consider now the backscattering interactiong1 . I will

only treat the repulsive caseg1.0. In a purely one-
dimensional system this then scales to zero as
g1(E)5g1 /@11g1 /(pvF)ln(vF /Ea)# when the running cut-
off E goes to zero. In the coupled chain problem, the one-
dimensional scaling breaks down forE't' . For small t'
the effectiveg1*5g1(t') will then indeed be a perturbation.
Simultaneously, g2 is renormalized to g2*5g22g1/2
1g1* /2. The backscattering Hamiltonian takes the form

H int,15
g1*

2~pa!2
E dx$cos2fs1~cos2ur21cos2fs2

2cos2us2!2cos2ur2cos2us2%

2
g1*

4 E dxF 1p2 $~]xfr1!21~]xfs1!2%

2Pr1
2 2Ps1

2 G . ~5!

First, theur2-us2 interaction now breaks the self-duality of
the fs2 fields. As cos2ur2 already has a nonzero expecta-
tion value from theg2 interaction, one now also finds a gap
in the s2 modes, of orderDs5(g1* /g2* )D0 . In the Ising
model language, this corresponds to a deviation from criti-
cality, long-range order, and exponentially decaying sinus2

correlations. Secondly, the forward scattering interaction also
leads to a nonzero expectation value of cos2ur2

1cos2fs22cos2us2 which by spin rotation invariance has
to be positive. The leading order effect of the first term in Eq.
~5! then is to open a gap also in thes1 degrees of freedom,
given, up to numerical factors, byDs . In the presence of the
backscattering interactionthere thus is a gap in all the mag-
netic excitations.

In correlation functions, to leading order one now re-
placesfs1 by its classical valuep/2. One then finds for
g2.0 a decay of the SCd correlations asr21/2K, giving rise
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to a divergence of the corresponding susceptibility
as T1/2K22, where now K25(pvF2g21g1/2)/(pvF
1g22g1/2). On the other hand, the CDWp and SDWp op-
erators contain the Ising disorder field, and therefore these
correlations decay exponentially. A divergent density re-
sponse exists for correlations of the form
^@OCDWp(r )#

2@OCDWp(0)#
2&}cos@2(kF01kFp)r#r

22K,13 be-
cause here the operator sin2us2'1/2 appears. Perturbative
and symmetry arguments show that the same contribution
also exists in the density correlations:̂n(r )n(0)&
}cos@2(kF01kFp)r#r

22K, in analogy with the 4kF oscillations
of a single chain. However, at least for weak interactions
(K→1) the corresponding susceptibility is much weaker
than the SCd pairing, i.e.,the two-chain model has predomi-
nant pairing fluctuations even for purely repulsive
interactions.11,23 In the regime of negativeg2 the leading
divergent susceptibility is of orbital antiferromagnetic type,
with exponentK/222. The precise boundary between the
two regimes can be determined from the scaling equations of
Ref. 17 and is given byg152g2 . This again is an Ising-type
critical line. The triplet susceptibilities~spin density wave or
triplet superconductivity! are suppressed by the spin gap.
The spin gap gives rise to ‘‘anomalous flux quantization,’’24

and there is also a gap for single-particle excitations.
The power laws discussed above apply in the temperature

region belowD0 . In the intermediate regionD0,T,t' the
g00pp
(2) term in Eq. ~3! has little effect, and one then can
obtain the temperature dependence of different correlation
functions from a purely bilinear Hamiltonian. For example,
for CDW0 susceptibilities one finds a power lawT(K21)/2,
whereas in the one-dimensional regionT.t' one has a be-
havior asTK21. The important point here is that in the in-
termediate region the interaction-dependent exponent is
smaller than in the high-temperature region, i.e., belowt'
the system behaves more closely like a Fermi liquid than at
high temperatures.

