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Adiabatic dynamics of superconducting quantum point contacts
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Starting from the quasiclassical equations for nonequilibrium Green’s functions we derive a simple kinetic
equation that governs the ac Josephson effect in a superconducting quantum point contact at small bias
voltages. In contrast to existing approaches the kinetic equation is valid for voltages with arbitrary time
dependence. We use this equation to calculate frequency-dependent linear conductancé;\Amthalacter-
istics with and without microwave radiation for resistively shunted quantum point contacts. A novel feature of
thel-V characteristics is the excess curreht/2r appearing at small voltages. An important by-product of our
derivation is the analytical proof that the microscopic expression for the current coincides at arbitrary voltages
with the expression that follows from the Bogolyubov—de Gennes equations, if one uses appropriate ampli-
tudes of Andreev reflection, which contain information about the microscopic structure of the superconductors.

Point contacts between normal metals have simple Ohmiabilities, in the nonstationary situation the occupation of
I-V characteristics regardless of their electron transparencinese states is quite nontrivial.
D. In contrast to this)-V characteristics of the supercon-  We first discuss our final result, the kinetic equation that
ducting point contacts may be highly nonlinear even in thegoverns the evolution of occupation probabilities of the
simplest situation of short constriction between two ideallevels €. . (The systematic development leading to this
BCS superconductors, and exhibit a nontrivial dependencgduation is presented in the last part of the pajBzcause of
onD. The origin of this complexity is the oscillating Joseph- the normalization conditior®.p. =1, it is convenient to
son current, which makes electron motion in the contact eswrite the kinetic equation in terms of the difference of the
sentially inelasti¢:2 Recently, there has been considerabletWo probabilities,p(¢(t))=p-—p.. . Kinetic equation for
progress in calculation of both dc and é@Refs. 3—-5 com-  P(¢) 1S
ponents of current in such contacts. However, the results ]
were limited to the situation when the contact is biased with P(e(t))=y(e)[n(e) —ple(1))], (1)
a constantin time) voltage supplied by an ideal source with
vanishing impedance.

It is of interest to generalize the theory of electron trans
port in superconducting point contacts to the case of finite

im n f the vol r well ime- n . / )
pedance of the voltage source as well as to time-depende 0 the subgap density of states in the superconducting elec-

v_oltages. This generalization 1S partlcula_rly Important Introdes; it vanishes in the ideal BCS case; if the gap is slightly
view of the fact that most experimental realizations of super- - . o2

. : smeared by finite electron-phonon interactignis given by
conducting quantum point contatfsare based on the

) e _ the following expressioft!?
superconductor/semiconductor heterojunctions, which typi- 9 exp

cally have relatively large impedance. Below we develop 2 A2 3
such a generalization, which is valid for small bias voItagesy( 9=a| de B(e'"—A% (e—€')"coshe/2T)
V<A/e, whereA is the superconductor energy gap in the Je'2— A2 sinH (e—€')/2T]cosHe'/2T)"
electrodes. (2

We consider a ballistic quantum point contact with char-
acteristic dimensions much smaller than both the elastic scatiere a is a constant determined by the parameters of
tering length and coherence length of the superconductinglectron-phonon interaction. To the kinetic equatiah we
electrodes. dc supercurrent in such a contact is known to bghould add a “boundary condition” which states that the
carried by the two discrete energy states with energieéi'Ve' occupation reaches equilibrium as soon as the levels hit
€.=+Acosp/2 inside the energy gap° where ¢ is the the gap edgess==A (Fig. 1), that is,
Josephson phase difference across the contact. These states
are spatially localized in the contact region because of the p(e)=(—1)"n(A) for ¢=2mm, 3
Andreev reflection. At low voltage¥<A/e, the dynamics
of these states is slow on the frequency scale given by thethere m=0,=1,...(3) We can take into account small
energy gapgp=2 eV/h<A/f, and one could expect the ac reflection coefficient2 of the point contact,2<1, by in-
Josephson effect in this regime to be described in terms dfluding in the kinetic equation the Zener transitions between
the same two quasistationary states. However, in contrast the two levels that occur at the poiat= rmod(27) with the
the stationary regimeM=0) when the occupation of these probability \.° For vanishing external resistance the transi-
states is given simply by the equilibrium Fermi-Dirac prob- tion probability is\ = exp{—2m.72A/#% ||}, whereg is taken

where n(e)=tanh2T) is the equilibrium value of

Pple(e)); v(e) is the rate of quasiparticle exchange between

he bulk electrodes and discreet levels in the constriction,
de=e(p)=Acosp/2. The ratey is roughly proportional
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FIG. 1. Energies.. of the two Andreev-bound levels in a short ] aal
constriction between two superconductors as functions of the Jo- ’ T=0 ©
sephson phase differenee Solid dots represent “thermalization
points” where occupation of the 2 level always reaches equilibrium. O'Oo.o T b T T 20 T 30
The diagram illustrates sign conventions for the kinetic equdtipn
and the boundary conditiof8). V/('cRe>

