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Electronic wave functions and transport properties are presented in realistic crystalline approximants of
decagonal Al-Cu-Co alloy, up to 4414 atoms in a unit cell. The system-size dependence of the participation
ratio of wave functions shows that the wave functions of eigenstates show a power-law decay on average. The
finite-size scaling analysis indicates that the diffusion constant decreases slowly with increasing system size, as
a power of the system size. The scaling properties of the diffusion constant are discussed in connection with the
spikiness of the density of states.

The electronic transport property in quasicrystals is quite
exotic. The resistivity reaches severalV cm at very low
temperatures1 and the conductivity increases almost linearly
with temperature.2 Furthermore, the resistivity is enhanced in
structurally ordered icosahedral quasicrystals.3 The Drude
peak cannot be observed in optical spectra of icosahedral
quasicrystals.4 The electronic transport5 and optical
properties6 in decagonal quasicrystals are highly anisotropic.
The resistivity parallel to the quasiperiodic plane is much
higher than that along the periodic direction. The tempera-
ture dependence of the conductivity parallel to the quasiperi-
odic plane is similarly anomalous to that in icosahedral
quasicrystals; on the other hand, that along the periodic di-
rection is normal metallic.

Electronic structures and properties in realistic quasicrys-
tals have been discussed theoretically by the present authors7

and also by other groups.8 The calculated electronic density
of states~DOS! in crystalline approximants shows a deep
depression, called the pseudogap, of width 0.5–1 eV at the
Fermi energy,7,9–11 and the pseudogap is observed experi-
mentally in several quasicrystals and crystalline
approximants.12 The structural ordering dependence of the
conductivity was explained in terms of the increasing num-
ber of transport channels with disorder.13 The temperature
dependence of the conductivity was also qualitatively ex-
plained by the existence of a set of sharp spikes with an
individual width of 0.01 eV or even less (.100 K) in the
DOS.7

Attempts to explain the anomalously low conductivity
were made using the very flat energy dispersion~i.e., large
effective masses! and the small number of energy bands
crossing the Fermi energy~i.e., small carrier density!, on the
basis of calculated band structures, the Boltzman formula,
and realistic phenomenological values of the scattering time
t ~e.g., 10214 s).7,10,11 Of course, this cannot be a unique
explanation because electron scattering is intrinsically due to
the quasiperiodic structures and very much relates to the en-
ergy spectrum and wave functions.

The anomalous transport properties have sometimes been
explained by weak localization theory.14 A random system
can be specified by the density of impurities, then the char-
acteristic length scale is the average distance between impu-
rities. On the other hand, in quasiperiodic systems, there is
no characteristic length scale except interatomic~or inter-

cluster! distances and this fact is one of the reasons why we
expect the power-law dependence of wave functions and
conductance.15We believe the quantum interference effect at
very low temperatures is important for its temperature and
magnetic-field dependence. However, the anomalously large
values and randomness dependence of the resistivity cannot
be attributed to the quantum interference effect in weak lo-
calization theory. These phenomena are generic in quasiperi-
odic systems but not in random systems.

In this paper, we present the characteristics of the eigen-
states of realistic crystalline approximants with up to 4414
atoms in a unit cell. The model structures of atomic arrange-
ment were prepared by a three-step procedure. First, two-
dimensional periodic Penrose tilings are constructed in a
standard manner13,15 and second, these are mapped to the
binary alloy model, i.e., with two types of disks.16 The third
step is as follows: the large and small disks in the binary
alloy model are mapped to large and small atomic clusters of
transition metals~Co and Cu! and Al atoms with the help of
the Burkov model,17 which is constructed so as to be consis-
tent with real-space imagery observed by electron
microscope.18 Atomic positions of Cu and Co in clusters
were distinct from each other and identified by a stability
consideration of the total electronic energy.11 The two-
dimensional layers are then stacked along the perpendicular
c axis periodically.

The crystalline approximants used in the present work are
approximately Al60Cu28Co12 and the total numbers of atoms
are, respectively, 110, 644, 1686, 2728, and 4414 in a unit
cell. These lattice units contain@1 wide (w) and 0 narrow
(n)#, ~4 w and 3n), ~11 w and 7n!, ~18 w and 11n!, and
~29w and 18n! rhombi, respectively. A wide rhombus con-
sists of two large clusters~42 atoms each! and two small
clusters~13 atoms each!, and a narrow rhombus consists of
one large and two small clusters.

