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Soliton in an inhomogeneous weak ferromagnet with the Dzialoshinski-Moriya interaction
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We have identified an integrable model of the inhomogeneous radially symmetric weak Heisenberg ferro-
magnet in arbitrary dimensions with Dzialoshinski-Moriya antisymmetric spin coupling. The elementary spin
excitations of the magnet are found to be governed by soliton modes under small-angle oscillation of the
antisymmetric spin coupling.

In ferromagnets the exchange interacti@pin-spin cou- symmetrical spin coupling and the vectérrepresents all
pling), the single-ion anisotropy due to the crystal-field ef- possible nearest neighbors. This antisymmetrical coupling
fect, and Zeeman energies have been treated as common lagts to cant the spins because the coupling energy is mini-
simple magnetic couplings. When the symmetry around thenized when the two spins are perpendicular to each other.
magnetic ions is not high enough an unfamiliar but importanfThe direction of the constant vectbr can be related to the
antisymmetrical coupling results due to the combined effecsymmetry of the ferromagnetic crystal and when a center of
of spin-orbit coupling and the exchange interaction leadingnversion is located at the point half way between the spins
to the mechanism of weak ferromagnetism. Though the micoupled® then D=0. We choose the vectdd parallel to
croscopic theory on the above mechanism was proposed byw=(1,1,1) (i.e., D=Dm). In Hamiltonian (1) the site-
Dzialoshinskt and developed by Moriyamore than three dependent functiof; introduces inhomogeneity in the ferro-
decades ago, not much is known about the macroscopimagnetic lattice. In the case of ferromagnets when the spin
properties of these ferromagnets including the elementargngular momentum value is larg8, represents the classical
spin excitations. However, very recently there has been a Iaghree-dimensional vectonS( ,sjy ,sjz) in spin space at the site
of interest in the studies of the weak ferromagnets withj of an n-dimensional lattice an®, ; are its nearest neigh-
Dzialoshinski-Moriya(DM) interaction because of its impor- bors. In the low-temperature long-wavelength limit the spin
tant role in insulators, spin glasses, and the Iow—temperatur@ectorsj and the site-dependent functibpvary very slowly
phase of copper oxide superconductors and also in the phagger the lattice distanca and we go to the continuum limit
transition studie$,the quantum aspectsand the statistical by introducing Taylor expansions f& . s and forf;. 5 up to
mechanics.In a different platform, in recent years integrable 0(a?) (a: lattice parameterand replécesj and fjirespec-
nonlinear dynamical models of Heisenberg ferromagnets exijvely by the continuous vector functio®(r,t) and by the
hibiting an interesting class of localized nonlinear elementontinuous scalar functiof(r,t) wherer=(ry,r,,..., rp).
tary spin excitations such as solitons, domain walls, ®t¢.,  Also in order to reduce the mathematical complexity in the
have been identified. In this context soliton Spin eXCitation%ase of DM interaction we consider on]y those contributions
have also been identified very recently in one-dimensionadiyring spin evolution that lies only within a small andi®
weak Heisenberg ferromagnetic spin chains with DMcone whose axis lies parallel to (m-S~1) (see Fig. L In
interaction.” Motivated by this in the present paper, we in- yiew of the above, the equation of motion representing the
Vestigate the nature of nonlinear Spin excitations in an inhOSpin dynamic{after suitable resca“ng of time and redefini-
mogeneous radially symmetric Heisenberg ferromagnet withion of the parameted (d=D/Ja)] in the radially symmet-
DM interaction in arbitraryn dimensions in the classical con- ric case in arbitraryn dimensions can be written as
tinuum limit and identify soliton modes.

In order to understand the underlying nonlinear dynamics s
of the above weak ferromagnetic systems, we formulate the —-(1.1)= f(r)Sx
dynamical equations starting from the Heisenberg model of

#S (n—1) as) af( as)
— — |+ = Sx—
ar ar

ar? rooor

the Hamiltonian expressed in terms of the ionic spin opera- af |9S
tors, —d2f-a---, 2
H=-2 2 f[3(S:S:)+D(§xS.5]. (1) Srt)=1, ri=ri+ri+..+rh Osr=w.
] B

Equation(2) contains several integrable spin models exhib-
In Eq. (1), the first term represents the exchange interactioriting soliton excitations for differem andf in the absence of
between adjacent spins wifh the exchange integral and the DM interaction @=0) (see, e.g., Refs. 6, 10, 1INow the
second term corresponds to the DM interaction due to antinatural question arises to see whether the weak ferromag-
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(n—1)
Kt:_[(fKT)r+T(fK)r+ r fKT+d[K(2f_afr)]r}’
(43
1 (n—1) 2
T = ;[([f:c]r-i- fx ) —frr —d(Zf_afr)KT]
(n—1)
+x| (fr), + . fr|. (4b)

Upon suitable identification of the curvature and torsion of
the space curve with the energy and current densities of the

- ferromagnetic system E@) can be equivalently written as a

Y set of coupled nonlinear evolution equations for the energy
and current densities of the ferromagnet. By making the
complex transformatiory= («/2)expfifor(r’,t)dr'} we re-
write Egs.(4) as the following generalized inhomogeneous
nonlinear Schidinger equation:

