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The statistical properties of spectra of a three-dimensional quantum bond percolation system are studied in
the vicinity of the metal-insulator transition. In order to avoid the influence of small clusters, only regions of
the spectra in which the density of states is rather smooth are analyzed. Using the finite-size scaling hypothesis,
the critical quantum probability for bond occupation is found to bepq50.3360.01 while the critical exponent
for the divergence of the localization length is estimated asn51.3560.10. This later figure is consistent with
the one found within the universality class of the standard Anderson model.@S0163-1829~96!50624-7#

The present work is concerned with level statistics in an
Anderson-type quantum percolation model. More specifi-
cally, we consider a single particle in a three-dimensional
lattice with binary distribution of bonds and analyze~nu-
merically! the distributionP(s) of adjacent level spacings
s for bond occupation probabilities close to the critical one
~which marks the metal insulator transition!.

Level statistics in quantum systems and its relation to ran-
dom matrix theories constitutes an important tool for under-
standing the underlying physics.1 In particular, correlations
between energy eigenvalues of a single quantum particle in-
teracting with random impurities in the diffusive regime are
consistent with the predictions of Gaussian matrix
ensembles.2–6Recently, it became clear that in the vicinity of
a metal-insulator transition~provided it exists in such sys-
tems! there is a distinct kind of level statistics.7 In this novel
statistics, the critical exponent for the divergence of the lo-
calization length appears in numerous expressions for the
various correlations.7–10 Hence, it is difficult to perceive a
random matrix theory which adequately describes this criti-
cal statistics, although some progress has been recorded in
this direction.11 One of the clearest indications for the exist-
ence of a different statistics in the neighborhood of the
metal-insulator transition is displayed in the behavior of the
nearest level spacing distributionP(s), which, for large level
spacings, falls off slower than Gaussian.9 This is found to
be the case for the Anderson metal-insulator transition in

three dimensions12,13as well as for the Hall transition in two
dimensions.14

One of the motivations for studying level statistics in a
quantum-percolation model is related to the question of
whether it belongs to the same universality class of the
Anderson model with site disorder.15,16 The answer to this
question is by no means clear, despite the fact that quantum
percolation can be regarded as a special variant of the gen-
eral Anderson model.17 For example, in some quantum per-
colation models, the value of the critical exponentn for the
divergence of the localization length, as can be deduced from
the transmission of the system, is found to be smaller than
that of the Anderson model.18,19 Our analysis suggests that
for a tight-binding model the critical exponent~as can be
deduced from the level statistics! for site disorder and that
for quantum~bond! percolation are nearly identical.

Another motivation~upon which we will not elaborate in
this work! concerns the fractal nature of the wave function
near the critical point. In particular, if the critical quantum
probability for bond occupation~denoted hereafter aspq) is
only slightly higher than the classical one~denoted hereafter
aspc) then the critical wave functions live on a fractal ob-
ject, and the geometrical fractal dimension becomes relevant.

Let us start by introducing the quantum-percolation model
and then explain how the nearest level spacing distribution is
computed. Our calculations are based on a tight-binding
Hamiltonian,
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where ^ i j & denotes nearest neighbors. The hopping matrix
elementst i j are independent random variables which assume
the values 1 or 0 with probabilitiesp andq512p, respec-
tively. The underlying lattice is a three-dimensional cube of
length L with periodic boundary conditions. The missing
bond probabilityq plays the role of disorder strength. For
each realizationk of bond occupation probability,p, the
above Hamiltonian is diagonalized exactly, yielding a se-
quence of eigenvaluesEn

k , n51,2, . . . ,L3. This sequence is
calculated for N different realizations, where
N53000,1400,750,450,300 for the corresponding different
sample sizesL57,9,11,13,15. This corresponds to 106 ei-
genvalues for each sample size.

