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The Green’s function for a hole moving in an antiferromagnet is derived analytically in the long-wavelength
limit. We find that the infrared divergence is eliminated in two and higher dimensions so that the quasiparticle
weight is finite. Our results also suggest that the hole motion is polaronic in nature with a bandwidth propor-
tional to t2/J exp@2c(t/J)2# (c is a constant! for J/t*0.5. The connection of the long-wavelength approxima-
tion to the first-order approximation in the cumulant expansion is also clarified.@S0163-1829~96!50522-9#

It has been recognized for some time1 that understanding
the motion of a hole in a two-dimensional~2D! antiferro-
magnet~AF! would be an important first step towards a com-
plete understanding of the effect of doping on the CuO2

planes of high-Tc cuprates, which are known to show anti-
ferromagnetism in the undoped case. The AF with one hole
is also a highly nontrivial correlated electron system, and is
therefore of fundamental interest from a purely theoretical
point of view. There have already been many studies of the
one-hole problem including those based on exact diagonal-
izations ~ED! of small clusters,1–5 the self-consistent Born
approximation~SCBA!,6–10 the restricted basis method,11 the
Bogoliubov–de Gennes~BdG! equation,12 and classical
descriptions13,14 ~see Ref. 1 for further references!.

The few analytical results which do exist have proved
very valuable. However, most of the previous studies have
involved numerical calculations~even the studies using the
SCBA have to solve Dyson’s equation numerically for small
clusters!. This has left a few points which still need clarifi-
cation. We mention two of these. First, in the smallJ/t limit
the SCBA yielded a power law dependence for the hole
bandwidth@;t(J/t)a#.7 This is consistent with the results of
ED’s on small clusters and gives support to the ‘‘string’’
picture.1 Numerical calculations based on the BdG
equation12 and another variational approach4 have suggested
that the motion of the hole is polaronic in nature in a wide
parameter region. However, both of the approaches use a
Born-Oppenheimer type approximation, which explicitly
breaks translational invariance, and it is not clear how much
this may have affected the conclusions. Secondly, although
numerical calculations on clusters show that the hole has a
finite quasiparticle weight, there is still some uncertainty as
to whether the quasiparticle weight vanishes or not in the
thermodynamic limit.15

Here, by treating spin waves in the long-wavelength~con-
tinuum! limit, we derive an analytical expression for the hole
Green’s function for the hole momentum close to the band
minimum (p/2,p/2). As we work directly in momentum
space, translational invariance isnot broken. This allows us
to confirm explicitly the polaronic behavior of the hole. The
analytical expression we obtain for the hole Green’s function
can also be used to directly examine the hole quasiparticle
weight. Our expression for the Green’s function shows that
the infrared catastrophe, which leads to the vanishing of the
quasiparticle weight in the 1D case, is eliminated in 2D~and
higher dimensions!, so that there is a finite quasiparticle
weight in 2D. This is consistent with many other studies. We
also show that our approach is equivalent to a cumulant ex-
pansion and is suitable for large and intermediateJ/t, as for
the usual polaronic problem. Our approach is therefore
complementary to the SCBA, which is better in the small
J/t limit.

Our study is based on thet-J model. Treating the spin
waves as the collective excitations of the Heisenberg antifer-
romagnet, the following effective Hamiltonian for thet-J
model has been obtained by previous authors:6,7

H̃15H01V, H05(
q

vqbq
†bq , ~1!

V5
tz

AN(
kq

hk2q
† hk@~uqgk2q1vqgk!bq

†

1~uqgk1vqgk2q!b2q#.

Herehk andbq are the annihilation operators of the hole and
the spin wave,z is the coordination number (z54 for a 2D
square lattice!, gq5(de

iq•d/z with d the unit vectors to
nearest neighbors, andN is the number of the lattice
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sites. The spin wave excitation spectrumvq5Jzsnq
with nq5A12gq

2 and s51/2. The Bogoliubov transfor-
mation coefficients areuq5@(11nq)/(2nq)#

1/2 and vq
52sgn(gq)(uq

221)1/2. Although ~1! is not an exact map-
ping of the t-J model, very good agreement between the
results obtained from the effective Hamiltonian and those
from the original t-J model have been demonstrated for
small clusters by many authors.8–10We take the Hamiltonian
~1! as our starting point.

The hole Green’s function is defined as

G~k, t̄ !52 i ^Thk
H~ t̄ !hk

H†~0!&, ~2!

where t̄ denotes time throughout the paper.hk
H( t̄ ) is the

Heisenberg operator with respect toH. The thermal average
^•••& is for the spin subsystem. Since there is no hole for the
spin subsystem, we can write

G~k, t̄ !52 iu~ t̄ !^TeiH0t̄hke
2 iHot̄e2 i*0

t̄ d t̄1V~ t̄1!hk
†&,

[2 iu~ t̄ ! (
m50

`

Gm~k, t̄ !, ~3!

where

Gm~k, t̄ !5
i 2m

~2m!! E0t̄d t̄1 •••E
0

t̄
d t̄2m

3^Thk~ t̄ !V~ t̄1!•••V~ t̄2m!hk
†&

5
~ i tz!2m

~2m!!Nm (
k1q1 , . . . ,k2mq2m

E
0

t̄
d t̄1 •••E

0

t̄
d t̄2m

3^TMk2m ,q2m
~ t̄2m!•••Mk1 ,q1

~ t̄1!&

3^0uThk~ t̄ !rk2m ,q2m
~ t̄2m!•••rk1 ,q1~ t̄1!