I now consider the strongly interacting case. For suffi-
ciently strong intrachain interactions, i.e., small parameter
Kr of the individual chains, single-particle hopping is renor-
malized to zero, however, simultaneously particle-hole tun-
neling processes appear.5,6 Introducing fn65(fn1

6fn2)/A2, wherefn1,2 are the boson fields of the indi-
vidual chains, for the purely forward scattering case, these
terms take the formJ cos2fr2(cos2fs21cos2us2). One
again has a duality symmetry,fs2↔us2 , and the same
types of power-law correlations as in the weak-coupling case
appear. Introducing now intrachain backscattering, the dual-
ity symmetry is broken and, again as in the weak-coupling
case, only SCd correlations ~exponent 1/2Kr) and 4kF
charge correlations~exponent 2Kr) remain. The types of
possibly divergent response functions and the scaling rela-
tions between different exponents are thus identical for weak
and strong interaction. This strongly suggests thatthis type of
behavior actually holds for arbitrary interaction strength.25

Note that the density correlations decay more slowly than the
pairing correlations only forKr,1/2. This typically corre-
sponds to rather strong repulsion: for example, in the one-
dimensional Hubbard model one reachesKr51/2 only for
infinite repulsion.6 Another interesting strong-coupling
model is the ‘‘t-J ladder.’’15 Here in the limit of strong in-

terchain exchange a mapping onto an effective single-chain
hard core boson model can be made, leading again to the
same low-energy properties as in the weak-coupling limit.26

Recent numerical results14,16 confirm this point.
The exponentsK21 and (K21)/2 valid for the single-

and double-chain problems suggest that forN chains coupled
by near-neighbor interchain hopping one might have an
anomalous exponent (K21)/N atT,t' . To see how such a
behavior can possibly arise, in analogy to the two-chain case
one can go to momentum space in the transverse direction.
The noninteracting bosonized Hamiltonian then is

H05
pvF
2 (

n5r,s
k'

E dxFPnk'
2 1

1

p2 ~]xfnk'
!2G . ~6!

Following standard arguments27 I now only consider
forward-scattering interactions which for states at the Fermi
energy are consistent with both energy and momentum con-
servation. The analog of the first term in Eq.~3! then is

H int,25
g2
2 E dxF 1p2 ~]xfr0!

22Pr0
2 G , ~7!

wherefrx is the Fourier transform offrk'
with respect to

k' . The important point here is thatonly the mode at x50 is
affected by the interactions. A standard calculation then leads
to a decay of CDW correlations asr222(K21)/N, giving rise
to a susceptibility behaving asT(K21)/N. Similarly, the
single-particle Green function decays asr212d, with
d5(K11/K22)/4N, leading to a singularity of the momen-
tum distribution function asuk2kFud.28 In the limit of a large
number of coupled chains the anomalous exponents now
vanish, and in particular one recovers a Fermi-liquid-like
momentum distribution function in this description. More re-
alistically, vF is k' dependent. The model then can still be
solved, even though details are more complicated. The lead-
ing 1/N corrections to Fermi-liquid theory still hold, and in
addition thex50 mode becomes the zero sound mode of a
Fermi liquid, well separated from a particle-hole quasicon-
tinuum.

Clearly, a number of interactions have been neglected in
this argument. First, there are Cooper-type
@(k,2k)→(k8,2k8)# and possibly nesting interactions, the
prototype of which is given by theg00pp

(2) term in Eq.~3!. By
analogy with that case I expect these interactions to give rise
to a gap of orderD0 , and to ordered ground states for
N→`. Thus the power laws of the preceding paragraphs are
valid in the temperature regionD0,T,t' . Moreover, there
are interactions that involve at least one state not exactly at
the Fermi energy. Though these interactions cannot directly
affect the low-energy physics, they in general will lead to
renormalizations ofg2 . The above arguments remain valid if
these renormalizations are nonsingular. To which extent this
is correct is currently under investigation.

In conclusion, I have investigated the phase diagram and
excitation spectrum of two Luttinger liquids coupled by
single-particle hopping, and proposed a possible extension to
many coupled chains. The conclusions are valid for small
hopping amplitude, but the same types of divergent re-
sponses (d-type superconductivity and 4kF charge density in
the case of repulsion! occur for both weak and strong inter-
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actions, suggesting that this type of behavior is to be found
for rather general interactions. The fact that for strong inter-
action interchain hopping renormalizes to zero6,5,11 only af-
fects properties at intermediate energy scales~above the spin
gap!. Contrary to the case of a single chain, the pure
forward-scattering model is found to be a singular line in the
phase diagram, with Ising-type criticality.
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