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Starting from the quasiclassical equations for nonequilibrium Green’s functions we derive a simple kinetic
equation that governs the ac Josephson effect in a superconducting quantum point contact at small bias
voltages. In contrast to existing approaches the kinetic equation is valid for voltages with arbitrary time
dependence. We use this equation to calculate frequency-dependent linear conductance, and dcI -V character-
istics with and without microwave radiation for resistively shunted quantum point contacts. A novel feature of
the I -V characteristics is the excess current 2I c /p appearing at small voltages. An important by-product of our
derivation is the analytical proof that the microscopic expression for the current coincides at arbitrary voltages
with the expression that follows from the Bogolyubov–de Gennes equations, if one uses appropriate ampli-
tudes of Andreev reflection, which contain information about the microscopic structure of the superconductors.

Point contacts between normal metals have simple Ohmic
I -V characteristics regardless of their electron transparency
D. In contrast to this,I -V characteristics of the supercon-
ducting point contacts may be highly nonlinear even in the
simplest situation of short constriction between two ideal
BCS superconductors, and exhibit a nontrivial dependence
onD. The origin of this complexity is the oscillating Joseph-
son current, which makes electron motion in the contact es-
sentially inelastic.1,2 Recently, there has been considerable
progress in calculation of both dc and ac~Refs. 3–5! com-
ponents of current in such contacts. However, the results
were limited to the situation when the contact is biased with
a constant~in time! voltage supplied by an ideal source with
vanishing impedance.

It is of interest to generalize the theory of electron trans-
port in superconducting point contacts to the case of finite
impedance of the voltage source as well as to time-dependent
voltages. This generalization is particularly important in
view of the fact that most experimental realizations of super-
conducting quantum point contacts6,7 are based on the
superconductor/semiconductor heterojunctions, which typi-
cally have relatively large impedance. Below we develop
such a generalization, which is valid for small bias voltages
V!D/e, whereD is the superconductor energy gap in the
electrodes.

We consider a ballistic quantum point contact with char-
acteristic dimensions much smaller than both the elastic scat-
tering length and coherence length of the superconducting
electrodes. dc supercurrent in such a contact is known to be
carried by the two discrete energy states with energies
e656Dcosw/2 inside the energy gap,8–10 wherew is the
Josephson phase difference across the contact. These states
are spatially localized in the contact region because of the
Andreev reflection. At low voltagesV!D/e, the dynamics
of these states is slow on the frequency scale given by the
energy gap,ẇ52 eV/\!D/\, and one could expect the ac
Josephson effect in this regime to be described in terms of
the same two quasistationary states. However, in contrast to
the stationary regime (V[0) when the occupation of these
states is given simply by the equilibrium Fermi-Dirac prob-

abilities, in the nonstationary situation the occupation of
these states is quite nontrivial.

We first discuss our final result, the kinetic equation that
governs the evolution of occupation probabilitiesp6 of the
levels e6 . ~The systematic development leading to this
equation is presented in the last part of the paper.! Because of
the normalization condition(6p651, it is convenient to
write the kinetic equation in terms of the difference of the
two probabilities,p„w(t)…[p22p1 . Kinetic equation for
p(w) is

ṗ„w~ t !…5g~e!@n~e!2p„w~ t !…#, ~1!

where n(e)5tanh(e/2T) is the equilibrium value of
p„e(w)…; g(e) is the rate of quasiparticle exchange between
the bulk electrodes and discreet levels in the constriction,
and e5e(w)[Dcosw/2. The rateg is roughly proportional
to the subgap density of states in the superconducting elec-
trodes; it vanishes in the ideal BCS case; if the gap is slightly
smeared by finite electron-phonon interaction,g is given by
the following expression:11,12

g~e!5aE de8
Q~e822D2!

Ae822D2

~e2e8!3cosh~e/2T!

sinh@~e2e8!/2T#cosh~e8/2T!
.

~2!

Here a is a constant determined by the parameters of
electron-phonon interaction. To the kinetic equation~1! we
should add a ‘‘boundary condition’’ which states that the
level occupation reaches equilibrium as soon as the levels hit
the gap edges,e56D ~Fig. 1!, that is,

p~w!5~21!mn~D! for w52pm, ~3!

where m50,61, . . . .~3! We can take into account small
reflection coefficientR of the point contact,R!1, by in-
cluding in the kinetic equation the Zener transitions between
the two levels that occur at the pointw5pmod(2p) with the
probability l.5 For vanishing external resistance the transi-
tion probability isl5exp$22pRD/\uẇu%, whereẇ is taken
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at the transition point. Account of the Zener transitions is
achieved by imposing one more boundary condition on
p(w):

p@w10sgn~ ẇ !#5~2l21!p@w20sgn~ ẇ !# ~4!

for w5p mod (2p). The functionp„w(t)… given by Eqs.
~1!–~4! determines the currentI (t) in the point contact:

I ~ t !5 ~pD/eRN!sin@w~ t !/2# p„w~ t !…, ~5!

where RN5p\/Ne2 is the normal-state resistance of the
contact, andN is the number of transverse modes that are all
assumed to be identical.

