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Relaxation dynamics of electrons between Landau levels in GaAs
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The relaxation dynamics of free electrons between Landau levels is traced on a picosecond time scale via the
time evolution of the band-to-acceptor luminescence-itype GaAs after resonant excitation of the=1
Landau level. For electron densitids>10" cm™3, relaxation occurs via electron-electron scattering with a
1/e decay time of 7.5%10'® ps cm 3/N. For lower electron densities, relaxation becomes independent of
density due to elastic impurity scatterif&0163-182¢06)52524-5

A strong magnetic field imposed on a semiconductorphire laser with 80 MHz repetition rate. The photolumines-
splits the energy band of free electrons and holes into a serieence is dispersed in a 0.3-m spectrometer and detected by a
of quantized Landau levels, separated by the cyclotron ersynchroscan streak camera. Temporal and spectral resolution
ergy Aw.. The splitting can be varied easily by tuning the are 10 ps and 1 meV, respectively.
magnetic fieldB. Each Landau level is actually a one-  Figure 1 shows the time evolution of the photolumines-
dimensional band since carrier motion is free along the dicence with resonant excitation of tie=1 Landau level at
rection of the magnetic field. Transitions between Landad=0. The excitation density is 1:810* cm~2. The position
levels can therefore be used for tunable far-infra(EtR) ~ of the excitation energy minus the 28 meV acceptor
sources or detectofsTherefore, detailed knowledge of the binding-energ}’ is indicated by an arrow. In the spectrum at
mechanisms and dynamics of relaxation between LandatF O, the band-to-acceptor luminescence ofitkel Landau
levels is desirable. level (luminescence maximum at 1.506 e®Wominates, re-

Saturation absorpti6ﬁ5 and induced conductivity Vvealing a strong overpopulation of the=1 Landau band. In
change$’ of cyclotron resonance have been used to studyhe following 100 ps this overpopulation is reduced via in-
relaxation between Landau levels. However, most of thesterlevel relaxation until thermal occupation of the Landau
methods are time-integrated measurements. They require tig@nds is reached. The luminescence signal appearing at
solution of a model with coupled rate equations in order t01.515 eV at later times is due to the decay of bound excitons
determine the interlevel relaxation times. The time-resolvednd is not relevant for the results discussed here. The dashed
measurements of conductivity chanfjéprovide more direct lines give the line shapes expected for thermal energy distri-
access, but their interpretation is rather complicated and anbutions. Very low excitation densities are used in our experi-
biguous. Time-resolved photoluminescence of the band-toment. The electron density(E) can therefore be described
band recombination has been perforrfidipwever, carrier by a Maxwell-Boltzmann distribution, given by
density was in this experiment so high that immediately, CElaT
within the time resolution, a thermal distribution between the N(E)ece =8 Dg(E), (1)
Landau Ievgls is established. . where Dg(E) is the density of states in a magnetic field,

We use time-resolved photoluminescence spectroscopy té’ccording 1112
get a direct insight into the relaxation dynamics of free elec-
trons between Landau levels: ultrashort laser pulses with af (g)
excitation energy tuned to the difference betweenrikel
Landau level of the electron and the heavy hole excite elec- ., \/

1 1 2 7172

trons directly into then=1 level. Thus, for a short time, an E-(nt2)hocH{[E-(n+32)ho]"+ I}
inversion between then=1 and n=0 Landau levels is Ne=0 [E—(n+hw]?+T? '
achieved. Interlevel relaxation is then studied by tracing the 2)
time evolution of the band-to-acceptor luminescence with
picosecond time resolution. Extremely low excitation densi- The broadening factdr is determined by the mean elec-
ties (=10' cm™2) are necessary in order to get interlevel tron scattering timer, with I'=%/27,.*? At our low densi-
relaxation on a picosecond time scale, where highly sensitivees, I" is very small and is assumed to k€0.1 meV (Ref.
detection using a streak camera is possible. 11). This broadening is therefore much smaller than the

