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We have identified an integrable model of the inhomogeneous radially symmetric weak Heisenberg ferro-
magnet in arbitraryn dimensions with Dzialoshinski-Moriya antisymmetric spin coupling. The elementary spin
excitations of the magnet are found to be governed by soliton modes under small-angle oscillation of the
antisymmetric spin coupling.

In ferromagnets the exchange interaction~spin-spin cou-
pling!, the single-ion anisotropy due to the crystal-field ef-
fect, and Zeeman energies have been treated as common but
simple magnetic couplings. When the symmetry around the
magnetic ions is not high enough an unfamiliar but important
antisymmetrical coupling results due to the combined effect
of spin-orbit coupling and the exchange interaction leading
to the mechanism of weak ferromagnetism. Though the mi-
croscopic theory on the above mechanism was proposed by
Dzialoshinski1 and developed by Moriya2 more than three
decades ago, not much is known about the macroscopic
properties of these ferromagnets including the elementary
spin excitations. However, very recently there has been a lot
of interest in the studies of the weak ferromagnets with
Dzialoshinski-Moriya~DM! interaction because of its impor-
tant role in insulators, spin glasses, and the low-temperature
phase of copper oxide superconductors and also in the phase
transition studies,3 the quantum aspects,4 and the statistical
mechanics.5 In a different platform, in recent years integrable
nonlinear dynamical models of Heisenberg ferromagnets ex-
hibiting an interesting class of localized nonlinear elemen-
tary spin excitations such as solitons, domain walls, etc.,6–11

have been identified. In this context soliton spin excitations
have also been identified very recently in one-dimensional
weak Heisenberg ferromagnetic spin chains with DM
interaction.12 Motivated by this in the present paper, we in-
vestigate the nature of nonlinear spin excitations in an inho-
mogeneous radially symmetric Heisenberg ferromagnet with
DM interaction in arbitraryn dimensions in the classical con-
tinuum limit and identify soliton modes.

In order to understand the underlying nonlinear dynamics
of the above weak ferromagnetic systems, we formulate the
dynamical equations starting from the Heisenberg model of
the Hamiltonian expressed in terms of the ionic spin opera-
tors,

H52(
j

(
d

f j@J~Sj–Sj1d!1D–~Sj3Sj1d!#. ~1!

In Eq. ~1!, the first term represents the exchange interaction
between adjacent spins withJ, the exchange integral and the
second term corresponds to the DM interaction due to anti-

symmetrical spin coupling and the vectord represents all
possible nearest neighbors. This antisymmetrical coupling
acts to cant the spins because the coupling energy is mini-
mized when the two spins are perpendicular to each other.
The direction of the constant vectorD can be related to the
symmetry of the ferromagnetic crystal and when a center of
inversion is located at the point half way between the spins
coupled,2 then D50. We choose the vectorD parallel to
m5~1,1,1! ~i.e., D5Dm!. In Hamiltonian ~1! the site-
dependent functionf j introduces inhomogeneity in the ferro-
magnetic lattice. In the case of ferromagnets when the spin
angular momentum value is large,Sj represents the classical
three-dimensional vector (Sj

x ,Sj
y ,Sj

z) in spin space at the site
j of an n-dimensional lattice andSj1d are its nearest neigh-
bors. In the low-temperature long-wavelength limit the spin
vectorSj and the site-dependent functionf j vary very slowly
over the lattice distancea and we go to the continuum limit
by introducing Taylor expansions forSj6d and for f j6d up to
O(a2) ~a: lattice parameter! and replaceSj and f j respec-
tively by the continuous vector functionS(r ,t) and by the
continuous scalar functionf (r ,t) wherer5(r 1 ,r 2 ,..., r n).
Also in order to reduce the mathematical complexity in the
case of DM interaction we consider only those contributions
during spin evolution that lies only within a small angle~u!
cone whose axis lies parallel tom ~m–S;1! ~see Fig. 1!. In
view of the above, the equation of motion representing the
spin dynamics@after suitable rescaling of time and redefini-
tion of the parameterD (d5D/Ja)] in the radially symmet-
ric case in arbitraryn dimensions can be written as
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]t
~r ,t !5 f ~r !S3S ]2S
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~n21!
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]r SS3
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S2~r ,t !51, r 25r 1
21r 2

21...1r n
2, 0<r<`.

Equation~2! contains several integrable spin models exhib-
iting soliton excitations for differentn andf in the absence of
DM interaction (d50) ~see, e.g., Refs. 6, 10, 11!. Now the
natural question arises to see whether the weak ferromag-
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netic system~2! whendÞ0 can also admit soliton spin exci-
tations for arbitraryn and f and if not for specific choices of
n andf. To find an answer to this question, we first carry out
the Painleve´ singularity structure analysis13,14 on Eq.~2!.

