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Scaling properties of wave functions and transport coefficients in quasicrystals
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Electronic wave functions and transport properties are presented in realistic crystalline approximants of
decagonal Al-Cu-Co alloy, up to 4414 atoms in a unit cell. The system-size dependence of the participation
ratio of wave functions shows that the wave functions of eigenstates show a power-law decay on average. The
finite-size scaling analysis indicates that the diffusion constant decreases slowly with increasing system size, as
a power of the system size. The scaling properties of the diffusion constant are discussed in connection with the
spikiness of the density of states.

The electronic transport property in quasicrystals is quiteclustep distances and this fact is one of the reasons why we
exotic. The resistivity reaches sevef@l cm at very low expect the power-law dependence of wave functions and
temperaturésand the conductivity increases almost linearly conductance? We believe the quantum interference effect at
with temperaturé.Furthermore, the resistivity is enhanced in very low temperatures is important for its temperature and
structurally ordered icosahedral quasicrystalBhe Drude magnetic-field dependence. However, the anomalously large
peak cannot be observed in optical spectra of icosahedrablues and randomness dependence of the resistivity cannot
quasicrystald. The electronic transpdrt and optical be attributed to the quantum interference effect in weak lo-
propertie§ in decagonal quasicrystals are highly anisotropic.calization theory. These phenomena are generic in quasiperi-
The resistivity parallel to the quasiperiodic plane is muchodic systems but not in random systems.
higher than that along the periodic direction. The tempera- In this paper, we present the characteristics of the eigen-
ture dependence of the conductivity parallel to the quasiperistates of realistic crystalline approximants with up to 4414
odic plane is similarly anomalous to that in icosahedralatoms in a unit cell. The model structures of atomic arrange-
guasicrystals; on the other hand, that along the periodic diment were prepared by a three-step procedure. First, two-
rection is normal metallic. dimensional periodic Penrose tilings are constructed in a

Electronic structures and properties in realistic quasicrysstandard mann&t!® and second, these are mapped to the
tals have been discussed theoretically by the present althotsinary alloy model, i.e., with two types of disk8The third
and also by other groufisThe calculated electronic density step is as follows: the large and small disks in the binary
of states(DOSY) in crystalline approximants shows a deep alloy model are mapped to large and small atomic clusters of
depression, called the pseudogap, of width 0.5—-1 eV at th&ansition metal§Co and Cu and Al atoms with the help of
Fermi energy,;® ! and the pseudogap is observed experi-the Burkov model, which is constructed so as to be consis-
mentally in several quasicrystals and crystallinetent with real-space imagery observed by electron
approximants? The structural ordering dependence of themicroscope® Atomic positions of Cu and Co in clusters
conductivity was explained in terms of the increasing num-were distinct from each other and identified by a stability
ber of transport channels with disord@rThe temperature consideration of the total electronic enefdyThe two-
dependence of the conductivity was also qualitatively ex-dimensional layers are then stacked along the perpendicular
plained by the existence of a set of sharp spikes with ar axis periodically.
individual width of 0.01 eV or even less<(100 K) in the The crystalline approximants used in the present work are
DOS’ approximately ACu,gC045 and the total numbers of atoms

Attempts to explain the anomalously low conductivity are, respectively, 110, 644, 1686, 2728, and 4414 in a unit
were made using the very flat energy disperdioa., large  cell. These lattice units contairi wide (w) and O narrow
effective massgsand the small number of energy bands(n)], (4 w and 3n), (11w and 7n), (18 w and 11n), and
crossing the Fermi enerdy.e., small carrier densityon the (29 w and 18n) rhombi, respectively. A wide rhombus con-
basis of calculated band structures, the Boltzman formulssists of two large cluster&42 atoms eachand two small
and realistic phenomenological values of the scattering timelusters(13 atoms eagh and a narrow rhombus consists of
T (e.g., 10 s) 1011 Of course, this cannot be a unique one large and two small clusters.
explanation because electron scattering is intrinsically due to The electronic structure were calculated by the tight-
the quasiperiodic structures and very much relates to the einding linear muffin-tin orbital(TB-LMTO) method, in-
ergy spectrum and wave functions. cluding s, p, andd orbitals for each aton® The potential

