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Power-law dependence on frequency of the Raman-scattering intensity of percolating networks
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Large-scalesimulations have been carried out for elucidating the power-law dependence on frequency of the
Raman-scattering intensity,;(w) for d=3 bond-percolating networks. We have used for this purpose a simple
but powerful and accurate numerical method. Taking into account the dipole-induced-dipole mechanism, the
clear evidence of the power-law dependence on frequencl,fo6) has been obtained above and below the
phonon-fracton crossover frequengy. In addition, the profiles of the dependence for dynamical structure
factor S(q,w) for d=3 percolating networks are given for networks above the percolation threghold
Physical interpretations for these results are given in a line with the dynamic scaling argument.

Scattering experiments are crucial for understanding dyfrequency of the Raman-scattering intensitigg(w) [(a,5)
namical properties of complex systefm particular, scat- =(x,X),(x,y)] for d=3 bond-percolating networks. In real
tering experiments on fractal or percolating networks havenaterials such as aerogels, the systems above the percolation
revealed peculiar properties of vibrational excitations calledhresholdp, are relevant, so we pay attention to these quan-
fractons? Tsujimi et al* have performed Raman-scattering tities for the systems above, . . o
experiments for silica aerogels and found the power-law de- Let us consider the equation of motion for vibrational
pendence on frequency of the Raman_scattering intensitﬁystems with the external force on each site. This is given by
This is clear evidence of the dependence of ,4(w) for
fractal structures. To analyze the data, they used ensemble M0 (1) = 2 ¢a,8 uP () +F% cogQt) (1)
averaged wave functions for fractons. It has been pointed out Kkl pny w1 SR « '
that the use of ensemble averaged wave functions are not
appropriate for the calculation of scattering matrix eleménts.whereu ¢(t) is the displacement at the atosnof the celll
Alexander, Courtens, and Vacfidrave proposed a scaling with the Cartesian compones{=x,Y,2), ¢ﬁ,ﬁK,|, the force
theory for the dynamical structure factS(qg,») and the in-  constant between the atofr,) and («',l"), |:'gI and Q are
elastic light scattering intensity,s(w) on percolating net-  the amplitude and the frequency of the external force, respec-
works, assuming the validity of single-length scaling postu-ively.
late (SLSP. The validity of the SLSP has been confirmed by The energyE(Q't) of the system aftet time under the
numerical calculatior® for d=2 andd=3 percolating net- initial conditionsu ¢ (t=0)=U%(t=0)=0 becomes
works at the percolation threshofs}, where the system is
consgdered to be self-slmllﬁ)r at any length scale. Montagna 1 Si?{(Q— wy)t/2} o 2
et al” and Mazzacuratet al.”® have numerically studied the  E(Q,t)=5 E 5 2 e,

. . . . . 2 N (Q_w)\) Kl
Raman-scattering intensity for site-percolating networks. 5
Most of these have used direct diagonalization techniques )
(except Ref. § which consumes a large amount of memory yhere , is the eigenfrequency of the mode ande?(\)
sizes. As a result, the numbers of sites are limited within thgne  ~  component of the  eigenvector e, (\)
order of 16-1Cf, the system size up t0=29 for d=3,  _[¢X (\),e,(\),e%(\)] at the atom« of the cell I,

which cause the sample dependence or the finite-size effe . 1,13,14 . _
on the results. Due to this difficulty, no clear evidence has%SpeCtNelﬁ For sufficiently larget=T, E(Q.T) be-
. comes
been given on the power-law dependence on frequency
above and below the phonon-fracton crossover frequency 2
. . T
o . The development of a numerical method for calculating E(Q,T)~— >, 5(9_%){ > leegl()\)] )
the dynamic correlation function of large systems has been 4 wla
highly required in order to obtain the correct insight into the ] ) )
dynamic correlation functions such Bg(w) or S(q,w). We should_ n_qte that the right-hand S|de_ of Eﬁi; is _related
This paper, at first, presents an efficient numerical method the definition of the Raman-scattering intensify,(«w),
to calculate the dynamic correlation function for very largeWhich is written by
systems. Our algorithm, based on the forced oscillator
method!'~*can treat very large systems of the order of 10
using a computer with 64 Mbyte memory space. These large
sizes enable us to obtain the definite informations of dynamic
correlation functions with arbitrary resolution of frequency where(:--) is the thermal averag®l the number of sites, and
déw without performing sample-average procedure. We applwgﬁ(t) the polarizability at the site=(«,l), respectively.
our algorithm to investigate the power-law dependence omNeglecting the contribution from elastic scattering, one has