FIG. 2. dcl-V characteristics of the resistively shunted ballistic
at the transition point. Account of the Zener transitions issuperconducting quantum point contact for various ratios of exter-

achieved by imposing one more boundary condition ornal Ohmic resistancR. and relaxation rate/ at zero temperature;
p(e): w.=2el.R./h.

ple+0sgrie)]=(2N—1)p[o—0sgrie)] (4)  wheree=¢€[ ¢(t)]. This equation is the generalization of the
recent resulf to energy-dependent relaxation ratée). We
see that both types of linear response are sensitive functions
of y(€) and therefore they may be used to measure the sub-
_ . gap density of states in the superconductors.

|(t)= (mAleRy)sinl¢(1)/2] p(e(D)), ®) As another application of the kinetic equatitin we con-
where Ry=7#/N€? is the normal-state resistance of the siderresistively shunteduperconducting quantum point con-
contact, andN is the number of transverse modes that are alfact biased by an external currdgt(see inset in Fig. B8 For

for o= mod (27). The functionp(e(t)) given by Egs.
(1)—(4) determines the currenft) in the point contact:

assumed to be identical. such a bias condition, the evolution equation goreads
Equations(1)—(5) allow us to describe the dynamics of )
the point contact under arbitrary bias conditions. As a first ho(t)/2eRe=le—I[e(t)], C)

example, we consider thiinear responseof the voltage- \yhere current[ o(t)] should be calculated from Eqél)—
biased p_omt contact to small oscnlatl_ons of the_: Jo_sephsog\s) self-consistently withe(t), andR, is the shunting Ohmic
phase difference around some stationary pamt i-€.. registance, which adiabatic approximation requires to be

_ —iot < H ; L.
e()=eot 0.6, |p,/<1. Equations(l) and (5 with g q. R.<Ry. We limit ourselves to low temperatures
this ¢(t) give that the current oscillates around the stationaryr < A

value®® -
' For very small external resistancesR./Ry

B . <{(hylA), 7}, the rate ofe evolution is small and the

Is(po) = (mA/eRy)sin(¢o/2)tant &/ 2T), ©®  currentl () is given by the stationary relatiai). Applying

so thatl=14+1,e" ', and the frequency-dependent linear this relation in Eq(9), we conclude that the dc I-V charac-

conductance is teristic of the point contact is given by the same relation as in
the standard resistively shunted junctidRS) model (see,

A sir?(¢ol2) v(€g) e.g., Ref. 15, Sec. 42In the opposite limit of relatively

4T cosi(ey/2T) w+iy(€o) large external resistanceR./Ry>{(fy/A), 7%}, the |-V

characteristic is given by the following relations:
+ L cosﬂ tanh ﬂ) (7) 2_12\112
2 2 2T/ | Ve (15—1%)

whereey=e(py). This equation generalizes the correspond- Re 4 arctan/(le+10)/(le=1o)
ing expression obtained by Zaitdefor large temperatures (10

T>A. [Note that Eq(7), as well as the kinetic equatidtt),  The main qualitative difference between expressit®) and
gives only the leading terms in small relaxation raté the quasistationary RV characteristics is the excess cur-
We also can define the linear response to small dc voltageent: | — 2/, for V>1.R, in Eq. (10), whereas the current
V<fiyle. In this case the phase increases indefinitelyyvanishes at large voltages in the quasistationary case. Note
@(t)=@o+2 eVt/h, but deviation of the occupation prob- that Eq.(10) and Figs. 2 and 3 give tHeV characteristics in
ability p from equilibrium is still small. For such an evolu- the form (i.e., without the linear ternv/R,) that is directly
tion of ¢, Egs.(1) and(5) give applicable to typical bias conditions of point contacts that are
S not shunted intentionally. Under these conditions there is no
D=1 Jo(H)]+ Vo mAT sine(1)/2] (9  Shunting resistance at zero frequency, but there is finite im-
s Ry 2% y(€)T cosH(e/2T)’ pedance of the biasing leads in series with the contact at

1, 2eil, 2mA

Y(w)= V_w: hoo, - hwRy

w

| =1~ VIR,.
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for instance, GQh(e,e’)={[(exiyi) o, +(A*iyy)iayl/

