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We have fabricated ballistic cavities from a two-dimensional GaAs electron gas in which the Fermi energy
can be varied independent of cavity shape. For each cavity, we have measured the magnetoconductanceG(B)
of many individual members of an ensemble, with each member labeled by its Fermi energy. We find that
G(B) of a single ensemble member does not always display the minimum atB50 which is the signature of
weak localization. By averaging over our ensemble, we have obtained the energy-averaged weak-localization
effect for each cavity shape. The average result does display the expected minimum atB50. We compare our
results with recent analytical theories and numerical simulations of weak localization in cavities with chaotic
classical scattering and find good quantitative agreement.

Two quantum interference effects due to multiply scat-
tered electron waves, conductance fluctuations1 and weak
localization,2 have been studied extensively in diffusive
conductors, where electron scattering occurs on a length
scale much smaller than the system size. Both effects
have more recently been observed in ballistic cavities fab-
ricated from the two-dimensional~2D! electron gas of a
GaAs/AlxGa12xAs heterostructure, where large angle scat-
tering is dominated by the edges of the cavities rather than
by impurities. Ballistic quantum interference effects involv-
ing a magnetic field are governed by the distribution of en-
closed areas in the classical analog of the cavity, according to
a semiclassical analysis.3 The area distribution is determined
by the shape of the cavity and the size of the leads. For
shapes in which classical particles scatter chaotically, the
probability that a particle encloses an areaA before escape is
given by P(A)}e22pauAu.3 The inverse areaa determines
the magnetic-field scale of the conductance fluctuations and
the weak localization. For nonchaotic cavities the area distri-
bution is not exponential and the semiclassical theory pre-
dicts the quantum interference will differ from that found in
chaotic cavities. Experimental studies of conductance fluc-
tuations as a function of magnetic field in chaotic cavities4,5

agree well with the predictions of the semiclassical theory,
and evidence for a difference between chaotic and noncha-
otic shapes has been reported in one case.4

Here we focus on weak localization~WL! in ballistic
cavities. We demonstrate that ballistic conductors do not
‘‘self-average’’ as do typical diffusive conductors used for
the study of WL. This points out the need to average over an

ensemble of cavities. We describe the fabrication of cavities
in which the Fermi energy can be varied without changing
the cavity shape. These cavities allow us to create many
ensemble members and to construct the ensemble-averaged
ballistic WL explicitly from the behavior of the individual
members. Our results for three cavities with different shapes
are in good quantitative agreement with theoretical predic-
tions. We also discuss using the comparison with theory to
estimate the amount of electron phase breaking in the cavi-
ties. We find that the contribution to WL from short paths
interferes with a straightforward estimate of phase breaking.

The theoretical treatment of WL in diffusive conductors
involves an average over an ensemble of conductors having

FIG. 1. G(B) for the stomach at two values of the Fermi wave
vector k. The upper curve shows the minimum atB50 expected
for the ensemble-average WL effect. The lower curve shows a
maximum atB50, demonstrating that a ballistic cavity does not
self-average. The average WL can be found by averaging over
many values ofk, as described in the text.
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different random configurations of impurities but the same
macroscopic density of impurities. The theory predicts a de-
crease~relative to the classical value! in the ensemble-
average conductancêG& of a phase-coherent conductor
when time-reversal symmetry is present and spin-orbit scat-
tering is negligible. Applying a magnetic fieldB destroys the
WL and brings ^G& back to its classical value. Thus,
^G(B)& has a minimum atB50. Experimental studies of
WL in diffusive conductors typically involve samples many
times larger than the phase coherence length. These samples
effectively contain many members of an ensemble which are
measured simultaneously~they are ‘‘self-averaging’’!. Thus,
the measuredG(B) always has the minimum atB50 ex-
pected for the ensemble average.

In contrast to the diffusive case, a ballistic cavity is nor-
mally smaller than the phase coherence length. It therefore
represents a single member of an ensemble and does not
necessarily behave as the ensemble average. This is demon-
strated in Fig. 1, which shows a single ballistic cavity having
a maximum in the measuredG atB50 for one value of the
Fermi wave vectork, and a minimum for another value of
k.6 Previous experimental studies of WL in ballistic cavities
have performed ensemble averages using temperature,7 dif-
ferent realizations of residual disorder in an array of identical
cavities,8 or a small distortion of cavity shape.9 Our experi-
ments have the following characteristics:~1! Measurements
were done at low temperature (T'100 mK! where thermal
averaging was negligible.~2! Different ensemble members
were created by changingk using a gate voltage, so we could
study individual members separately~as in Fig. 1!. ~3! The
cavity size and shape did not change significantly over the
range ofk used for the ensemble average, as shown below.
We designed our study with this combination of features in
order to make the closest possible comparison to the theory
of Ref. 3.