The average density of states~DOS! for L513 as a func-
tion of p is presented in Fig. 1. The most noticeable feature
is the appearance of a series of sharp peaks in the average
DOS which increase asp decreases. This feature was already
noted in Ref. 20, where the DOS for a quantum percolating
system was calculated using the Sturm sequence method.
The origin of these peaks is the formation of small discon-
nected clusters of sites in the sample. For example, a single
site with no connecting bonds to neighboring sites always
contributes an eigenvalue«50. The probability for such a
site is equal to (12p)6, therefore one expects a contribution
of L3(12p)6 eigenvalues equal to zero to the spectrum. This
is in agreement21 with the observed height of the central peak
in Fig. 1 ~the bin size is 0.072! and with its variation as
function of p. Another prominent feature is the appearance
of a gap in the DOS which depends onp around the central
peak,20 which may be seen in the inset of Fig. 1. A cluster of
two sites connected by a bound has a probability of
p(12p)10 to appear and contributes eigenvalues«561 to
the spectra. Similarly, clusters of three sites contribute
«50,6A2 and clusters of four sites contribute«50,0,6A2
if all the sites are connected among themselves and

«56(36A5)/2 if only three bonds are present. It is inter-
esting to note that gaps seem to develop also around these
peaks.

Here we face the question of how to study a spectrum for
which some of the levels form degenerate clusters. Indeed,
one can apply the various statistical measures of level statis-
tics only if the density of states is smooth. Looking at Fig. 1,
one may concentrate on three such regions centered around
~I! E560.4, ~II ! E560.8, ~III ! E561.2 ~the spectrum for
an oddL with periodic boundary conditions is not symmet-
ric!. In each region a fixed number of levels are taken~15,
31, 57, 95, 145 forL57, 9, 11, 13, 15! and the spectrums
unfolded by the usual procedure, i.e.,xi115xi1si and
si5n(Ei112Ei)/(Ei1 bn/2c112Ei2 bn/2c). In the data pre-
sented heren513 is used, but no significant difference is

FIG. 2. The level spacing distribution forL513. One can see
the transition from a GOE distribution~indicated by the thick full
line! towards a Poisson distribution~indicated by the thick dashed
line! asp decreases.

FIG. 3. The scaling functiong as a function ofp for different
sample sizes for levels aroundE560.4. A clear convergence of all
curves atpq;0.33 can be seen, as well as the expected change in
the size dependence ofg.

FIG. 1. The DOS forL513 as function of energy for different
bond occupation values. The connection between various small
clusters and peaks in the DOS are indicated in the figure. In the
inset, an enlargement of the region aroundE50 is presented.
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seen forn59. Within these guidelines, the distribution of
adjacent level spacings for each region, sample sizeL and
bond probabilityp, is then calculated.

A plot of P(s) as function of the bond occupation prob-
ability for L513 is displayed in Fig. 2. It can be clearly seen
that the expected transition from a Wigner-like behavior for
largep to a Poisson behavior for smallp is manifested. One
should also note that all curves seem to intersect ats;2,
which reminds us of the situation for the Anderson transition
with on-site disorder.7 As has been shown in Ref. 7, a very
convenient way to obtain the mobility edge as well as the
critical exponent of the transitionn is to study the parameter
g(p,L) defined as

g~p,L !5

E
2

`

P~s!ds2e2p

e222e2p , ~2!

which characterizes the transition from Wigner to Poisson.
Denoting by j(p) the localization length, this function is
expected to show a scaling behaviorg(p,L)5 f @L/j(p)#,
which in the vicinity of the critical quantum bond probability
pq is expected to behave as7

g~p,L !5g~pq ,L !1CU ppq 21UL1/n, ~3!

whereC is a constant. In Fig. 3 curves ofg(p,L) for differ-
ent sample sizesL are plotted for levels in the first energy
domain. It is noticed that the curves cross at a single point at
which the order of heights with respect toL is reversed. This
is an indication for the existence of finite-size one-parameter
scaling behavior. A similar situation prevails also in regions
II and III.