Equations~1!–~5! allow us to describe the dynamics of
the point contact under arbitrary bias conditions. As a first
example, we consider thelinear responseof the voltage-
biased point contact to small oscillations of the Josephson
phase difference around some stationary pointw0 , i.e.,
w(t)5w01wve

2 ivt, uwvu!1. Equations~1! and ~5! with
thisw(t) give that the current oscillates around the stationary
value:13

I s~w0!5 ~pD/eRN!sin~w0/2!tanh~e0/2T!, ~6!

so thatI5I s1Ive
2 ivt, and the frequency-dependent linear

conductance is

Y~v!5
Iv

Vv
5
2eiIv
\vwv

5
2pD

\vRN
F D

4T

sin2~w0/2!

cosh2~e0/2T!

g~e0!

v1 ig~e0!

1
i

2
cos

w0

2
tanh S e0

2TD G , ~7!

wheree05e(w0). This equation generalizes the correspond-
ing expression obtained by Zaitsev1 for large temperatures
T@D. @Note that Eq.~7!, as well as the kinetic equation~1!,
gives only the leading terms in small relaxation rateg.#

We also can define the linear response to small dc voltage,
V!\g/e. In this case the phase increases indefinitely,
w(t)5w012 eVt/\, but deviation of the occupation prob-
ability p from equilibrium is still small. For such an evolu-
tion of w, Eqs.~1! and ~5! give

I ~ t !5I s@w~ t !#1
V

RN

pD2

2\g~e!T

sin2@w~ t !/2#

cosh2~e/2T!
, ~8!

wheree5e@w(t)#. This equation is the generalization of the
recent result14 to energy-dependent relaxation rateg(e). We
see that both types of linear response are sensitive functions
of g(e) and therefore they may be used to measure the sub-
gap density of states in the superconductors.

As another application of the kinetic equation~1! we con-
siderresistively shuntedsuperconducting quantum point con-
tact biased by an external currentI e ~see inset in Fig. 3!. For
such a bias condition, the evolution equation forw reads

\ẇ~ t !/2eRe5I e2I @w~ t !#, ~9!

where currentI @w(t)# should be calculated from Eqs.~1!–
~5! self-consistently withw(t), andRe is the shunting Ohmic
resistance, which adiabatic approximation requires to be
small: Re!RN . We limit ourselves to low temperatures
T!D.

For very small external resistancesRe /RN
!$(\g/D),R%, the rate ofw evolution is small and the
currentI (w) is given by the stationary relation~6!. Applying
this relation in Eq.~9!, we conclude that the dc I-V charac-
teristic of the point contact is given by the same relation as in
the standard resistively shunted junction~RSJ! model ~see,
e.g., Ref. 15, Sec. 4.2!. In the opposite limit of relatively
large external resistancesRe /RN@$(\g/D),R%, the I -V
characteristic is given by the following relations:

V5
~ I e

22I c
2!1/2

Re

p

4 arctanA~ I e1I c!/~ I e2I c!
, I5I e2V/Re .

~10!

The main qualitative difference between expression~10! and
the quasistationary RSJI-V characteristics is the excess cur-
rent: I→2/pI c for V@I cRe in Eq. ~10!, whereas the current
vanishes at large voltages in the quasistationary case. Note
that Eq.~10! and Figs. 2 and 3 give theI -V characteristics in
the form ~i.e., without the linear termV/Re) that is directly
applicable to typical bias conditions of point contacts that are
not shunted intentionally. Under these conditions there is no
shunting resistance at zero frequency, but there is finite im-
pedance of the biasing leads in series with the contact at

FIG. 1. Energiese6 of the two Andreev-bound levels in a short
constriction between two superconductors as functions of the Jo-
sephson phase differencew. Solid dots represent ‘‘thermalization
points’’ where occupation of the 2 level always reaches equilibrium.
The diagram illustrates sign conventions for the kinetic equation~1!
and the boundary condition~3!.

FIG. 2. dcI -V characteristics of the resistively shunted ballistic
superconducting quantum point contact for various ratios of exter-
nal Ohmic resistanceRe and relaxation rateg at zero temperature;
vc[2eIcRe /\.
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frequencies of the Josephson oscillations. It is known that
this situation can be reduced to the RSJ model by simple
subtraction of the dc current through the resistor~see, e.g.,
Ref. 15, Sec. 12.4!.