Recent theoretical work on WL in ballistic cavities has
used three approaches:~1! Numerical calculation of the
quantumG(k) at different values ofB for a particular
cavity.3 The WL is found by averaging overk at each value
of B. This is precisely the way WL is measured in our ex-
periments.~2! Analytical calculation of the energy-averaged
WL using a semiclassical approximation.3 ~3! Calculation of
the average WL for an ensemble of scattering matrices using
a random matrix theory~RMT! approach.10,11The semiclas-
sical and RMT analyses predict an inverted-Lorentzian form
for the WL in chaotic cavities,

^DG~B!&[^G~B!2G~0!&5SF12
1

11~2B/f0a!2G .
~1!

The magnetic-field scale is the flux quantum,f05h/e, times
the parameter ofa from the classical area distribution. The
value ofa depends on the size and shape of the cavity, and
on the size of the leads. The most recent RMT work of
Baranger and Mello10 predicts that the amplitudeS varies
with the number of modes in the leads,N5kW/p, and the
number of effective phase-breaking modes,Nf . They find

S5
N

2N1Nf
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h
, ~2!

which reduces to S5(1/2)e2/h at zero temperature
(Nf50) or N@Nf .

In order to obtain ballistic cavities in whichk could be
varied independent of shape, we used two fabrication meth-
ods. The starting material in both cases was a GaAs/
Al xGa12xAs heterostructure with a 2D electron gas~2DEG!
90 to 100 nm below the surface. The low-energy ion expo-
sure method,12 used for the stadium, involved patterning a
Ti/Au mask on the surface and exposing the sample to
200-eV Xe ions. The ions destroyed the conductivity in the
unmasked regions. The metal mask then formed a self-
aligned gate, and the electron density in the cavity could be
increased or decreased by applying a positive or negative
voltage between the gate and the 2DEG. The shallow wet
etch method,13 used for the stomach and polygon, involved
patterning a poly-methylmethacrylate etch mask and etching
20 to 25 nm into the heterostructure using a solution of
NH4OH/H2O2/H2O ~15:3:10 000!. A Ti/Pd/Au gate of about
50 mm2 area was then placed over the cavity and the insu-
lating etched regions to vary the electron density.

The dimensions of each cavity are given in Table I and
images are shown in Fig. 2. The bulk mean-free path of the
2DEG was 5.5mm for the stadium and 19.5mm for the
stomach and polygon. We expect electron phase coherence to
be limited by thermal dephasing, with a coherence length of
15 to 20 mm at the estimated electron temperature of
100650 mK. The electron density in the cavitiesn was
found from oscillations inG(B) that were periodic in 1/B for
B larger than a few tesla, analogous to the Shubnikov–de
Haas oscillations in a bulk 2DEG. We found thatn changed
linearly with gate voltageVg , andk was computed using the
2D relation,k5A2pn. At Vg50, k was 114mm21 for the
stadium and 140mm21 for the stomach and polygon.

Our evidence thatk can be changed without significantly
affecting cavity size and shape is twofold. First, the field

FIG. 2. Cavity images. The stadium image was obtained with a
scanning electron microscope; the light areas are metal and the dark
areas are the GaAs surface. The stomach and polygon images were
obtained with a scanning force microscope; the light areas are un-
etched GaAs and the dark areas are etched to a depth of 23 nm.

TABLE I. Cavity dimensions after subtracting a depletion width
at each edge of 25 nm for the stadium and 85 nm for the stomach
and polygon. Also given are the values off0a found from the
power spectrum of the conductance fluctuations.
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scalef0a extracted from the power spectrum of the fluctua-
tions in G(B)4,5,16 was independent ofk as shown for the
stomach in the inset of Fig. 3. This indicates the typical area
enclosed before escape from the cavity was independent of
k. Second, studies of the ‘‘last plateau’’ in the Hall resistance
of a cross junction14 fabricated along with each cavity
showed that the depletion width changed by 15%–20% over
the range ofk used for the WL studies. This corresponds to a
change inW of about 15% and a change inL of about 2%.
Using an approximate relation by Jensen,15 these changes in
cavity dimensions imply an expected change inf0a of about
2%.

To construct the energy-averaged WL for each cavity,
G(k) was measured for many values ofB between 0 and a
few timesf0a. Figure 3 showsG(k) atB50 andB5100 G
for the stomach. The correlation range of the fluctuations in
G(k) is 0.56 mm21,16 so a change ofk by this amount
creates an independent member of the ensemble. The quan-
tity DG(k,B)[G(k,B)2G(k,0) is plotted for several val-
ues ofB in Fig. 4. The range ofk in this plot corresponds to
25 ensemble members, and the entire spectrum of behavior
can be seen. Atk'134mm21, DG increases asB increases,
so G(B) for this member of the ensemble looks like the
upper curve in Fig. 1. Atk'139.5mm21, DG is nearly 0 for
all values of B, so G(B) is flat nearB50. At k'128
mm21, DG becomes negative asB increases, soG(B) looks
like the lower curve of Fig. 1. The ensemble-average WL,
^DG(B)&k , is found by simply taking the mean of each

curve in Fig. 4, and the result for each cavity is shown in Fig.
5. The average change inG is positive, as expected, and the
field scale over which the change occurs isf0a, also as
expected.

