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The statistical properties of spectra of a three-dimensional quantum bond percolation system are studied in
the vicinity of the metal-insulator transition. In order to avoid the influence of small clusters, only regions of
the spectra in which the density of states is rather smooth are analyzed. Using the finite-size scaling hypothesis,
the critical quantum probability for bond occupation is found tephe 0.33+0.01 while the critical exponent
for the divergence of the localization length is estimatedad.35+0.10. This later figure is consistent with
the one found within the universality class of the standard Anderson n&163-18206)50624-7

The present work is concerned with level statistics in arthree dimensiort8*3as well as for the Hall transition in two
Anderson-type quantum percolation model. More specifidimensions?
cally, we consider a single particle in a three-dimensional One of the motivations for studying level statistics in a
lattice with binary distribution of bonds and analygeu-  quantum-percolation model is related to the question of
merically) the distributionP(s) of adjacent level spacings whether it belongs to the same universality class of the
s for bond occupation probabilities close to the critical oneAnderson model with site disord&t1® The answer to this
(which marks the metal insulator transitjon question is by no means clear, despite the fact that quantum

Level statistics in quantum systems and its relation to ranpercolation can be regarded as a special variant of the gen-
dom matrix theories constitutes an important tool for under-eral Anderson modéi’ For example, in some quantum per-
standing the underlying physitsn particular, correlations colation models, the value of the critical exponentor the
between energy eigenvalues of a single quantum particle irdivergence of the localization length, as can be deduced from
teracting with random impurities in the diffusive regime arethe transmission of the system, is found to be smaller than
consistent with the predictions of Gaussian matrixthat of the Anderson modéf:® Our analysis suggests that
ensembled-®Recently, it became clear that in the vicinity of for a tight-binding model the critical exponefas can be
a metal-insulator transitiofprovided it exists in such sys- deduced from the level statistjcfor site disorder and that
tems there is a distinct kind of level statistiédn this novel  for quantum(bond percolation are nearly identical.
statistics, the critical exponent for the divergence of the lo- Another motivation(lupon which we will not elaborate in
calization length appears in numerous expressions for ththis work) concerns the fractal nature of the wave function
various correlationé-° Hence, it is difficult to perceive a near the critical point. In particular, if the critical quantum
random matrix theory which adequately describes this critiprobability for bond occupatiofdenoted hereafter g%,) is
cal statistics, although some progress has been recorded amly slightly higher than the classical of@enoted hereafter
this direction*! One of the clearest indications for the exist- asp,.) then the critical wave functions live on a fractal ob-
ence of a different statistics in the neighborhood of theject, and the geometrical fractal dimension becomes relevant.
metal-insulator transition is displayed in the behavior of the Let us start by introducing the quantum-percolation model
nearest level spacing distributi®?(s), which, for large level and then explain how the nearest level spacing distribution is
spacings, falls off slower than GaussiahThis is found to  computed. Our calculations are based on a tight-binding
be the case for the Anderson metal-insulator transition irHamiltonian,
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FIG. 1. The DOS folL=13 as function of energy for different
bond occupation values. The connection between various small FIG. 2. The level spacing distribution far=13. One can see
clusters and peaks in the DOS are indicated in the figure. In théhe transition from a GOE distributiofindicated by the thick full
inset, an enlargement of the region aroliy O is presented. line) towards a Poisson distributigindicated by the thick dashed
line) asp decreases.

H=2 (tjala;+H.c), (1) e==+(3=5)/2 if only three bonds are present. It is inter-
i esting to note that gaps seem to develop also around these
peaks.

where(ij) denotes nearest neighbors. The hopping matrix Here we face the question of how to study a spectrum for
elementd;; are independent random variables which assumevhich some of the levels form degenerate clusters. Indeed,
the values 1 or 0 with probabilitigs andg=1—p, respec- one can apply the various statistical measures of level statis-
tively. The underlying lattice is a three-dimensional cube oftics only if the density of states is smooth. Looking at Fig. 1,
length L with periodic boundary conditions. The missing one may concentrate on three such regions centered around
bond probabilityq plays the role of disorder strength. For (1) E==+0.4,(ll) E==0.8, (lll ) E= = 1.2 (the spectrum for
each realizatiork of bond occupation probabilityp, the  an oddL with periodic boundary conditions is not symmet-
above Hamiltonian is diagonalized exactly, yielding a se-ric). In each region a fixed number of levels are tak&h,
quence of eigenvalud‘q‘j, n=1,2,...,L% This sequenceis 31, 57, 95, 145 folL,=7, 9, 11, 13, 15and the spectrums
calculated for N different realizations, where unfolded by the usual procedure, i.e;.;=x;+s; and
N=3000,1400,750,450,300 for the corresponding differens;=n(E;.1—Ei)/(Ei|nz+1—Ei—|n)- In the data pre-
sample sized =7,9,11,13,15. This corresponds to®16i-  sented heren=13 is used, but no significant difference is
genvalues for each sample size.