1 )
laﬁ(w)sz dt e'wt% (Hap(Dmgs(0)),  (4)
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i (n+1) 2 10° prrr————————rm .
lap(0)= 55— 2 dw-o)) 2 fnyenyu)] , 5 NL
(5) 4 I ..o'..
where(n+1) is the Bose factor expressed byI+e #*), 10 _ 2
and f,,=%du Q‘B/&uny. Taking into account the dipole- 2 [ e ]
induced-dipole(DID) mechanism, one can express, in a . 1
Eq. (5) using the derivative of the dipole propagator® 10°F E
as E 4 ]
Sl o+ 8g. f ot 8,08 rrr |
_ ~ o~ af vy “By a ye' B a By -3 !
fm/:% P«ml’«n[_s 5 +15 r7 }v 10 1(;-2 1(|)-1 10°
(6) o

wherer , is defined ag =Ry, —R,=(r,ry.r,), r=[ry,,
and ., the bare polarizability of site, respectively. The
value of i, is given by

FIG. 1. Thew dependence of the normalized density of states
“(w) of d=3 bond-percolating network gi=0.31 (>p.=0.249
formed on 12(x120x120 cubic lattice.

1 ; occupied, .
P . (7) Fig. 1 asw.~0.07. The calculated DOS clearly follows the
0 ; unoccupied. Debye density of state/(w)<w? for w<w., while the DOS

-1 (g
Here the bare polarizability at each site is taken to be isotro@PYSZ(w)xw® = (d~=4/3) for w>w.. o -
pic. Using Egs(3) and(5), the Raman-scattering intensity is  We have calculated the Raman-scattering intensities for

ﬁn:

expressed as d=3 bond-percolating networks formed on a simple-cubic
lattice, taking into account the dipole-induced-dipole
i (n+1) 4E(w,T) mechanisn®.”*°The Raman-scattering intensity,(w) can
lpl@)~o g —0— 1 (8)  be expressed &3

where the amplitude of the periodic forE ¢} in Eq. (8) _(n+1)

should be taken a§ 4=f,,. This method enables us to lap(@)= A0)Cqplw), (10

calculate Eq(5) with arbitrary resolution of frequenc§w by , i ) )

choosing the proper time interva4m/ 5w.%3 where Z(w) is the DOS andC,,4(w) is the Raman-coupling

We use the above algorithm for the calculationl g§(w) coefficient. Alexander, Courtens, and Vachieave given the

for bond-percolating networks. There exists the characteristi€c@ling argument for the Raman coupling coefficient for per-
length scale called theorrelation length &x|p—p.|™" in colating networks and predicted the following power-law de-
this system, where is the percolation concentration and Pendence,

p. is the percolation threshold. At larger length scale than 2o+ d)/ Do 3

the system is considered to be homogeneous. While at Clw)x @2+ /D=3, 11
shorter length scale thaf) the self-similarity becomes rel-

evant. There is a crossover frequen@y relgted to¢ a5 strain. They have suggested that the valuerGt1) should
wc€ P19, where Dy is the fractal dimension and is  pe not much larger than unity. Numerical studies by Stoll,
called spectral dimensid*r_l.The value ofd is known_ 10 Kolb, and Courterlsand Nakayama and Yakubbave con-
be close t§ for percolating networks at any Euclidean firmed the validity of this scaling prediction. Figure@a®
dimension d(=2).>° At lower frequencieso<w, Vibra-  shows the reduced Raman-scattering intenisifyw)/(n+1)
tional eXCitationS are Conventiona(weakly |0ca|ized as a function Of frequencw at the perco'ation thresho'd
phonons. At higher frequencie&>w,, excitations are (p=p,=0.249. The ordinate of Fig. @) presents the re-
strongly localized and called fractons. In the following, we guced Raman intensity with arbitrary units. The system size
consider scalar displacements with one atom in a unit cells | =120 and the number of sites is 264,311. Solid circles
and the unit masém,=1). The matrix elementg,, in Eq.  and solid squares in Fig(® represent the calculated results
(1) are taken as for the polarized scatterinfe,8)=(x,x)] and for the depo-
larized scatterind(a,8)=(x,y)], respectively. We clearly see
the power-law dependendg,(w)/(n+1yxw %4409 and
bdmn={ —1 : nearest neighbor interaction (9) |, (w)/(n+1)xw 2**% in much wider frequency band
compared with previous studié€:1°The use of Eq(10) and
the fracton DOSZ(w)>xw*" leads to the power-law depen-
wherez,,, is the coordination number at the site We show  dence of the Raman-coupling coefficiefts,(w) s w?2*0%°