1.0 ;H"" r Orat6(e—€'), with o’s here and below denoting Pauli ma-
L trices.
\\\f The functionsG should decay inside the electrodées
05 ] \N\r\:\ z—). If we perform “rotation” in the electron-hole space

diagonalizingG{

1/l

Gioa(e,€ )= Ura(€)GRA(E €N Ur (€)= =0 8(e~€'),
0.0 ] r 1—aZ .
I Ura=(lt+agaoy)/V1—aga, (12)
Vl I, |E@ whe_re_aR,AE(eiiy_l— 5RVA)/(A_ii_y2)_; Eg. (11 shows then
] x explicitly that solutions decaying inside the electrodes should

T Y Y have the following matrix form:

V/(IR.) Gl2=Uzlud?0.Ug, G?2=U ul?¢.U,,

FIG. 3. Effect of microwave radiation with the amplitude (13
A=2l. and frequency) =2w. on the dcl-V characteristics of the where o.=ox*ioy,, and G312 denote the function in the
resistively shunted superconducting point contact. The contact pgirst (z<0) and the secondz{>0) electrode, respectively.
rameters are the same as in Fig. 2. From top to bottom, the curves The total Green’s functions should be continuous at the
correspond toy/ w.=0,1. point contact ¢=0). Imposing this condition and taking into

account that there is a voltage drgpbetween the two elec-
frequencies of the Josephson oscillations. It is known thajrodes of the point contact we can determine the functions

this situation can be reduced to the RSJ model by simpl@,gﬁ)in Eq.(13). At small voltages/— 0, we get then for the
subtraction of the dc current through the resigsee, e.g., ’ , e -0
u : u ug i 9 total Green's function&g o=Grat+ GQ)A atz=0:

Ref. 15, Sec. 1214

Figure 2 shows how-V characteristics evolve from the _ de’ — ¢ e\,
guasistationary RSJ form into E(.0) with increasing exter- Gralet)= f Z_GR’A e+ S€T S gle't
nal resistance. The curves were calculated numerically from 77
Eq. (9) assuming no reflection in the point contact€0), i o,cof p/2—arccoge/A)]+io,
and also assuming that is a phenomenological constant =on Sin @/2—arccose/A) =i0] (14

independent of energy. In the case when this transition is _
driven not by finite relaxation rate but by finite reflection whereGg, 4 depend on time via the time dependence of the
72 the curves look qualitatively very similar. Josephson phase differenge ¢=2 eV t/h+¢, . In Eq.
Figure 3 shows dt-V characteristics of the point contact (14) we neglected the relaxation rateg, assuming that they
under microwave irradiationl¢(t) =19+ A cos{lt), which  are small. This is a legitimate approximation since, as usual,
exhibit the wusual Shapiro steps at voltageé,, the effect of small energy relaxation on the occupation prob-
= (k/m)%Q/2e. We see that the height of the subharmonicabilities (i.e., onG) is much more important than the effect
steps (n+1) that are the hallmark of the presence of higheron the density of states. F@ 5 given by Eq(14), the latter
harmonics inl (¢) depends strongly on the value of external effect would be a small broadening of the Andreev-bound
resistance. It increases for small external resistance due jgyel.
the current discontinuity ap= mod 2. One can check directly from Eq14) that this equation
Now we briefly outline the major steps leading to our agrees with the stationary Green’s functions calculated first
basic kinetic equatioril). We start with the quasiclassical py Kulik and Omel’'yanchuk® In particular, in the subgap
equation for nonequilibrium Green'’s functions of the Super'range |E|<A it Corresponds precise|y to one of the two
conductorgfor a general introduption to this technique see, pondreev-bound  discrete energy  levels: C_RSBA
e.%), Ref. 18 The 'Green’s functions can be reprgsgnted aSc 5l e— A sgrising/2)cosp/2]. Since the evolution equaition
G™+ G, whereG is a space-dependent nonequilibrium ad-(11) and, consequently, E¢L4) refer to electrons moving in
dition to the equilibrium par6® that is constant inside each the positivez direction (p,>0) this is the level that carries
electrode. For short constrictions, equations for the retardeghrrent in one direction. The evolution equation for electrons
and advanced parts & read" with p,<0 differs only by the sign in front ob . In this
case we get thaBg 5 corresponds to the energy level at
_ _ : (0) = — A sgn(sirp/2)cosp/2.
=[Hra.Cral, Hra=(SraT17:)CraA, To fir?d (th:Pcu)rrexl(t) in the point contact we need to
(1) calculate the Keldysh componer®y of the Green’s
function:!