The average density of statd80S) for L=13 as a func-
tion of p is presented in Fig. 1. The most noticeable feature
is the appearance of a series of sharp peaks in the average
DOS which increase gsdecreases. This feature was already 050
noted in Ref. 20, where the DOS for a quantum percolating
system was calculated using the Sturm sequence method.
The origin of these peaks is the formation of small discon-
nected clusters of sites in the sample. For example, a single
site with no connecting bonds to neighboring sites always = 0-30
contributes an eigenvalue=0. The probability for such a
site is equal to (+ p)®, therefore one expects a contribution 0.20
of L3(1—p)® eigenvalues equal to zero to the spectrum. This
is in agreement with the observed height of the central peak
in Fig. 1 (the bin size is 0.072and with its variation as
function of p. Another prominent feature is the appearance

0.40

0.10

of a gap in the DOS which depends praround the central 0.00 \ : \

peak:° which may be seen in the inset of Fig. 1. A cluster of 0.32 0.34 0.36 0.38 040
two sites connected by a bound has a probability of P

p(1-p)*° to appear and contributes eigenvalues+1 to FIG. 3. The scaling functiory as a function ofp for different

the spectra. Similarly, clusters of three sites contributesample sizes for levels aroulic= = 0.4. A clear convergence of all
e=0,=+/2 and clusters of four sites contribute=0,0,+\2  curves atpy~0.33 can be seen, as well as the expected change in
if all the sites are connected among themselves anthe size dependence of
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FIG. 4. A fit of the numerical data around=*0.4 to the
scaling function represented by the curve.

In(N)

FIG. 5. The logarithm of the number variance as a function of
the logarithm of the average number of states for the region around
o o o E=+0.8. Linear fits were performed fdf) 1.5<N<12 and(ii)
seen forn=9. Within these guidelines, the distribution of 50 N<45 For 12 N<20 a nonmonotonous behavior of the num-

adjacent Ievgl' Spagings for each region, sample kiznd  per variance is seen. This behavior is probably connected to a small
bond probabilityp, is then calculated. peak in the DOS aE~0.83.

A plot of P(s) as function of the bond occupation prob-
ability for L=13 is displayed in Fig. 2. It can be clearly seenx to y(x)=(x—a—b)/(b—a), wherea andb are, respec-
that the expected transition from a Wigner-like behavior fortjyely, the minimum and maximum values assumedxby
|argep to a Poisson behavior for Sméﬂlis manifested. One Evidenﬂy, y(X) ranges betweenr-1 and 1. Then one ex-

should also note that all curves seem to intersect~a®, pands f(x) in a series of Tschebicheff po|ynomia|s
which reminds us of the situation for the Anderson transitionT [y(x)] (n=0,1,2,...,K). Minimization of the set of

with on-site disordef.As has been shown in Ref. 7, a very differencesf (x;) — y(p;,L;)| results in the unknownpy, v

convenient way to obtain the mobility edge as well as theang the expansion coefficientsamely, the scaling function
critical exponent of the transition is to study the parameter jtself). In all cases, it is sufficient to cut off the number of
y(p,L) defined as polynomials atk = 12.

The following results are obtained: for region |
Pq=0.335£0.005 and »=1.32-0.08, for region I
Pq=0.33£0.005 and »=1.35-0.10 and for region IlI
Pq=0.325£0.005 andv=1.35+0.12. As a measure of the

] ) » i ] quality of the fit the numerical data and the fitted scaling
which characterizes the transition from Wigner to Poissonfynction are plotted in Fig. 4. It can be seen that, as one

Denoting by £(p) the localization length, this function is might expect,» is the same for all the three regions, while
expected to show a scaling behavig(p,L)=f[L/&(P)],  there is a small shift ip, asE increases. The value qf,

f: P(s)ds—e ™
2

YL = —gm e

which in the vicinity of the critical quantum bond probability
Pq is expected to behave as

B _ 1‘ Ll/V,
Pq

¥(p,L)=7v(pq,L)+C )

whereC is a constant. In Fig. 3 curves odp,L) for differ-

and its dependence dais in perfect agreement with previ-
ous numerical studies of quantum percolation systE¥As.
On the other handy is not consistent with the different
values of the critical exponent obtained for those systems,
i.e.,, v=0.38 in Ref. 18 andv=0.75 in Ref. 19, but is re-
markably close to its value for the on-site disorder Anderson

ent sample sizek are plotted for levels in the first energy modef?’ v=15:01. o -

domain. It is noticed that the curves cross at a single point at Another quantity which is sensitive to the critical expo-

which the order of heights with respectltds reversed. This Nentv is the behavior of the tail oP(s) e the transition

is an indication for the existence of finite-size one-parametePOiNt. ~ According to Kravtsov etal” In{—In[P(s)]}

scaling behavior. A similar situation prevails also in regions= (2~ 7)In(s)+const, wherey=1-(1/vd). This is not an