However, as Eq.~2! in its present form is not convenient
for the Painleve´ analysis, we map15 the inhomogeneous
weak ferromagnetic system onto a moving helical space
curve inE3 by identifying the spin vector with the tangent
vector e1 of the space curve with curvaturek(r ,t)
5(e1r•e1r)

1/2 and torsiont(r ,t)5k22e1•(e1r3e1rr ) and de-
fining two unit normal vectorse2 and e3 in the usual way.
The change in orientation of the orthogonal trihedralei ,
i51,2,3, which defines the space curve uniquely within rigid
motion is determined by the Serret-Frenet equationseir5d
3ei , i51,2,3, whered5te11ke3 ~suffix r: partial deriva-
tive!. Now using Eq.~2! ~after replacingS by e1! and the
Serret-Frenet equations the time evolution of the orthogonal
trihedral ei can be written asei t5ei3V, i51,2,3 ~suffix t:
partial derivative!, whereV5v1e11v2e21v3e3 and

v15
1

k F H ~ fk!r1
~n21!

r
fkJ

r

2 fkt22d~2 f2a fr !ktG ,
~3a!

v252F ~ fk!r1
~n21!

r
fkG , ~3b!

v35@ fkt1d~2 f2a fr !k#. ~3c!

The compatibility (eir ) t5(ei t) r , i51,2,3, leads to a set of
coupled nonlinear evolution equations for the curvature and
torsion of the space curve given by

k t52H ~ fkt!r1t~ fk!r1
~n21!

r
fkt1d@k~2 f2a fr !# r J ,

~4a!

t t5F1k H S @ fk# r1F ~n21!

r
fkG D

r

2 fkt22d~2 f2a fr !ktJ G
r

1kF ~ fk!r1
~n21!

r
fkG . ~4b!

Upon suitable identification of the curvature and torsion of
the space curve with the energy and current densities of the
ferromagnetic system Eq.~4! can be equivalently written as a
set of coupled nonlinear evolution equations for the energy
and current densities of the ferromagnet. By making the
complex transformationq5(k/2)exp{i*0

rt(r8,t)dr8} we re-
write Eqs.~4! as the following generalized inhomogeneous
nonlinear Schro¨dinger equation:

iqt12 f uqu2q1F ~ f q!r1H ~n21!

r
f qJ 1 id~2 f2a fr !qG

r

12F E H f r uqu212~n21!
f

r
uqu2J drG50.

~5!

Thus Eq.~5! equivalently represents the spin dynamics of
an inhomogeneous radially symmetric~in arbitrary n di-
mensions! weak ferromagnet and contains few integrable
models with soliton solutions corresponding to the same val-
ues ofn, f whend50 as for Eq.~2!.

Now in order to carry out the singularity structure analy-
sis we rewrite Eq.~5! ~within an arbitrary function oft which
can be removed by a simple time-dependent gauge transfor-
mation! as

iqt12Wq1F ~ f q!r1H ~n21!

r
f qJ 1 id~2 f2a fr !qG

r

50,

~6a!

Wr2 f ~ uqu2!r22H f r1 ~n21!

r
f J uqu250. ~6b!

Further, it is required to rewrite Eqs.~6! and the complex
conjugate of ~6a! by replacing q(r ,t) by P(r ,t) and
q* (r ,t) by Q(r ,t). For isolating those cases for which the
system of Eqs.~6! are free from movable critical manifolds
so that the general solution will be single valued around the
noncharacteristic movable singular manifoldf(r ,t)50, we
express the functionsP, Q, andW locally in the form of the
Laurent series with at least one of the leading function coef-
ficients different from zero. An analysis on the leading order
behavior of the Laurent series solutions in Eqs.~6! ~after
rewriting it in terms ofP andQ! shows thatP;P0f

21, Q
;Q0f

21, W;W0f
22 with P0Q052f r

2 andW052 ff r
2

and the resonances, namely the powers at which the arbitrary
functions can enter into the Laurent series, are found to be
21,0,2,3,4. The resonances21 and 0 correspond to the ar-
bitrariness of the singular manifold and the coefficientP0 or
Q0, respectively. For proving the existence of a sufficient

FIG. 1. Small-angle cone~u! representing allowed region of
spin oscillations due to DM interaction.
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number of arbitrary functions without the introduction of
movable critical manifolds at the resonance values 2, 3, and
4, we substitute the full Laurent series solutions in Eqs.~6!
and collect the coefficients of different powers off. A de-
tailed analysis of the resultant equations shows that there
exist arbitrary functions without the introduction of movable
critical manifolds at resonance values 2, 3, and 4 when the
inhomogeneous functionf (r ) assumes the specific form

f ~r !5ar2~n22!1br22~n21!, ~7!

wherea andb are arbitrary constants. Thus we conclude that
the inhomogeneous radially symmetric Heisenberg weak fer-
romagnet in arbitraryn dimensions is expected to be an in-
tegrable nonlinear dynamical model and hence the elemen-
tary spin excitations may be expressed in terms of solitons
when the inhomogeneity is of the form~7!.