6GR,A
0z

il)|:

wheredg a=[(e*i7y,)?— (Axivy,)2]"2 v, ,andy, are, re-

spectively, inelastic and elastic scattering rates,is the T —(p,>0) —(p,<0)
Fermi velocity, and coordinate measures the distance from  1(t)= ﬁj deSpla,(Gy* "(e,1) =G * (€1}
the point contact £=0) into the electrodesz(— *=x). All N

functions in Eq.(11) are matrices in the electron-hole space; The equation folGy is
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iUF&GK/(?Z:HRGK+HKGA_GRHK_GKHA1 (15)
whereH =Hgn—nH,, Hg 5 are defined in Eq(11), andn
is the equilibrium quasiparticle distributionn(e,e’)
=tanh 2T) 8(e—€'). This equation shows th&y can be

written as Gy =Ggrn—nGx+ Gy, WhereGy, is the part that
satisfies the homogeneous equation

iUFO')GH/é’Z:HRGH_GHHA. (16)

Following the same steps that led to E§31) we get that
Gy should have the following matrix form:

G ?=Ug'ui?(1%0,)Ua.

7

Imposing again the continuity condition a0, we cal-
culate u,ﬁ,l’z) and then find the current at arbitrary voltages:
(1) = | ,&'2keVTh where

1 €
|k:ﬁ{ev‘sk0_f de tanh(ﬁ)[1—|aR(€)|2]

o n n+2k
X >, lag(e+meV)|? [] aR(e+meV)]. (18
n=0 m=1 m=n+1

Equation (18) has the same form as the corresponding
expression that follows from calculations based on the

Bogolyubov—de Gennes equatioh§he only difference is

that the functionag(e€), which has the meaning of general-
ized Andreev reflection amplitude, now contains full infor-
mation about the microscopic properties of the superconduc
ing electrodes, and is, in general, different from its “ideal”

BCS value. In the particular case considered here it include

finite-energy relaxation rateg, ,. For smally’s, the part of
Eq. (18) related to the dc currenkE&0) reduces to the so-
called BTK expression for the currehflfo the best of our
knowledge, this is the first explicit proof that the widely used
BTK approach is equivalent to the microscopic theory of
electron transport in short ballistic constrictions.

Finally, to obtain the kinetic equatiofl) we consider the
Green’s functionGg in the limit V—0, when it is given by
the following expression:

6(e— Asgr(sing/2 cosp/2)N(e,t),

= Al ¢
GK(e,t)ZE smE

where
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N(et)=n( )+fAd ,an fe’ de"hy(e")
et)=n(e €' — expy — —_— .
e JEe P e eV /AZ_G//Z
(19

Herefiy=2[y,— (e/A)vy,], so thaty is given by Eq.(2).

Comparison of this expression f@y with the subgap
density of states that follows from E¢l4) shows directly
thatN(e,t) has the meaning of quasiparticle distribution, so
that[ 1— N(e,t)]/2 can be interpreted as an occupation prob-
ability of one of the two Andreev-bound levels inside the
gap. Equatior{19) with this interpretation immediately gives
the kinetic equation(1) and the boundary conditio8). In-
deed, taking into account the definition pfin the kinetic
equation we see that it is related td as follows: p
=N sgn(sinp/2). This relation together with Eq19) give
the boundary conditiof3). Furthermore, differentiating Eq.
(19) with respect to energy and making use of the relation
between energy and phases sgn(sir/2)A cosp/2, we fi-
nally arrive at Eq(1). Although we have assumed so far that
the voltageV is constant in time, it is obvious that the evo-
lution equation(1) in the differential form is valid for arbi-
trary time dependence of the voltage, as long as the voltage
itself and the rate of its variations are small.

As a last remark we should mention that thermalization of
the occupation probabilitp due to the boundary condition
(3) is instantaneous only on the long time scale set by the
period of the Josephson oscillation. A crude estimate of the
2nergy intervalde near the gap edge that determirgess
Ae?V?)1R so that the corresponding time scale of thermal-
igation is 6t=#/de. In the relevant limiteV/A—O0, 6t is
much less than the period of the Josephson oscillations.

In conclusion, we developed an adiabatic theory of the ac
Josephson effect in short constrictions between two super-
conductors. The theory is based on the simple kinetic equa-
tion for the nonequilibrium occupation probabilities of the
two Andreev-bound states localized in the constriction. The
kinetic equation is rigorously derived from the microscopic
equations for quasiclassical Green’s functions of the con-
striction, and can be applied to situations with arbitrary time
dependence of the bias voltage.
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