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Large-scalesimulations have been carried out for elucidating the power-law dependence on frequency of the
Raman-scattering intensityI ab~v! for d53 bond-percolating networks. We have used for this purpose a simple
but powerful and accurate numerical method. Taking into account the dipole-induced-dipole mechanism, the
clear evidence of the power-law dependence on frequency forI ab~v! has been obtained above and below the
phonon-fracton crossover frequencyvc . In addition, the profiles of thev dependence for dynamical structure
factor S~q,v! for d53 percolating networks are given for networks above the percolation thresholdpc .
Physical interpretations for these results are given in a line with the dynamic scaling argument.

Scattering experiments are crucial for understanding dy-
namical properties of complex systems.1 In particular, scat-
tering experiments on fractal or percolating networks have
revealed peculiar properties of vibrational excitations called
fractons.2,3 Tsujimi et al.4 have performed Raman-scattering
experiments for silica aerogels and found the power-law de-
pendence on frequency of the Raman-scattering intensity.
This is clear evidence of thev dependence ofI ab~v! for
fractal structures. To analyze the data, they used ensemble
averaged wave functions for fractons. It has been pointed out
that the use of ensemble averaged wave functions are not
appropriate for the calculation of scattering matrix elements.5

Alexander, Courtens, and Vacher6 have proposed a scaling
theory for the dynamical structure factorS(q,v! and the in-
elastic light scattering intensityI ab~v! on percolating net-
works, assuming the validity of single-length scaling postu-
late ~SLSP!. The validity of the SLSP has been confirmed by
numerical calculations7,8 for d52 andd53 percolating net-
works at the percolation thresholdpc , where the system is
considered to be self-similar at any length scale. Montagna
et al.9 and Mazzacuratiet al.10 have numerically studied the
Raman-scattering intensity for site-percolating networks.
Most of these have used direct diagonalization techniques
~except Ref. 8!, which consumes a large amount of memory
sizes. As a result, the numbers of sites are limited within the
order of 103–104, the system size up toL<29 for d53,
which cause the sample dependence or the finite-size effect
on the results. Due to this difficulty, no clear evidence has
been given on the power-law dependence on frequency
above and below the phonon-fracton crossover frequency
vc . The development of a numerical method for calculating
the dynamic correlation function of large systems has been
highly required in order to obtain the correct insight into the
dynamic correlation functions such asI ab~v! or S~q,v!.

This paper, at first, presents an efficient numerical method
to calculate the dynamic correlation function for very large
systems. Our algorithm, based on the forced oscillator
method,11–14can treat very large systems of the order of 106

using a computer with 64 Mbyte memory space. These large
sizes enable us to obtain the definite informations of dynamic
correlation functions with arbitrary resolution of frequency
dv without performing sample-average procedure. We apply
our algorithm to investigate the power-law dependence on

frequency of the Raman-scattering intensitiesI ab~v! @~a,b!
5~x,x),(x,y!# for d53 bond-percolating networks. In real
materials such as aerogels, the systems above the percolation
thresholdpc are relevant, so we pay attention to these quan-
tities for the systems abovepc .

Let us consider the equation of motion for vibrational
systems with the external force on each site. This is given by
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We should note that the right-hand side of Eq.~3! is related
to the definition of the Raman-scattering intensityI ab~v!,
which is written by

I ab~v![
1

2pN E dt eivt (
mn

^mab
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n ~0!&, ~4!

where^•••& is the thermal average,N the number of sites, and
m ab
n (t) the polarizability at the siten[(k,l ), respectively.

Neglecting the contribution from elastic scattering, one has
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where ^n11& is the Bose factor expressed by 1/~12e2bv!,
and f ng[(m]m ab

m /]ung . Taking into account the dipole-
induced-dipole~DID! mechanism, one can expressf ng in
Eq. ~5! using the derivative of the dipole propagator7,9,10

as
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where r a is defined asrmn[Rm2Rn5~r x ,r y ,r z), r[urmnu,
and m̃n the bare polarizability of siten, respectively. The
value of m̃n is given by

m̃n5H 1 ; occupied,

0 ; unoccupied.
~7!