The anomalous transport properties have sometimes beg@arameters in the TB-LMTO method were determined self-
explained by weak localization theol§/A random system consistently in the crystalline approximant of one wide tile of
can be specified by the density of impurities, then the charl10 atoms:! The periodic boundary condition is imposed on
acteristic length scale is the average distance between impthe two-dimensional quasiperiodic plane. The one-
rities. On the other hand, in quasiperiodic systems, there idimensional Bloch representation along the periodic
no characteristic length scale except interatofuc inter-  c-direction are adopted for wave functions.
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FIG. 2. The participation ratio averaged over about 50 eigen-
states around the Fermi energp), at—0.2 Ry (0) and—0.5 Ry
(A) as a function of the number of atond in a unit cell. The
dashed line showB =N which is for uniformly extended states.
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FIG. 1. Atypical example of eigenstates near the Fermi energy
(E=-0.04132 Ry) in a system of 2728 atoms in a unit cell. The _. .
symbols show atomic position§: Al, A: Cu,: Co, which are on Figure 2 showsP(y) averaged over about 50 exact eigen-

two layers. Those atoms represented by the solid symbols are mofates arounée as a function oN. The results clearly show
probable, with the total probability being 60%. Together, the shadedhat the participation ratio can be scaled by the power law.
and closed symbols represent those atoms that have a total probh€ value of the power-law index arouii} is nearly 0.74
ability of 90%. The remaining atoms are represented by the opeﬁP“No'ﬁb and not universal. In fact, the value of the index
symbols. depends on the range of eigenenergies, because the compo-
nents of an eigenstate, angular momentum components, and
The DOS in a larger crystalline approximant was calcu-atomic species depend sensitively on its eigenenergy. For
lated by the recursion methd8.It must be noted that the €example, the states at0.2 Ry are mainly of Co 8 orbitals
recursion method cannot reproduce very fine structures dP<N%%% and at—0.5 Ry of the transition metalstand Al
the DOS. The depth and width of the pseudoga®.5 eV 3s, 3p orbitals (P«<N°88. The power-law dependence Bf
wide) averaged over spikes are not affected seriously by thgoes not necessarily imply that a wave function obeys a
system size. simple power law with asingle centerof amplitude. Actu-
Exact eigenstates of a TB-LMTO Hamiltonian matrix ally, amplitudes of a wave function distribute on some spe-
with a fixed one-dimensional wavevector along thexis  cific groups of atoms like a percolated “staihas shown in
are calculated by the inverse iteration method. The wavéig. 1 and they follow the power law on average. The trans-
function of an exact eigenstate locates selectively on a paiort properties may be very special because of this peculiar
ticular set of atoms and clusters and such a spatial pattern gxtension of a wave function of an eigenstate. Randomness
very sensitive to an eigen energy. We believe that the obsmears out the particular pattern of an individual eigenstate.
served cluster-specific distribution of wave functions relateg-urthermore, randomness makes the distribution of eigenen-
strongly to the anomalous DOS with dense spike$he ergies much smoother with uniform energy differences.
wave functions of the eigenstates near the Fermi enBggy =~ Zero-temperature dc conductivity is expressed by the
(=—0.04 Ry favorably spread over large atom clusters askubo formula as
seen in Fig. 1 and the wave functions-a.5 Ry spread over
both large and small atom clusters. This fact shows that the 27e2h df
small clusters play the role of glue and stabilize energetically aaﬁ:Tf dE( — E) 2 S(E— Ei)Di“B(E), )
the local cluster arrangement. !
Eigenfunctions in the LMTO method are linear com-
binations of the muffin-tin orbitals yg, as #(r)

=3RrLCrLxrL(r), whereR andL denote atomic positions Di“'B(E)=—£ lim 1m{ i 5a;55 i
and the angular momentum components, respectively. The T Y0+ E+iy—H
participation ratio of an eigenstate is defined as ]
= lim D*(E:y), 3
(ZrLICr|?)? 7ot
PY)= <=2 ()
V= SelCal®