Based on finite-size one-parameter scaling analysis, the
procedure for calculating the critical bond probability, as
well as the critical exponent goes as follows. The quantity
g(p,L) is calculated for many pairs (pi ,Li). It is then con-
sidered as a certain scaling functionf (x) of the scaling vari-
ablex5L1/n(p2pq). Forx→` the system is well inside the
diffusive regime and hencef (x)→0. On the other hand, for
x→2` the system is well inside the insulating regime and
hencef (x)→1. Practically, it is useful to shift the variable

x to y(x)5(x2a2b)/(b2a), wherea and b are, respec-
tively, the minimum and maximum values assumed byx.
Evidently, y(x) ranges between21 and 1. Then one ex-
pands f (x) in a series of Tschebicheff polynomials
Tn@y(x)# (n50,1,2,. . . ,K). Minimization of the set of
differencesu f (xi)2g(pi ,Li)u results in the unknownspq ,n
and the expansion coefficients~namely, the scaling function
itself!. In all cases, it is sufficient to cut off the number of
polynomials atK512.

The following results are obtained: for region I
pq50.33560.005 and n51.3260.08, for region II
pq50.3360.005 and n51.3560.10 and for region III
pq50.32560.005 andn51.3560.12. As a measure of the
quality of the fit the numerical data and the fitted scaling
function are plotted in Fig. 4. It can be seen that, as one
might expect,n is the same for all the three regions, while
there is a small shift inpq asE increases. The value ofpq
and its dependence onE is in perfect agreement with previ-
ous numerical studies of quantum percolation systems.19,20

On the other hand,n is not consistent with the different
values of the critical exponent obtained for those systems,
i.e., n50.38 in Ref. 18 andn50.75 in Ref. 19, but is re-
markably close to its value for the on-site disorder Anderson
model22,7 n51.560.1.

Another quantity which is sensitive to the critical expo-
nent n is the behavior of the tail ofP(s) at the transition
point. According to Kravtsov et al.8 ln$2ln@P(s)#%
5(22g)ln(s)1const, whereg512(1/nd). This is not an
accurate algorithm to calculaten since it depends on the
behavior ofP(s) at the tail of the distribution, for which the
statistics is rather poor. It is important to note that in Ref. 7
Shklovskiiet al.predictg51 even in the critical region with
no dependence onm, which is supported by some recent
numerical work on the on-site Anderson model.23 Neverthe-
less, for the quantum-percolation model we obtain
g50.6860.16, which corresponds ton51.0420.34

11.04. A better
measure forg is the number varianceS2(N̄), which should
behave asS2(N̄)}N̄g, at least for moderate values ofN in

FIG. 4. A fit of the numerical data aroundE560.4 to the
scaling function represented by the curve.

FIG. 5. The logarithm of the number variance as a function of
the logarithm of the average number of states for the region around
E560.8. Linear fits were performed for~i! 1.5,N̄,12 and~ii !
20,N̄,45. For 12,N̄,20 a nonmonotonous behavior of the num-
ber variance is seen. This behavior is probably connected to a small
peak in the DOS atE;0.83.
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which an additional linear term recently predicted24 is not
significant.14 The logarithm of the number variance
ln@S2(N̄)# versus ln(N̄) is plotted in Fig. 5. Two different
regions for which a linear behavior is observed can be seen
~i! 1.5,N̄,12 and~ii ! 20,N̄,45. In between, a jump in
S2(N̄) can be seen, which might be associated with some
small cluster peak. A linear fit in~i! gives g50.7460.02
corresponding ton51.2820.09

10.11 and in ~ii ! g50.7660.03 re-
sulting in n51.3920.16

10.20. All the above estimations ofn fall
within the range obtained from the finite-size one-parameter
scaling.

Thus, based on the analysis of various statistical proper-
ties of the quantum-percolation spectra, the critical exponent
in the well-behaved regions of the spectra is
n51.3560.10. This, at least for properties connected to the
energy levels, seems to put the quantum-percolation system

in the same universality class as the usual on-site disorder
Anderson model. The previous studies calculatedn via the
transmission of the system at energies very close toE50. As
can be seen in the inset of Fig. 1 the DOS has a very strong
p dependence in that region. Thus a large part of the depen-
dence of the transmission onp is probably due to the change
in the DOS and not because of some changes in the localiza-
tion properties. Therefore, it will be very interesting to ex-
amine the transmission in regions ofE where the DOS has
only a weak dependence onp.
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