The sample used in our experiment is GaAs:Be grown byroadening due to the finite width of the acceptor band. The
molecular-beam epitaxy on semiinsulation GaAs. The roomiatter is taken into account by additionally convoluting Eq.
temperature hole concentration is 8.60® cm™3. The (1) with a broadening function with a 2.6-meV full width at
sample is kept at 10 K on the cold finger of a He cryostathalf maximum, as determined by fitting at later times, when
We excite with picosecond pulses of a mode-locked Ti:sapthe electron distribution is completely thermal. It is clear that
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FIG. 2. Band-to-acceptor luminescence of GaAs:B6 @ inte-
grated over the first 40 ps after excitation with a short laser pulse:
(a) excitation at 1.536 eV, i.e., resonantly into thee1 Landau
level, (b) excitation at 1.533 eV, i.e., exciting electrons only in the
""""""" n=0 Landau level. The excitation density isx1L0"“ cm™3,
. . . . . Dashed lines: spectra for thermal distributions, both with a tempera-
1.47 1.48 1.43 150 1.51 1.52 ture T=43 K. In this figure the bound-exciton luminescence was

subtracted for reasons of clarity.

d) t=110ps
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FIG. 1. Transient luminescence spectra of GaAs:Be at 10 K an(ﬁ,emperature? 50 K, Ve_rY _eﬁ'c'enf[ and also faster than our
4.8 T: (a) 0 ps, b) 40 ps, €) 80 ps, and @) 110 ps after resonant time resol'utlon. The initial carrier tempera}tqrg becomes,
excitation with a short laser pulse into the=1 Landau level. Ex- therefore, independent of the excess energy if it is larger than
citation energy is 1.533 eV with density X30* cm3. The lu-  about 5 me\A? In caseb, where carriers are excited only
minescence signals with maxima at 1.498 and 1.506 eV are th#lto then=0 band, the line shape of the band-to-acceptor
band-to-acceptor luminescence signals of free electrons in thkiminescence can already be fitted by a thermal distribution
n=0 and then=1 Landau level, respectively. The luminescence atat these early times, whereas for resonant excitation of
1.515 eV is due to the decay of bound excitons. The arrow indicates =1 (curvea) the deviation of the observed electron distri-
the energy of the laser pulse minus the acceptor energy of Be arfoution from a Maxwell-Boltzmann distribution clearly re-
corresponds to the band-to-acceptor luminescence oftheLan-  veals an overpopulation of the=1 Landau band.
dau level. Dashed lines: line-shape fits with Maxwell-Boltzmann |n order to determine the interband relaxation times, the
distributions convoluted with a broadening function of 2.6 meV full difference between the experimental band-to-acceptor lumi-
width at half maximum. The temperatures obtained by the _fits arhescence spectra and the fits with a thermal distribution is
(a)>100 K, (b) 29 K, (c) 26 K, and () 23 K. The relative  jhtagrated. We cannot use the spectrum at long delay times
accuracy of the temperatures is fdm-(d) about 1 K. The cooling o gyptraction since the temperature still decreases on this
is due to acoustical-phonon emission. time scale due to emission of acoustical phonons. These val-
. L ues are plotted versus time, and the resulting curve is fitted
g)"rsé bégzger?c';t]gaflfseg,:iﬁ:rp;;g\ieal:);s&i%gr:e:)/feltshznfa;hg; y an exponential decay, directly yielding _the relaxatu_)n time
levels as obtained from the fits Lb_et\/\_/een Lan_d_au levels. Th_e re_sultg, obtained for various ex-

j chltatmn densities are compiled in Fig. 3.