Figure 2 shows howI -V characteristics evolve from the
quasistationary RSJ form into Eq.~10! with increasing exter-
nal resistance. The curves were calculated numerically from
Eq. ~9! assuming no reflection in the point contact (R50),
and also assuming thatg is a phenomenological constant
independent of energy. In the case when this transition is
driven not by finite relaxation rateg but by finite reflection
R the curves look qualitatively very similar.

Figure 3 shows dcI -V characteristics of the point contact
under microwave irradiation,I e(t)5I 01A cos(Vt), which
exhibit the usual Shapiro steps at voltagesVk,m
5(k/m)\V/2e. We see that the height of the subharmonic
steps (mÞ1) that are the hallmark of the presence of higher
harmonics inI (w) depends strongly on the value of external
resistance. It increases for small external resistance due to
the current discontinuity atw5p mod 2p.

Now we briefly outline the major steps leading to our
basic kinetic equation~1!. We start with the quasiclassical
equation for nonequilibrium Green’s functions of the super-
conductors~for a general introduction to this technique see,
e.g., Ref. 16!. The Green’s functions can be represented as
G(0)1G, whereG is a space-dependent nonequilibrium ad-
dition to the equilibrium partG(0) that is constant inside each
electrode. For short constrictions, equations for the retarded
and advanced parts ofG read11,1

ivF
]GR,A

]z
5@HR,A ,GR,A#, HR,A5~dR,A1 igel!GR,A

~0! ,

~11!

wheredR,A[@(e6 ig1)
22(D6 ig2)

2#1/2; g1,2 andgel are, re-
spectively, inelastic and elastic scattering rates,vF is the
Fermi velocity, and coordinatez measures the distance from
the point contact (z50) into the electrodes (z→6`). All
functions in Eq.~11! are matrices in the electron-hole space;

for instance, GR,A
(0) (e,e8)5$@(e6 ig1)sz1(D6 ig2) isy]/

dR,A%d(e2e8), with s ’s here and below denoting Pauli ma-
trices.

The functionsG should decay inside the electrodes~at
z→`). If we perform ‘‘rotation’’ in the electron-hole space
diagonalizingGR,A

(0) ,

GR,A
~0! ~e,e8!→UR,A~e!GR,A

~0! ~e,e8!UR,A
21 ~e8!56szd~e2e8!,

UR,A5~11aR,Asx!/A12aR,A
2 , ~12!

whereaR,A[(e6 ig12dR,A)/(D6 ig2); Eq. ~11! shows then
explicitly that solutions decaying inside the electrodes should
have the following matrix form:

GR
~1,2!5UR

21uR
~1,2!s6UR , GA

~1,2!5UA
21uA

~1,2!s7UA ,
~13!

wheres65sx6 isy , andG
(1,2) denote the function in the

first (z,0) and the second (z.0) electrode, respectively.
The total Green’s functions should be continuous at the

point contact (z50). Imposing this condition and taking into
account that there is a voltage dropV between the two elec-
trodes of the point contact we can determine the functions
uR,A
(1,2) in Eq. ~13!. At small voltagesV→0, we get then for the
total Green’s functionsḠR,A5GR,A1GR,A

(0) at z50:

ḠR,A~e,t !5E de8

2p
ḠR,AS e1

e8

2
,e2

e8

2 Dei e8t
5

i

2p

szcos@w/22arccos~e/D!#1 isy

sin@w/22arccos~e/D!6 i0#
, ~14!

whereḠR,A depend on timet via the time dependence of the
Josephson phase differencew, w52 eV t/\1w0 . In Eq.
~14! we neglected the relaxation ratesg1,2 assuming that they
are small. This is a legitimate approximation since, as usual,
the effect of small energy relaxation on the occupation prob-
abilities ~i.e., onGK) is much more important than the effect
on the density of states. ForḠR,A given by Eq.~14!, the latter
effect would be a small broadening of the Andreev-bound
level.

One can check directly from Eq.~14! that this equation
agrees with the stationary Green’s functions calculated first
by Kulik and Omel’yanchuk.13 In particular, in the subgap
range ueu,D it corresponds precisely to one of the two
Andreev-bound discrete energy levels: ReḠR,A
}d@e2D sgn~sinw/2)cosw/2]. Since the evolution equation
~11! and, consequently, Eq.~14! refer to electrons moving in
the positivez direction (pz.0) this is the level that carries
current in one direction. The evolution equation for electrons
with pz,0 differs only by the sign in front ofvF . In this
case we get thatḠR,A corresponds to the energy level ate
52D sgn(sinw/2)cosw/2.