wherea and g refer to the directions parallel to the quasip-
which gives the measure of the spatial extent of wave funceriodic plane, H is the TB-LMTO Hamiltonian, and
tions; e.g.,P=1 for localized wave functions ar@d=N for v ,=1/(i%)[X,,H] is the velocity operator. The functidnis
extended wave functionsN(is the total numer of atoms the Fermi-Dirac distribution function and is the volume of
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1t A R R dimension of the system(ﬁ. We assume a scaling relation
| vo~L 72# and the index3 may be the scaling index of the
i density of states around the Fermi energy. By using the ob-
served behaviob ~ yZ, Y#= %25 one obtains an estima-
tion 8~1.33 - - and then the diffusion constant of the finite
system can be written @ ~L 2" D~N"033 The re-
sultant behavioty,=AE~N~13%"" whereAE is theeffec-
] tive interval of eigenenergies, may be consistent with ob-
L served existence of a dense set of spikes in the density of
g states. Moreover, this conclusion indicates the enhancement
of the dense spikes, both density and width, in larger sys-
. T T ' tems. The Fermi energlyr locates in the pseudogap where
e e 0'0005/ 0;2:1) oor e level intervals may be much larger tha#k. Therefore, the
g observationy.,~ 6E may not be inconsistent with the result
FIG. 3. Log-log plot of the diffusion constant as a function of 70r~N71'33 ', because of the rather small system size in the
y for several eigenstates near the Fermi energy0.0425 Present calculation.
Ry < —0.0410 Ry) in systems of several different sizes. Dot- The diffusion constanD in an infinite system may be
dashed lineN=110, three dots-dashed linds= 644, solid lines: small but decreasing rate with increasihgis very slow.
N=1686, dotted linesN=2728. Vertical shaded bars indicate po- Actually, even though we could prepare a system of a value
sitions of crossover points and the width of the fluctuatirom Yo Of 10°6 Ry (~1 K), the diffusion constant would be-
left to right, in the order of the system siA#). The behavior  come smaller only by a factor of 10 in comparison with a
D~ e is also shown by a shaded strip. system ofy~ 102 Ry.
The resistivity may be calculated by using Eg). If we
the unit cell. This equation defines the diffusion constant""dOpt the simplest approxmgtlon for the DOS to be equal to
DA(E,) of theith eigenstate of an energs;. The conduc- the averaged value, we oPéaln avalue Qf several thousands of
tivity in a finite crystalline system should grow in proportion #¢} CM even fory¢~10"> Ry. Experimentally observed
to the system size and E€@) actually does. reS|st|V|ty_|n d.ecggonal Al-Cu-Co is 34@.Q) cm parallel to
The vy in Eq. (3) should, in a strict sense, go to zero afterthe quaS|p9r|0(_j|c plane. Because thg distribution of the
the thermodynamic limitV—c, is taken. In the case of €igenenergies is not smooth but consists of a set of sharp
finite temperatures or randomness in the system, the SPikes]“~''the resulting resistivity in large systems should
should remain finite. We calcula@®*(E: y) with a varying  Pe fluctuating very rapidly and observed resistivity can be
parametery in several finite systems of volumé. When  Mmuch larger than the above value. Furthermore, the observed
v is unphysically smalllmuch smaller than the averaged resistivity should be very sensitive to atomic composition,
level interval SE proportional to IN), then we expect a Sample preparation, and the material itself.
behaviorD#*(E: y)~ v. The temperature and randomness dependence of the ob-

The diffusion constar®®(E; : y) is shown in Fig. 3, as a served resistivity can be discussed in relation to the scaling
function of v, for various unit-cell sizes and for various PeEnavior of the diffusion constant. These two factors, tem-

eigenstates near the Fermi energy. Different behavior of thRerature and randomness, cause incoherent electron scatter-
diffusion constant can be clearly observed in two separa‘t’i"g’tr]""r‘(;:j thery mcriaseifor e>|<tarrgﬁle,yor)] cl)r the rtneanbfree

v regions: one is the behavi@re= y and the other is a slowly path gecreases. As a result, the whole system becomes
varying D. The crossover valueg ., is the smallest limit of equivalent t‘il;"(‘g‘ma”ay of perf_ect .blOCk quasicrystals of a
physically acceptabley in a system of finite size. As the IengthL0~ Yo 7 The bulk dlffus.|o'n constant can be ob-
unit-cell size is enlarged, the crossover region gradually}a'”ed by averaging over those of finite systems of the length

shifts to a smallery side and a smalleb value. The cross- -0- ) i )
over point y, and the distribution width oD at v, is In conclusion, the present calculation shows the spatial

shown in Fig. 3 by a vertical shaded bar. The fluctuationeXtent of eigenstates and the power-law behavior of the dif-

width increases with increasing system size. The system siZ&Sion constant in realistic quasicrystalline systems. The
might stil be too small but we could fit a curve wave functions spread over the whole system, though the

D~ 72;25 * for this behavior of the crossover point as shownweight of the wave functions distributes over specific groups
in Fig. 3 by another shaded strip. The power-law index is nof;)f atoms or clusters. In average, the spatial extent of the
universal and dependent on the energy region. The resulta ave functions o_beys the power Iavy. The gnomaly of the
value vy, of the crossover point seems slightly larger than theran_sport properties in quasmrystals IS ascnbeq to .bOth the
average level intervabE, which is equal to bandwidth scaling behavior of the wave functions and the diffusion con-

(~2 Ry)/number of orbitals(9X N) and is proportional to stant,trlln tat?]dltlon to thet'low DOS value Ett' e br?"gvel q
(1/N). The diffusion contantD may be written as gg\éva o?wal i;iigrosﬁzges are common o icosanhedral an
D~(r2)y., where(r?) is a spatial extent of a wave func- 9 q Y '

tion and#/ vy, is the mean free time. Once assuming a wave The numerical calculation was carried out in the computer
function is not strongly localized, we obtajn®)~L?2, where  facilities at the Institute of Molecular Science at Okazaki,
L is the effective relaxation length proportional to the linearJapan.
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