X

: (n—1) :
+ 29+ + + -
FIG. 1. Small-angle coné6) representing allowed region of Gt 2f|q| at|(fa r fa[+id(2f~-af)q ;
spin oscillations due to DM interaction.
f
+2 f(fr|q|2+2(n—1)—|q|2Jdr}zo.
netic system(2) whend+0 can also admit soliton spin exci- r

tations for arbitraryn andf and if not for specific choices of (5)

n andf. To find an answer to this question, we first carry out ) ) )
the Painlevesingularity structure analysi'on Eq.(2). Thus Eq.(5) equivalently represents the spin dynamics of

However, as Eq(2) in its present form is not convenient @ inhomogeneous radially symmetrim arbitrary n di-
for the Painleveanalysis, we map the inhomogeneous mensiong weak ferromagnet and contains few integrable
weak ferromagnetic system onto a moving helical SpaCénodels with soliton solutions corresponding to the same val-
curve in E3 by identifying the spin vector with the tangent Ues ofn, fwhend=0 as for Eq.(2).

vector e, of the space curve with curvature(r,t) Now in order to carry out the singularity structure analy-
= (ey, - €,,) Y2 and torsionr(r,t) =k~ 2e, - (e, X &;,,) and 'de_ sis we rewrite Eq(5) (within an arbitrary function of which
r r 1 r r

fining two unit normal vector®, and e, in the usual way. Ca" be removed by a simple time-dependent gauge transfor-

The change in orientation of the orthogonal trihedes] ~ Mation as
i=1,2,3, which defines the space curve uniquely within rigid

motion is determined by the Serret-Frenet equatiepsd iq,+2Wa+| (fq),+ (n_l)fq +id(2f_afr)q} =0,
X g, i=1,2,3, whered= re, + xe; (suffix r: partial deriva- r ;
tive). Now using Eq.(2) (after replacingS by ) and the (63
Serret-Frenet equations the time evolution of the orthogonal (—1)

trihedrale can be written ag;=¢e X Q, i=1,2,3 (suffix t: B 2 n— 2

partial derivative, where Q= w,€; + w,6,+ w;e; and W —f(lal*)r—2) fr+ r flal*=o. (6b)

Further, it is required to rewrite Eq$6) and the complex
conjugate of (6a) by replacing q(r,t) by P(r,t) and
, g*(r,t) by Q(r,t). For isolating those cases for which the
system of Egs(6) are free from movable critical manifolds
(39 so that the general solution will be single valued around the
noncharacteristic movable singular manifaidr,t) =0, we
express the functionB, Q, andW locally in the form of the
Laurent series with at least one of the leading function coef-
ficients different from zero. An analysis on the leading order
behavior of the Laurent series solutions in ES). (after
rewriting it in terms ofP and Q) shows thatP~Py¢ 1, Q
wy=[frr+d(2f—af,)x]. 39 ~Qob ", W=Wog~? with PoQo=— g7 and Wo=—f¢r
and the resonances, namely the powers at which the arbitrary
functions can enter into the Laurent series, are found to be
The compatibility &,)=(e;),, i=1,2,3, leads to a set of —1,0,2,3,4. The resonancesl and 0 correspond to the ar-
coupled nonlinear evolution equations for the curvature anditrariness of the singular manifold and the coefficiBgtor
torsion of the space curve given by Qg, respectively. For proving the existence of a sufficient

(n-1)

r

1
w1=;H(fK),+ fKJ —fxkr?—d(2f—af,)kr
r
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number of arbitrary functions without the introduction of q(1) can be constructed using the &&hund transformation
movable critical manifolds at the resonance values 2, 3, andtarting from the zero soliton solutiaf(0)=0 and with the
4, we substitute the full Laurent series solutions in H@s. knowledge ofy(0)= ,(0)/4»(0) which can be obtained by
and collect the coefficients of different powers ¢f A de-  solving the linear eigenvalue problem fg¢0)=0. Thus we
tailed analysis of the resultant equations shows that therebtain the one soliton solution to E(p) as

exist arbitrary functions without the introduction of movable

critical manifolds at resonance values 2, 3, and 4 when the r"

inhomogeneous functiof(r) assumes the specific form q=2n(t)r“‘1secv{2n(t)[F—4ﬂp(t)t— 51H

f(r)=ar~ "2+ pgr-200-1), (7) n
><ex;{2i[p(t)r

wherea and B are arbitrary constants. Thus we conclude that n
the inhomogeneous radially symmetric Heisenberg weak fer-
romagnet in arbitrary dimensions is expected to be an in-
tegrable nonlinear dynamical model and hence the elemeRgjth
tary spin excitations may be expressed in terms of solitons
when the inhomogeneity is of the for(@). Nt =p(t)+in(t)