To find the currentI (t) in the point contact we need to
calculate the Keldysh componentGK of the Green’s
function:11,1

I ~ t !5
p

2RN
E deSp$sz~ḠK

~pz.0!
~e,t !2ḠK

~pz,0!
~e,t !%.

The equation forGK is

FIG. 3. Effect of microwave radiation with the amplitude
A52I c and frequencyV52vc on the dcI -V characteristics of the
resistively shunted superconducting point contact. The contact pa-
rameters are the same as in Fig. 2. From top to bottom, the curves
correspond tog/vc50,1,̀ .
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ivF ]GK/]z5HRGK1HKGA2GRHK2GKHA , ~15!

whereHK5HRn2nHA , HR,A are defined in Eq.~11!, andn
is the equilibrium quasiparticle distribution,n(e,e8)
5tanh (e/2T)d(e2e8). This equation shows thatGK can be
written as3 GK5GRn2nGA1GH , whereGH is the part that
satisfies the homogeneous equation

ivF ]GH/]z5HRGH2GHHA . ~16!

Following the same steps that led to Eq.~131! we get that
GH should have the following matrix form:

GH
~1,2!5UR

21uH
~1,2!~16sz!UA . ~17!

Imposing again the continuity condition atz50, we cal-
culateuH

(1,2) and then find the current at arbitrary voltages:
I (t)5( k I ke

i2keVt/\, where

I k5
1

eRN
H eVdk02E de tanh S e

2TD @12uaR~e!u2#

3 (
n50

`

)
m51

n

uaR~e1meV!u2 )
m5n11

n12k

aR~e1meV!J . ~18!

Equation ~18! has the same form as the corresponding
expression that follows from calculations based on the
Bogolyubov–de Gennes equations.5 The only difference is
that the functionaR(e), which has the meaning of general-
ized Andreev reflection amplitude, now contains full infor-
mation about the microscopic properties of the superconduct-
ing electrodes, and is, in general, different from its ‘‘ideal’’
BCS value. In the particular case considered here it includes
finite-energy relaxation ratesg1,2. For smallg ’s, the part of
Eq. ~18! related to the dc current (k50) reduces to the so-
called BTK expression for the current.2 To the best of our
knowledge, this is the first explicit proof that the widely used
BTK approach is equivalent to the microscopic theory of
electron transport in short ballistic constrictions.

Finally, to obtain the kinetic equation~1! we consider the
Green’s functionḠK in the limit V→0, when it is given by
the following expression:

ḠK~e,t !5
D

2 Usin w

2 Ud~e2Dsgn~sinw/2 cosw/2!N~e,t !,

where

N~e,t !5n~e!1E
e

D

de8
]n

]e8
exp H 2E

e

e8 de9\g~e9!

eVAD22e92
J .
~19!

Here\g[2@g12(e/D)g2#, so thatg is given by Eq.~2!.
Comparison of this expression forḠK with the subgap

density of states that follows from Eq.~14! shows directly
thatN(e,t) has the meaning of quasiparticle distribution, so
that @12N(e,t)#/2 can be interpreted as an occupation prob-
ability of one of the two Andreev-bound levels inside the
gap. Equation~19! with this interpretation immediately gives
the kinetic equation~1! and the boundary condition~3!. In-
deed, taking into account the definition ofp in the kinetic
equation we see that it is related toN as follows: p
5N sgn(sinw/2). This relation together with Eq.~19! give
the boundary condition~3!. Furthermore, differentiating Eq.
~19! with respect to energy and making use of the relation
between energy and phase,e5sgn(sinw/2)D cosw/2, we fi-
nally arrive at Eq.~1!. Although we have assumed so far that
the voltageV is constant in time, it is obvious that the evo-
lution equation~1! in the differential form is valid for arbi-
trary time dependence of the voltage, as long as the voltage
itself and the rate of its variations are small.

As a last remark we should mention that thermalization of
the occupation probabilityp due to the boundary condition
~3! is instantaneous only on the long time scale set by the
period of the Josephson oscillation. A crude estimate of the
energy intervalde near the gap edge that determinesp is
(De2V2)1/3, so that the corresponding time scale of thermal-
ization is dt.\/de. In the relevant limiteV/D→0, dt is
much less than the period of the Josephson oscillations.

In conclusion, we developed an adiabatic theory of the ac
Josephson effect in short constrictions between two super-
conductors. The theory is based on the simple kinetic equa-
tion for the nonequilibrium occupation probabilities of the
two Andreev-bound states localized in the constriction. The
kinetic equation is rigorously derived from the microscopic
equations for quasiclassical Green’s functions of the con-
striction, and can be applied to situations with arbitrary time
dependence of the bias voltage.
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