Having identified the integrable model in Eq.~5! and
hence in Eq.~2!, we now try to obtain the Lax pair of op-
erators or the associated linear eigenvalue problem for the
purpose of constructing soliton solutions. This can be
achieved by using the Laurent series solutions of~6! trun-
cated at the constant level term.14 Thus we substitute the
truncated Laurent series solutionsP5P0f

211P1 , Q
5Q0f

211Q1 , andW5W0f
221W1f

211W2 in Eqs. ~6!
and collect the coefficients off22 and f21 to obtain an
overdetermined system of equations which upon identifica-
tion of P05 ic1

2, Q05 ic2
2, P15q, Q15q* , and f r5

2 ic1c2 , give the linear eigenvalue problemc r5Uc, c t
5Vc, with c5(c1c2)

T and the Lax pair of operatorsU and
V given by

U5S ilr n21 q
2q* 2 ilr n21D , ~8a!

V5S A B
2B* 2AD , ~8b!

where

A5 iW22il2f r 2~n21!, ~8c!

B522l f qrn211 i H ~ f q!r1
~n21!

r
f qJ d~2 f2a fr !q.

~8d!

Here l is the spectral parameter obtained as a constant of
integration andf takes the specific form as given in Eq.~7!.
The consistency of the linear eigenvalue problem leads to the
evolution equation~6!, provided the spectral parameter
evolves asl(t)[r(t)1 ih(t)5(2nat1g)21, where g is
the free parameter.

The explicit form of the soliton solution to Eq.~5! can
now be obtained by constructing the Ba¨cklund
transformation11,16 from the linear eigenvalue problem. We
obtain the Ba¨cklund transformation connecting theN andN
21 solitons as

~11uxu2!~q1q8!54hr n21x, ~9!

where x5(c1 /c2) satisfies the Riccati equations,x r
52ir n21lx1q1q* x2 and x t5B12Ax1B* x2 with A
andB as given in Eqs. 8~c! and 8~d!. The one soliton solution

q(1) can be constructed using the Ba¨cklund transformation
starting from the zero soliton solutionq(0)[0 and with the
knowledge ofx(0)5c1(0)/c2(0) which can be obtained by
solving the linear eigenvalue problem forq(0)[0. Thus we
obtain the one soliton solution to Eq.~5! as

q52h~ t !r n21sechF2h~ t !H r nn 24br~ t !t2d1J G
3expF2i H r~ t !r n

n
22bE

0

t

r2~ t8!2h2~ t8!dt81d2J G ,
~10!

with

l~ t ![r~ t !1 ih~ t !

5
$r~0!1 ih~0!12na@r2~0!t1h2~0!t#%

$@112natr~0!#214n2a2h2~0!t2%

and d1,d2 phase constants. Knowingq and, therefore, the
curvature k, torsion t and the tangent vectore1 of the
space curve, the spin-vectorS can be constructed.17,18Thus,
we obtain the elementary spin excitations of the

FIG. 2. ~a! Evolution of soliton (uqu) in the circularly symmetric
case.~b! Evolution of soliton (uqu) in the spherically symmetric
case.
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n-dimensional radially symmetric inhomogeneous weak fer-
romagnet in the form of one soliton solution corresponding
to ~10! as

S6[Sx6 iSy

5
2h

r2 1h2 H r7 ih tanhF2S h
r n

n
24bE

0

t

hrdt8D 2d1G J
3sechF2hH r nn 24bE

0

t

rdt82d1J G
3expF62i H r

r n

n
22bE

0

t

~r22h2!dt81d2J G , ~11a!

Sz512S 2h2

r21h2D sech2F2hH r nn 24bE
0

t

rdt82d1J G . ~11b!

It may be noted that the structure of the one soliton solu-
tions are similar to the case whend50. However, by inspec-
tion we notice that the structure of multisolitons will differ.
In Fig. 2 we have plotted the evolution of the one soliton
(uqu) in the physically important circularly (n52) and
spherically (n53) symmetric cases for the following spe-
cific values of the parameters:r~0!50.2,h~0!50.2, d150.3,
a50.5, b50.1. On comparing the evolution of solitons in
Figs. 2~a! and 2~b!, we notice that as the dimension of the

ferromagnet at a given time increases the soliton becomes
sharp and more localized with increase of amplitude and de-
crease of width. Further, it is observed that the soliton in both
the circularly and spherically symmetric cases spreads as
time passes on, which is due to the form of the amplitude
functionh(t) and which is common in soliton systems with
nonisospectral flows.11 Though energy is not a constant here
~sinceh(t) is not a constant! there exists an infinite number
of constants of motion each of which are summed over the
infinite number of constants of motion of the standard cubic
nonlinear Schro¨dinger equation multiplied by time-
dependent coefficients~for details see Refs. 11, 17, and 21 of
Ref. 11 here!. Finally, the complete integrability nature of the
system ensures the stability of solitons under collisions.

In conclusion, the radially symmetric inhomogeneous
weak Heisenberg ferromagnet with DM interaction in arbi-
trary n dimensions in the classical continuum limits is found
to be an integrable nonlinear dynamical model under small-
angle spin oscillation due to antisymmetrical spin coupling
and when the inhomogeneity is of the formf (r )
5ar2(n22)1br22(n21). The elementary spin excitations of
this integrable ferromagnetic system is found to be governed
by solitons.
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