Since we use the fluctuations inG(B) to measuref0a
~values are given in Table I!, we can fit Eq. ~1! to
^DG(B)&k using S as the only adjustable parameter. The
result for each cavity is shown as a solid line in Fig. 5. The
theory provides a good fit for the stomach and polygon,
which show a clear saturation forB>f0a. The fit is not as
good for the stadium, for whicĥDG(B)&k does not rise
smoothly for B<f0a and does not saturate as clearly at
largerB. This behavior is not understood, but we note that
some cavities studied numerically did not show a clear
saturation.3 The good agreement shown in Fig. 5 indicates
that the samef0a determines both the WL and the fluctua-
tions, as predicted by the theories of the two effects.3

By comparing the value ofS from the fits with Eq.~2!,
we can infer the effective number of phase-breaking chan-
nels Nf . We find Nf54.761.2 for the stomach and
Nf52.961.0 for the polygon. The uncertainty in these val-
ues comes from the uncertainty inS and from the range of
N5kW/p used in the energy average.Nf is two to four
times smaller thanN, indicating that most electrons escape
through the leads before losing phase coherence. For the sta-
dium, Eq.~2! givesNf'0, but since Eq.~1! does not pro-
vide a good fit tô DG(B)&k for this cavity, we do not con-
sider this a reliable measure ofNf .

WL in the stomach and polygon shapes has been com-
puted numerically,3 and we compare the results with our data
in Fig. 6. This is a direct comparison with no fitting involved.
For the stomach, the agreement is very good. In fact, such
good agreement raises a question about the reliability of us-
ing the WL amplitudeS to determineNf as described above.
Since numerical simulations done forT50 can giveS
smaller than 0.5e2/h, there must be factors other than phase
breaking that can reduceS. Thus, a measuredS of less than

FIG. 3. Conductance fluctuationsG(k) for the stomach atB50
and 100 G ('3.5f0a). Inset:f0a vs k for the stomach, which
shows that changingk does not affect the typical area enclosed.

FIG. 4. DG(k,B)[G(k,B)2G(k,0) for the stomach at several
values ofB between 0 and'f0a. The behavior ofG(B) for the 25
ensemble members shown in the figure ranges from a maximum at
B50 ~e.g., k'128 mm21) to a minimum at B50 ~e.g.,
k'134 mm21).

FIG. 5. The energy-averaged WL effect,^DG(B)&k , for each of
the three cavities. The energy ranges used to compute the averages
correspond tokW/p'@5.2,5.8# for the stadium,kW/p'@7.6,9.1#
for the stomach, andkW/p'@8.0,9.9# for the polygon. The experi-
mental points atB50 represent the difference between twoG(k)
traces before and after all the other traces and indicate the repro-
ducibility of the data over long times~1–3 days!. The solid lines are
fits using Eq.~1! with the amplitudeS as an adjustable parameter
but with f0a fixed at the value found from the fluctuations in
G(B). The legend shows the values ofS found from the fits. The
uncertainity inS is 60.04e2/h for the stadium and60.01e2/h for
the polygon and the stomach.
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0.5e2/h in a particular cavity does not necessarily imply that
Nf is greater than zero. The reduced amplitude in the simu-
lations is believed to arise from the existence of short paths,
such as those which bounce off the stopper that blocks direct
transmission and back into the same lead or bounce once off
the top of the cavity and into the opposite lead.17 Such paths
are explicitly omitted in the RMT approach which gives
S50.5e2/h at T50. Short paths are present in the experi-
mental cavities, and a quantitative understanding of their ef-
fect on the WL is required in order to determineNf from the
WL amplitude. This point has not been made previously
when experimental values ofS have been used to infer
Nf . In the case of the stomach, short paths reduce the am-
plitude of the simulation toS'0.4e2/h, the same as the
experimental value. This could be interpreted as an indica-
tion that Nf'0 ~i.e., Nf!N). However, since the short
paths are sensitive to details of the cavity shape, an unam-

biguous determination ofNf may require knowledge of the
experimental shape at a level of detail that is not possible
using current nanofabrication techniques.18

For the polygon, the numerical result for^DG(B)&k is
linear from nearB50 to well beyondB5f0a. This behav-
ior is characteristic of nonchaotic scattering in the classical
analog of the cavity, as is found for the ideal polygon shape3

and for a circular cavity in a recent experiment.8 We attribute
the lack of agreement between the numerical and experimen-
tal results for the polygon to residual disorder which causes
deviations from the ideal shape that are sufficient to make
the classical scattering chaotic. This is consistent with the
fact that the power spectrum of fluctuations inG(B) for the
polygon can be fit well with the form for chaotic scattering.16

In summary, we have measured the weak-localization ef-
fect in ballistic cavities and observed behavior which clearly
differs from that of diffusive conductors. By using cavities in
which the Fermi energy can be changed without affecting the
cavity shape, we have measured the magnetoconductance of
many individual members of an ensemble. The weak-
localization effect found by averaging over this ensemble is
generally in good agreement with analytical theories and nu-
merical simulations for cavities with chaotic classical scat-
tering.
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