Here the bare polarizability at each site is taken to be isotro-
pic. Using Eqs.~3! and~5!, the Raman-scattering intensity is
expressed as

I ab~v!'
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where the amplitude of the periodic force$F k l
a % in Eq. ~8!

should be taken asF k l
a [ f na . This method enables us to

calculate Eq.~5! with arbitrary resolution of frequencydv by
choosing the proper time intervalT'4p/dv.13

We use the above algorithm for the calculation ofI ab~v!
for bond-percolating networks. There exists the characteristic
length scale called thecorrelation length j}up2pcu

2n in
this system, wherep is the percolation concentration and
pc is the percolation threshold. At larger length scale thanj,
the system is considered to be homogeneous. While at
shorter length scale thanj, the self-similarity becomes rel-
evant. There is a crossover frequencyvc related toj as
vc}j2Df /d̃, where Df is the fractal dimension andd̃ is
called spectral dimension.3 The value of d̃ is known to
be close to43 for percolating networks at any Euclidean
dimension d~>2!.2,3 At lower frequenciesv,vc , vibra-
tional excitations are conventional~weakly localized!
phonons. At higher frequenciesv.vc , excitations are
strongly localized and called fractons. In the following, we
consider scalar displacements with one atom in a unit cell
and the unit mass~mk51!. The matrix elementsfmn in Eq.
~1! are taken as

fmn5H zm : m5n

21 : nearest neighbor interaction

0 : otherwise,

~9!

wherezm is the coordination number at the sitem. We show
in Fig. 1 the normalized density of states~DOS! for d53
bond-percolating network formed on a simple-cubic lattice
with the percolation concentrationp50.31~.pc50.25!. The
system size isL5120 and the number of sites is 1 302 424.
The periodic boundary condition is taken for calculations.
The crossover frequencyvc of this system is estimated from

Fig. 1 asvc'0.07. The calculated DOS clearly follows the
Debye density of statesD~v!}v2 for v,vc , while the DOS
obeysD~v!}v d̃21 ~d̃'4/3! for v.vc .

We have calculated the Raman-scattering intensities for
d53 bond-percolating networks formed on a simple-cubic
lattice, taking into account the dipole-induced-dipole
mechanism.6,7,9,10The Raman-scattering intensityI ab~v! can
be expressed as1,3

I ab~v!5
^n11&

v
D~v!Cab~v!, ~10!

whereD~v! is the DOS andCab~v! is the Raman-coupling
coefficient. Alexander, Courtens, and Vacher6 have given the
scaling argument for the Raman coupling coefficient for per-
colating networks and predicted the following power-law de-
pendence,

C~v!}v2d̃~s1d! /Df23d̃, ~11!

whereDf is the fractal dimension ands is the exponent for
strain. They have suggested that the value ofs~>1! should
be not much larger than unity. Numerical studies by Stoll,
Kolb, and Courtens7 and Nakayama and Yakubo8 have con-
firmed the validity of this scaling prediction. Figure 2~a!
shows the reduced Raman-scattering intensityI ab~v!/^n11&
as a function of frequencyv at the percolation threshold
~p5pc50.249!. The ordinate of Fig. 2~a! presents the re-
duced Raman intensity with arbitrary units. The system size
is L5120 and the number of sites is 264,311. Solid circles
and solid squares in Fig. 2~a! represent the calculated results
for the polarized scattering@~a,b!5~x,x!# and for the depo-
larized scattering@~a,b!5~x,y!#, respectively. We clearly see
the power-law dependenceI xx(v)/^n11&}v20.4460.05 and
I xy(v)/^n11&}v20.4660.05 in much wider frequency band
compared with previous studies.7,9,10The use of Eq.~10! and
the fracton DOSD~v!}v1/3 leads to the power-law depen-
dence of the Raman-coupling coefficientsCxx~v!}v0.2360.05

andCxy~v!}v0.2160.05 in the fracton regime. The value of the
exponents in Eq. ~11! is obtained from these results as close
to unity, namely,s50.9760.05. Figure 2~b! gives the re-
duced Raman intensityI xx(v)/^n11& for the d53 bond-
percolating network atp50.31 ~.pc50.249!. The intensity
in Fig. 2~b! is smaller than those in Fig. 2~a!. This is because

FIG. 1. Thev dependence of the normalized density of states
D~v! of d53 bond-percolating network atp50.31 ~.pc50.249!
formed on 12031203120 cubic lattice.
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the system atpc @Fig. 2~a!# is much diluted in comparison
with the case abovepc .