Il and Il accurate algorithm to calculate since it depends on the
Based on finite-size one-parameter scaling analysis, th@ehavior ofP(s) at the tail of the distribution, for which the

procedure for calculating the critical bond probability, asStatistics is rather poor. It is important to note that in Ref. 7

well as the critical exponent goes as follows. The quantityShklovskiiet al. predicty=1 even in the critical region with

y(p,L) is calculated for many pairg(,L;). It is then con- NO dependence op, which is supported by some recent
sidered as a certain scaling functibfx) of the scaling vari- humerical work on the on-site Anderson moéfeNeverthe-

ablex=LY"(p—p,). Forx—o the system is well inside the less, for the q.uantum-percolation mooleol4 we obtain
diffusive regime and henci(x)—0. On the other hand, for ¥=0.68=0.16, which corresponds te=1.04"573,. A better

x— —oo the system is well inside the insulating regime andmeasure fory is the number variancE?(N), which should
hencef(x)— 1. Practically, it is useful to shift the variable behave a&?(N)«N?, at least for moderate values Nfin
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which an additional linear term recently predicttiés not  in the same universality class as the usual on-site disorder
significant** The logarithm of the number variance Anderson model. The previous studies calculateda the
In[24(N)] versus InK) is plotted in Fig. 5. Two different transmission of the system at energies very cloge=t®. As
regions for which a linear behavior is observed can be seegan be seen in the inset of Fig. 1 the DOS has a very strong
(i) 1.5<N<12 and(ii) 20<N<45. In between, a jump in p dependence in that region. Thus a large part of the depen-
32(N) can be seen, which might be associated with somelence of the transmission gnis probably due to the change
small cluster peak. A linear fit irti) gives y=0.74+0.02 in the DOS and not because of some changes in the localiza-
corresponding tor=1.28"53 and in (i) y=0.76+0.03 re-  tion properties. Therefore, it will be very interesting to ex-

sulting in v=1.39"342. All the above estimations of fall amine the transmission in regions Bfwhere the DOS has
within the range obtained from the finite-size one-parameteonly a weak dependence qn
scaling.

Thus, based on the analysis of various statistical proper- We are grateful to D. E. Khmelnitskii and B. Shapiro for
ties of the quantum-percolation spectra, the critical exponengseful discussions. R.B. would like to thank the U.S.-Israel
in the well-behaved regions of the spectra isBinational Science Foundation for financial support. Y.A.

v=1.35+0.10. This, at least for properties connected to thethanks the Israeli Academy of Science and Humanities for
energy levels, seems to put the quantum-percolation systefmancial support.

*Also at Department of Physics, Ben-Gurion University, Beer-1?S. N. Evangelou, Phys. Rev. 49, 16 805(1994).

Sheva, Israel. 13E. Hofstetter and M. Schreiber, Phys. Rev. L8, 3137(1994).
M. L. Mehta, Random MatricesAcademic Press, San Diego, 14\, Feingold, Y. Avishai, and R. Berkovits, Phys. Rev5B 8400
1991), and references therein. (1995.

(1965 [Sov. Phys. JETR1, 940(1965]. (1983 ’ ’ ’
3 . . .
B. L. Altshuler and B. I. Shklovskii, Zh. Eksp. Teor. Figl, 220 165 Shapiro, Phys. Rev. Let8, 823 (1982,

(1986 [Sov. Phys. JETB4, 127 (1986)]. 17 ) ]
For a recent review, see A. Mookerjee, I. Dasgupta, and T. Saha,

4U. Sivan and Y. Imry, Phys. Rev. B5, 6074(1987). )
5S. N. Evangelou and E. N. Economou, Phys. Rev. l68t.361 Int. J. Mod. Phys9, 2989(1995, and references therein.

(1992. 18], Chang, Z. Lev, A. B. Harris, J. Adler, and A. Aharony, Phys.
F. M. Izrailev, Phys. Repl29, 299 (1990. Rev. Lett.74, 2094(1995.
7B. 1. Shklovskii, B. Shapiro, B. R. Sears, P. Lambrianides, and H°Y. Avishai and J. M. Luck, Phys. Rev. B5, 1074(1992.

B. Shore, Phys. Rev. B7, 11 487(1993. 20C. M. Soukoulis, Q. Li, and G. S. Grest, Phys. Rev4B 7724
8V. E. Kravtsov, I. V. Lerner, B. L. Altshuler, and A. G. Aronov, (1992.
. Phys. Rev. Lett72, 888 (1994. _ 210f course, one must take into account the fact that the central
A. G. Arqnov, V. E. Kravtsov, and I. V. Lerner, Pis'ma Zh. Eksp. peak has contributions also from other clusters.

Teor. Fiz.59, 40 (1994 [JETP Lett.59, 39 (1994]. 22B. Kramer and A. MacKinnon, Rep. Prog. Ph$s, 1469(1993.

10a, G. Aronov, V. E. Kravtsov, and 1. V. Lerner, Phys. Rev. Lett.
74, 1174(1995.

M. Moshe, H. Neuberger, and B. Shapiro, Phys. Rev. LZ8}.
1497 (1994.

23|, Kh. Zherekeshev and B. Kramer, Jpn. J. Appl. P184.4361
(1995.
24V. E. Kravtsov(unpublisheal