The electronic structure were calculated by the tight-
binding linear muffin-tin orbital~TB-LMTO! method, in-
cluding s, p, andd orbitals for each atom.19 The potential
parameters in the TB-LMTO method were determined self-
consistently in the crystalline approximant of one wide tile of
110 atoms.11 The periodic boundary condition is imposed on
the two-dimensional quasiperiodic plane. The one-
dimensional Bloch representation along the periodic
c-direction are adopted for wave functions.
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The DOS in a larger crystalline approximant was calcu-
lated by the recursion method.20 It must be noted that the
recursion method cannot reproduce very fine structures of
the DOS. The depth and width of the pseudogap~;0.5 eV
wide! averaged over spikes are not affected seriously by the
system size.

Exact eigenstates of a TB-LMTO Hamiltonian matrix
with a fixed one-dimensional wavevector along thec-axis
are calculated by the inverse iteration method. The wave
function of an exact eigenstate locates selectively on a par-
ticular set of atoms and clusters and such a spatial pattern is
very sensitive to an eigen energy. We believe that the ob-
served cluster-specific distribution of wave functions relates
strongly to the anomalous DOS with dense spikes.11 The
wave functions of the eigenstates near the Fermi energyEF
(.20.04 Ry! favorably spread over large atom clusters as
seen in Fig. 1 and the wave functions at20.5 Ry spread over
both large and small atom clusters. This fact shows that the
small clusters play the role of glue and stabilize energetically
the local cluster arrangement.

Eigenfunctions in the LMTO method are linear com-
binations of the muffin-tin orbitals xRL as c(r )
5(RLCRLxRL(r ), whereR and L denote atomic positions
and the angular momentum components, respectively. The
participation ratio of an eigenstate is defined as

P~c!5
~(RLuCRLu2!2

(RLuCRLu4
, ~1!

which gives the measure of the spatial extent of wave func-
tions; e.g.,P.1 for localized wave functions andP.N for
extended wave functions (N is the total numer of atoms!.

Figure 2 showsP(c) averaged over about 50 exact eigen-
states aroundEF as a function ofN. The results clearly show
that the participation ratio can be scaled by the power law.
The value of the power-law index aroundEF is nearly 0.74
(P}N0.74) and not universal. In fact, the value of the index
depends on the range of eigenenergies, because the compo-
nents of an eigenstate, angular momentum components, and
atomic species depend sensitively on its eigenenergy. For
example, the states at20.2 Ry are mainly of Co 3d orbitals
(P}N0.59) and at20.5 Ry of the transition metal 4s and Al
3s, 3p orbitals (P}N0.88). The power-law dependence ofP
does not necessarily imply that a wave function obeys a
simple power law with asingle centerof amplitude. Actu-
ally, amplitudes of a wave function distribute on some spe-
cific groups of atoms like a percolated ‘‘stain’’7 as shown in
Fig. 1 and they follow the power law on average. The trans-
port properties may be very special because of this peculiar
extension of a wave function of an eigenstate. Randomness
smears out the particular pattern of an individual eigenstate.
Furthermore, randomness makes the distribution of eigenen-
ergies much smoother with uniform energy differences.

Zero-temperature dc conductivity is expressed by the
Kubo formula as
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V E dES 2
d f

dED(
i
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ab~E!, ~2!
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wherea andb refer to the directions parallel to the quasip-
eriodic plane, Ĥ is the TB-LMTO Hamiltonian, and
v̂a51/(i\)@ x̂a ,Ĥ# is the velocity operator. The functionf is
the Fermi-Dirac distribution function andV is the volume of

FIG. 1. A typical example of eigenstates near the Fermi energy
(E520.041 32 Ry) in a system of 2728 atoms in a unit cell. The
symbols show atomic positions;s: Al, n: Cu,h: Co, which are on
two layers. Those atoms represented by the solid symbols are most
probable, with the total probability being 60%. Together, the shaded
and closed symbols represent those atoms that have a total prob-
ability of 90%. The remaining atoms are represented by the open
symbols.

FIG. 2. The participation ratio averaged over about 50 eigen-
states around the Fermi energy (s), at20.2 Ry (h) and20.5 Ry
(n) as a function of the number of atomsN in a unit cell. The
dashed line showsP}N which is for uniformly extended states.
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the unit cell. This equation defines the diffusion constant
Di

ab(Ei) of the i th eigenstate of an energyEi . The conduc-
tivity in a finite crystalline system should grow in proportion
to the system size and Eq.~2! actually does.