10 The drastic change of thev depen-
dence of the reduced Raman intensity is observed at the
phonon-fracton crossover frequencyvc'0.07. The calcu-
lated v dependence of the reduced Raman intensity
I xx(v)/^n11& is proportional tov3 for v,vc , indicating
phonon contribution. Note that the substitution of the phonon
density of statesD~v!}v2 and the Raman-coupling coeffi-
cientCxx~v!}v2 for phonons into Eq.~8! recovers the cal-
culated frequency dependence forI xx~v!}v3. Forv.vc , the
calculated results show thatI xx(v)/^n11& is proportional to
v20.44, which has the same power-law dependence as solid
circles given in Fig. 2~a!, indicating the contribution from
fractons. We have shown in Fig. 2~b! the clear evidence of
the power-law dependence of the Raman intensity above and
below the phonon-fracton crossover frequencyvc . We
should stress that the Raman intensity in the frequency re-
gime v.vc takes the samev dependence as that for the
system at the percolation thresholdpc . The sample-average
procedure is not taken due to the large number of sites in our
system in these calculations.

Finally, let us show the calculated results of dynamical
structure factors using the formula Eq.~3!. The dynamical
structure factorS~q,v! is defined as13,15

S~q,v![
^n11&

vN (
l

d~v2vl!U(
k l

$q•ek l~l!%e2 iq•Rk lU2
~12!

whereq is the wave vector, andRk l the positional vector of
the atomk of the cell l , respectively. Putting the following
two sets of$Fkl

a % into Eq. ~1!,

Fk l
a ~c!5qaF0cos~q•Rk l ! ~13a!

and

Fk l
a ~s!5qaF0sin~q•Rk l !, ~13b!

one can relate the quantitiesEc(V,T) andEs(V,T) @corre-
sponding to Eq.~3!# to S~q,v! as

S~q,v!'
^n11&

vN

4$Ec~v,T!1Es~v,T!%

pTF0
2 , ~14!

whereEc(Es! is obtained by substituting Eq.~13a! @~13b!#
into Eq. ~1!.

Figure 3 shows thev dependence ofS~q,v! for five dif-
ferent q along the@100# direction. The number of sites is
much larger than those in the works reported so far.7–10The
solid lines are only guides to the eye and the Bose factor is
reduced. For small wave vectorq~,j21!, sharp peaks appear
in the low-frequency region. With increasingq5uqu, peak
positions shift to the higher-frequency region beyond
vc'0.07 and the widths~t21! of the peaks increase very
rapidly. This indicates that the linewidth of fracton is very
broad, originating from the Ioffe-Regel strong scattering
limit ~t21'v!.16

In this paper, we have performed large-scale computations
for the Raman-scattering intensityI ab~v! and the dynamical
structure factorS~q,v! for d53 bond-percolating networks.
The numerical method we have used is very powerful to

FIG. 2. ~a! The v dependence of the reduced Raman intensity
I ab~v!/^n11& of the d53 bond-percolating network at
p5pc~50.249! formed on a 12031203120 cubic lattice. Solid
circles and squares represent the calculated results for the polarized
scattering @~a,b!5~x,x!# and the depolarized scattering@~a,b!
5~x,y!#, respectively.~b! Thev dependence of the reduced Raman
intensity I xx(v)/^n11& of the d53 bond-percolating network at
p50.31 formed on a 12031203120 cubic lattice.

FIG. 3. Thev dependence of the dynamical structure factor
S~q,v! of thed53 bond-percolating network atp50.31 formed on
a 12031203120 cubic lattice.
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obtain the insight into the dynamic correlation function. The
v dependences of the Raman-scattering intensities are calcu-
lated with the dipole-induced-dipole mechanism ford53
percolation networks. For percolating networks atpc , we
have confirmed the validity of the scaling theory proposed by
Alexanderet al.,6 suggesting that the strain exponent takes
the values50.9760.05. We have also calculated thev de-
pendence of the Raman-scattering intensity for percolating
networks abovepc . In the lower-frequency regime~v,vc!,
our calculated results indicate clear phonon contribution. In
the higher-frequency regime~v.vc!, the reduced Raman in-
tensity has the samev dependence as that for networks at the

percolation thresholdpc . We emphasize that the power-law
dependence on frequency ofCab~v!, predicted theoretically
for the systemp5pc ,

6 is valid for the systemp.pc . This
supports the applicability of the scaling theory for the
Raman-scattering intensity to actual systems such as silica
aerogels.
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