in Fig. 1 the normalized density of statéBOS) for d=3  andC,,(w)xw>**>%in the fracton regime. The value of the
bond-percolating network formed on a simple-cubic latticeexponents in Eq.(11) is obtained from these results as close
with the percolation concentratign=0.31(>p.=0.25. The  to unity, namely,0=0.97+0.05. Figure ) gives the re-
system size i4 =120 and the number of sites is 1 302 424. duced Raman intensity,,(w)/(n+1) for the d=3 bond-
The periodic boundary condition is taken for calculations.percolating network ap=0.31 (>p.=0.249. The intensity
The crossover frequenay,, of this system is estimated from in Fig. 2(b) is smaller than those in Fig(#®. This is because

whereD; is the fractal dimension and is the exponent for

Zn . m=n

0 . otherwise,
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FIG. 2. (@) The w dependence of the reduced Raman intensitywhereq is the wave vector, anR,, the positional vector of

gl +1) ?f th: d=3 bond-percolatigg lne_twork |'§t the atomx of the celll, respectively. Putting the following
p=p.(=0.249 formed on a 128120x120 cubic lattice. Soli ggo sets of(F%} into Eq. (1),

circles and squares represent the calculated results for the polariz
scattering [(a,8)=(x,x)] and the depolarized scatteringa,B)

=(x,y)], respectively(b) The w dependence of the reduced Raman Fa(c)=d.Focodq-Ry) (139
intensity |,,(w)/{n+1) of the d=3 bond-percolating network at
p=0.31 formed on a 120120x120 cubic lattice. and

Fla(s)=d.Fosin(a-R,), (13b

the system ap, [Fig. 2@] is much diluted in comparison
with the case abovp, .*° The drastic change of thedepen- .o can relate the quantiti&(Q,T) and ES(Q,T) [corre-
dence of the reduced Raman intensity is observed at th?ponding to Eq(3)] to S(q,w) as

phonon-fracton crossover frequenay,~0.07. The calcu-
lated @ dependence of the reduced Raman intensity
| (@)/(n+1) is proportional tow® for w<w;, indicating
phonon contribution. Note that the substitution of the phonon

density of states/(w)xw? and the Raman-coupling coeffi- cres . I
cient Cxx(w)ocw2 for phonons into Eq(8) recovers the cal- :’;?:EQE(%E ) is obtained by substituting Eq13a [(13D)]

3
culated frequency dependence o w)*w”. For o> w,, the Figure 3 shows the» dependence a8(q,w) for five dif-

Ca}'glﬂamd_ results show tht(w)/(n+1) is proportional to ferent q along the[100] direction. The number of sites is
", which has the same power-law dependence as SOI'Fﬁuch larger than those in the works reported sd Tt The
circles given in Fig. ), indicating the contribution from  g4jig jines are only guides to the eye and the Bose factor is
fractons. We have shown in Fig(l the clear evidence of |oquced. For small wave vectqt<¢ Y, sharp peaks appear
the power-law dependence of the Raman intensity above ang the low-frequency region. With increasirg=|q|, peak
below the phonon-fracton crossover frequeney. We  positions shift to the higher-frequency region beyond
should stress that the Raman intensity in the frequency rem,~0.07 and the widthg7 1) of the peaks increase very
gime o>, takes the same dependence as that for the rapidly. This indicates that the linewidth of fracton is very
system at the percolation threshqid. The sample-average broad, originating from the loffe-Regel strong scattering
procedure is not taken due to the large number of sites in odmit (7 1~w).!®
system in these calculations. In this paper, we have performed large-scale computations
Finally, let us show the calculated results of dynamicalfor the Raman-scattering intensity,(w) and the dynamical
structure factors using the formula E@). The dynamical structure factoiS(q,w) for d=3 bond-percolating networks.
structure factoiS(q,o) is defined as*® The numerical method we have used is very powerful to

(n+1) 4E0,T)+EXw.T)}
S(a,0)~ =75 TTF2 ’

(14)
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obtain the insight into the dynamic correlation function. Thepercolation thresholg,. We emphasize that the power-law
o dependences of the Raman-scattering intensities are calcdependence on frequency ©f,4(w), predicted theoretically
lated with the dipole-induced-dipole mechanism =3  for the systemp=p,.° is valid for the systenp>p,. This
percolation networks. For percolating networkspat, we  supports the applicability of the scaling theory for the
have confirmed the validity of the scaling theory proposed byRaman-scattering intensity to actual systems such as silica
Alexanderet al,® suggesting that the strain exponent takeszerogels.

the valuec=0.97+0.05. We have also calculated thede- . ) o
pendence of the Raman-scattering intensity for percolating This work was supported in part by a Grant-in-Aid from
networks above, . In the lower-frequency regimes<w,), the Japan Ministry of Education, Science, and Culture
our calculated results indicate clear phonon contribution. ITMESC). The authors thank the Supercomputer Center, Insti-
the higher-frequency regim@>w,), the reduced Raman in- tute of Solid State Physics, University of Tokyo for the use
tensity has the same dependence as that for networks at theof the facilities.
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