theTQIZcf:lttrSoEaV;stgﬁz tterg :L?:ti[\),zrgz]cel}e;sti:otg%;sge;tgre The density dependence shows two regimes: At excitation
9 P densitiesN,< 10 cm™~3, interlevel relaxation becomes in-

nmi:n% dLiar-]r(]jdealér:g\éf]ltT‘ q_?]vget\é%' :g{; rzai;a?;:Lsec?rf?ogqettirgependent of density, for higher densities the relaxation time
P Y- P varies with 1N.,.. In a simple approach, the initial depopu-

shape of the high-energy side of the recombination inVOIVinQation of then=1 level can be described as the solution of
the individual Landau levels; higher temperature yields e rate equation

flatter high-energy side, in particular, of the recombination

involving then=0 Landau level. The relative occupation of

the first two Landau levels is obtained from the relative in- dN;

tensities of the two recombination lines. dt
Figure 2 shows the luminescence spectra of the band-to-

acceptor transitions integrated over the first 40 @5 for  \yhereN,(t) is the overpopulation of the higher Landau level
resonant excitation of the=1 Landau level andk) for — n—1 wijth N,(t=0)~N,,.. The interlevel relaxation-time
excitation with 3 meV lower energy. The bound-exciton Iu- _ is then defined by

minescence was subtracted in this figure for reasons of clar-
ity. Carrier-carrier scattering establishes a thermal distribu-
tion within then=0 Landau level in a time much faster than
our time resolution. Polar optical scattering is for carrier

=—ANZ—BN;, 3

1
Ni(t=7)= SNy (t=0). @
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n=1 to then=2 level. Both transitions occur withk=0.
Such an Auger process is highly efficient for interband re-
laxation between Landau levels due to the equidistant Lan-
dau splitting?®!® The efficiency of the Auger process de-
pends on the cyclotron radius and the density. A theoretical
estimate of the Auger process is given in Ref. 2 in Eg.
and yields a value of =1x 10 ps cm™2 for a magnetic
field of 4.8 T and a mean energy of about 4 meV. This
dependence is shown as a dashed line in Fig. 3.

At excitation densitiesNg,<10" cm~3, the interlevel
relaxation time becomes independent of density. The limit-
o ! ing relaxation time is 95 ps, which is much faster than the
1073 1o _13015 values obtained by cyclotron-resonance experiménts.

Excitation Density [em °] Acoustical-phonon scattering or radiative recombination are
much too slow to explain this fast relaxation time. However,

n=1 to then=0 Landau level in GaAs. Circles: experimental data, the relatively high acceptor concentration in our sample can

obtained from the decay time of the integrated difference betweeffaUS€ efficient elastic impurity scattering, which transfers

the band-to-acceptor luminescence spectra and the fitted spectra gggctrons under energy conservation from thel to t.he .
suming thermal distribution. Dotted line: solution of the rate-N=0 Landau level. There the hot electrons thermalize via

equation model with #=7.5x10'5 pscm 3 and 1B=95 ps.  intraband scattering within our time resolution. The samples
Dashed line: dependence as calculated for the theoretical estimaésed for the cyclotron-resonance experiméhed a doping

for the Auger coefficient with 14=1x 10 ps cm™3. concentration about three orders of magnitude lower than our
sample, which explains why we get a much faster lower limit

for the interlevel relaxation than Allaet al?

In summary, we have for the first time directly traced the
dynamics of free-electron relaxation between Landau levels
on a picosecond time scale. For densities0'* cm ™2, Lan-
dau relaxation occurs via an electron-electron Auger process,
and for low densities via elastic impurity scattering.

Interband Relaxation Time [s]

FIG. 3. Intraband relaxation time for the transition from the

The first term on the right side of E¢B) mainly determines
the depopulation in the regime wherelepends on density,
whereas the second term dominates in the regime whexe
independent of density. The coefficieisandB are deter-
mined by a fit to the experimental data. The dotted line in
Fig. 3 shows the result when the coefficients
1/A=7.5x 10" ps cm 2 and 1B=95 ps are used. We would like to thank K. Rother and H. Klann for tech-
The density-dependent part is caused by an Auger processcal assistance and U. Bockelmann for useful discussions.
via electron-electron scattering: one electron scatters frorithe financial support of the Bundesministerium Rildung
then=1 to then=0 Landau level, the other one from the und Forschung and the DAAD is gratefully acknowledged.
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