Having identified the integrable model in E¢) and
hence in Eq(2), we now try to obtain the Lax pair of op- {p(0)+i7n(0)+2na[ p?(0)t+ 5*(0)t]}
erators or the associated linear eigenvalue problem for the ~ T {[1+2natp(0) 3+ 4nZaZ A (0)t3
purpose of constructing soliton solutions. This can be
achieved by using the Laurent series solutiong®ftrun-  and &8,,6, phase constants. Knowing and, therefore, the
cated at the constant level teffhThus we substitute the curvature , torsion 7 and the tangent vectoe, of the
truncated Laurent series solutionB=Py¢ 1+P;, Q space curve, the spin-vect8rcan be constructejclesThus,
=Qu¢ 1+Qq, andW=Wy¢ ?+W;¢ 1+W, in Egs.(6) we obtain the elementary spin excitations of the
and collect the coefficients o 2 and ¢! to obtain an
overdetermined system of equations which upon identifica-  o4s

|

(10

—ZBﬂpz(t’)—nz(t’)dt’ﬂsg

tion of Po=iy?, Qu=iy2, P;=0, Qi=q*, and ¢,= I MEC T
—iyni,, give the linear eigenvalue problegy=U4, i, > P at1-a'0
=V, with y=(i11,) " and the Lax pair of operatoks and o} S\ TTTanteso
V given by /T N
030t ;s \’-...
ixr"t g ) 025k s BN
= * iy =1/ (8a) < I s AN
( - q —IAr = ozol // ././' \\ \\
Fa 7 NN
A B o8k ,’I .// \\ \.\‘\\
o-ioF /I_.-" // N \.\_\
where o-08F /// \\\\.:"‘w.__n e
A=iW—2i )\ZfrZ(nfl), (80) o S . ) ) ) ) ) Tl
(a) (s} I 2 3 4 ? € 7 8 9 10
1 (n—1) .
B=—2Afqr""*+ij (fg),+ ; fqrd(2f—af,)q. o8 a0
== at=2.0
(8d) e et
Here \ is the spectral parameter obtained as a constant of .| TTTemee
integration and takes the specific form as given in HJ).
The consistency of the linear eigenvalue problem leads to the  ost
evolution equation(6), provided the spectral parameter _
evolves as\(t)=p(t)+in(t)=(2nat+y) "1, wherey is = o
the free parameter. oal
The explicit form of the soliton solution to Eq5) can
now be obtained by constructing the “diund ozt
transformatioh!® from the linear eigenvalue problem. We
obtain the Baklund transformation connecting tieandN ot
—1 solitons as o e
o] 7 8 9 10
(1+|xD(g+q) =471y, © ® '
where xy=(i1/¢,) satisfies the Riccati equationsy, FIG. 2. (a) Evolution of soliton (g|) in the circularly symmetric

=2ir" ]\ x+qg+qg*x? and x;=B+2Ax+B*x? with A  case.(b) Evolution of soliton (g|) in the spherically symmetric
andB as given in Egs. @) and 8d). The one soliton solution case.
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n-dimensional radially symmetric inhomogeneous weak ferferromagnet at a given time increases the soliton becomes
romagnet in the form of one soliton solution correspondingsharp and more localized with increase of amplitude and de-

to (10) as crease of width. Further, it is observed that the soliton in both
the circularly and spherically symmetric cases spreads as
ST=g*ig time passes on, which is due to the form of the amplitude
27 [ ¢ function »(t) and which is common in soliton systems with
=———pFiy tam—{z 7]__4ﬁf npdt') - 51H nonisospectral flows: Though energy is not a constant here
pe n 0 (sincen(t) is not a constantthere exists an infinite number
pn t of constants of motion each of which are summed over the
xsecr{zn[——dﬁf pdt’ — 61H infinite number of constants of motion of the standard cubic
n 0 nonlinear Schrdinger equation multiplied by time-

dependent coefficientfor details see Refs. 11, 17, and 21 of
,  (11a Ref. 11 herg Finally, the complete integrability nature of the
system ensures the stability of solitons under collisions.
| In conclusion, the radially symmetric inhomogeneous
r t i i i N i i
271[;—4,3f pdt’ — 51”_ (11b) weak Heisenberg ferromagnet with DM interaction in arbi
0

r" t
Xex;{ t2i|pﬁ—2,8f (p2— p?)dt’ + 52}
0

F=1- —2—22"2 R

B pt+n sec trary n dimensions in the classical continuum limits is found

to be an integrable nonlinear dynamical model under small-
It may be noted that the structure of the one soliton soluangle spin oscillation due to antisymmetrical spin coupling

tions are similar to the case wher-0. However, by inspec- and when the inhomogeneity is of the fornfi(r)

tion we notice that the structure of multisolitons will differ. =ar~(""2)+ gr=2("=1)_ The elementary spin excitations of

In Fig. 2 we have plotted the evolution of the one solitonthis integrable ferromagnetic system is found to be governed

(la]) in the physically important circularly (=2) and by solitons.

spherically 6=3) symmetric cases for the following spe-

cific values of the parameters(0)=0.2, 7(0)=0.2, 5,=0.3, The work reported here forms part of a major DST

a=0.5, 8=0.1. On comparing the evolution of solitons in project. M.D. thanks the ICTP for hospitality. R.A. thanks

Figs. 4a) and Zb), we notice that as the dimension of the the Bharathidasan University for financial support.
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