Theg in Eq. ~3! should, in a strict sense, go to zero after
the thermodynamic limit,V→`, is taken. In the case of
finite temperatures or randomness in the system, theg
should remain finite. We calculateDi

aa(E:g) with a varying
parameterg in several finite systems of volumeV. When
g is unphysically small~much smaller than the averaged
level interval dE proportional to 1/N), then we expect a
behaviorDi

aa(E:g);g.
The diffusion constantDi

aa(Ei :g) is shown in Fig. 3, as a
function of g, for various unit-cell sizes and for various
eigenstates near the Fermi energy. Different behavior of the
diffusion constant can be clearly observed in two separate
g regions: one is the behaviorD}g and the other is a slowly
varyingD. The crossover valueg cr is the smallest limit of
physically acceptableg in a system of finite size. As the
unit-cell size is enlarged, the crossover region gradually
shifts to a smallerg side and a smallerD value. The cross-
over point g cr and the distribution width ofD at g cr is
shown in Fig. 3 by a vertical shaded bar. The fluctuation
width increases with increasing system size. The system size
might still be too small but we could fit a curve
D;gcr

0.25••• for this behavior of the crossover point as shown
in Fig. 3 by another shaded strip. The power-law index is not
universal and dependent on the energy region. The resultant
valuegcr of the crossover point seems slightly larger than the
average level intervaldE, which is equal to bandwidth
(;2 Ry!/number of orbitals(93N) and is proportional to
(1/N). The diffusion contantD may be written as
D;^r 2&gcr , where^r 2& is a spatial extent of a wave func-
tion and\/gcr is the mean free time. Once assuming a wave
function is not strongly localized, we obtain^r 2&;L2, where
L is the effective relaxation length proportional to the linear

dimension of the systemAN. We assume a scaling relation
gcr;L22b and the indexb may be the scaling index of the
density of states around the Fermi energy. By using the ob-
served behaviorD;gcr

121/b.g cr
0.25••• , one obtains an estima-

tion b;1.33••• and then the diffusion constant of the finite
system can be written asD;L22(b21);N20.33•••. The re-
sultant behaviorgcr.DE;N21.33•••, whereDE is theeffec-
tive interval of eigenenergies, may be consistent with ob-
served existence of a dense set of spikes in the density of
states. Moreover, this conclusion indicates the enhancement
of the dense spikes, both density and width, in larger sys-
tems. The Fermi energyEF locates in the pseudogap where
level intervals may be much larger thandE. Therefore, the
observationgcr;dE may not be inconsistent with the result
gcr;N21.33•••, because of the rather small system size in the
present calculation.

The diffusion constantD in an infinite system may be
small but decreasing rate with increasingN is very slow.
Actually, even though we could prepare a system of a value
gcr of 10

26 Ry (;1 K!, the diffusion constant would be-
come smaller only by a factor of 10 in comparison with a
system ofg;1022 Ry.

The resistivity may be calculated by using Eq.~2!. If we
adopt the simplest approximation for the DOS to be equal to
the averaged value, we obtain a value of several thousands of
mV cm even forg cr;1025 Ry. Experimentally observed
resistivity in decagonal Al-Cu-Co is 340mV cm parallel to
the quasiperiodic plane. Because the distribution of the
eigenenergies is not smooth but consists of a set of sharp
spikes,7,9–11 the resulting resistivity in large systems should
be fluctuating very rapidly and observed resistivity can be
much larger than the above value. Furthermore, the observed
resistivity should be very sensitive to atomic composition,
sample preparation, and the material itself.

The temperature and randomness dependence of the ob-
served resistivity can be discussed in relation to the scaling
behavior of the diffusion constant. These two factors, tem-
perature and randomness, cause incoherent electron scatter-
ing and theng increases~for example,g0) or the mean free
path decreases. As a result, the whole system becomes
equivalent to an array of perfect block quasicrystals of a
lengthL0;g0

21/(2b) . The bulk diffusion constant can be ob-
tained by averaging over those of finite systems of the length
L0 .

In conclusion, the present calculation shows the spatial
extent of eigenstates and the power-law behavior of the dif-
fusion constant in realistic quasicrystalline systems. The
wave functions spread over the whole system, though the
weight of the wave functions distributes over specific groups
of atoms or clusters. In average, the spatial extent of the
wave functions obeys the power law. The anomaly of the
transport properties in quasicrystals is ascribed to both the
scaling behavior of the wave functions and the diffusion con-
stant, in addition to the low DOS value atEF . We believe
now that these properties are common to icosahedral and
decagonal quasicrystals.

The numerical calculation was carried out in the computer
facilities at the Institute of Molecular Science at Okazaki,
Japan.

FIG. 3. Log-log plot of the diffusion constant as a function of
g for several eigenstates near the Fermi energy (20.0425
Ry , 20.0410 Ry) in systems of several different sizes. Dot-
dashed line:N5110, three dots-dashed lines:N5644, solid lines:
N51686, dotted lines:N52728. Vertical shaded bars indicate po-
sitions of crossover points and the width of the fluctuation~from
left to right, in the order of the system sizeN!. The behavior
D;gcr

0.25••• is also shown by a shaded strip.
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