3hk
†~0!u0&. ~4!

Hererk,q( t̄ )5hk2q
† ( t̄ )hk( t̄ ), and

Mk,q~ t̄ !5~uqgk2q1vqgk!bq
†~ t̄ !

1~uqgk1vqgk2q!b2q~ t̄ !. ~5!

Formally we are treatingV as a perturbation. The operators
O( t̄ ) are now defined in an interaction picture with
O( t̄ )5 exp(iH0t̄ )Oexp(2iH0t̄ ).

The hole part in ~4!, ^0uhk( t̄ )rk2m ,q2m
( t̄2m) •••

rk1 ,q1( t̄1)hk
†(0)u0&, equals ^0uhk( t̄ )hk

†(0)u0& when

ki5k2( l51
i21ql , and is zero otherwise. We can therefore

trace out the hole part and write~4! as

Gm~k, t̄ !5
~ i tz!2m

Nm~2m!!
~2m!! E

0

t̄
d t̄2m •••E

0

t̄3
dt̄2E

0

t̄2
dt̄1

3 (
q1 . . . q2m

^Mk2(
i51
2m21qi ,q2m

~ t̄2m!•••Mk2q1 ,q2

3~ t̄2!Mk,q1
~ t̄1!&. ~6!

In general, it is impossible to obtain an analytical expression
for ~6! for large m since the momentumki in Mki ,qi

( t̄ i)

varies with timet̄ i , reflecting the ‘‘history’’ of the distortion
of the spin background induced by the hole.

Based on Wick’s theorem, the expectation value@see~6!#,
^Mk2m ,q2m

( t̄2m)•••Mk,q1
( t̄1)&, is composed of contractions

like

Bkikjqiqj
~ t̄ i , t̄ j !5^Mki ,qi

~ t̄ i !Mkj ,qj
~ t̄ j !&

5Ckikjqiqj
dqi ,2qj

@^bqi
~ t̄ i !bqi

† ~ t̄ j !&

1^bqi
† ~ t̄ i !bqi

~ t̄ j !&#, ~7!

where

Ckikjqiqj
5~uqigki

1vqigki1qi
!~uqigkj2qi

1vqigkj
!. ~8!

We find that

Ckikjqiqj
5

1

8nqi
@~qixsinkx1qiysinky!

21O~q3,q2cos2k!#,

~9!

for k near the band minimumk0 and for small momentum
transfers $qi%. The important feature of Eq.~9! is that
Ckikjqiqj

does not depend on the exact value of the hole mo-

menta,ki andkj , but only on the momentum transferqi and
the initial momentumk. This result requires only that
gq511O(q2) for small q and, for k5k01(dkx ,dky),
gk5(dkx1dky)1O(dk3). We can then formally rewrite
Gm(k, t̄ ) in ~6! as

Gm~k, t̄ !5
~ i tz!2m

~2m!!Nm (
q1 ••• q2m

E
0

t̄
d t̄1 •••E

0

t̄
d t̄2m

3^TM̄k,q2m
~ t̄2m!•••M̄ k,q1

~ t̄1!&, ~10!

where

M̄ k,q~ t̄ !5
1

A8nq
uqxsinkx1qysinkyu@bq~ t̄ !1b2q

† ~ t̄ !#. ~11!

Using ~3!, we have

G~k, t̄ !52 iu~ t̄ !^Te2 i tz*0
t̄ d t̄ 1(q M̄k,q~ t̄1!& ~12!

and hence16

G~k, t̄ !52 iu~ t̄ !e2 i ek t̄2fk~ t̄!, ~13!

with

ek52
t2

J

1

N(
q

qx
2sin2kx1qy

2sin2ky
nq
2 ,

fk~ t̄ !52
1

2 S tJD
2 1

N(
q

qx
2sin2kx1qy

2sin2ky
nq
3

3@~e2 ivqt̄21!~Nq11!1~eivqt̄21!Nq#. ~14!

Here we will only discuss properties of the hole at zero
temperature. AtT50, Nq→0. In 1D, after performing the
sum ~integration for an infinite system! over q in ~14!,
we find that the function fk( t̄ )uk5p/2; ln(11ij t̃ ),
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wheret̃5 t̄Jzsand the momentum cutoffj;O(1). Wehave
approximated the spin spectrum by linear dispersion. The
logarithmic divergence at large times leads to the so-called
orthogonality catastrophe. The corresponding spectral
function A(k0 ,v); u(v2ek0)(v2ek0)

g21, with g

5(t/J)2/2p, and there is no quasiparticle behavior in this
case. In 2D, however, we obtain thatfk0

( t̄ )

; i t̃21(e2 i j t̃ 21)2j. For larget̄ ~or t̃ ), since the first term
is irrelevant, there is no logarithmic term. The constant term
left in fk0

( t̄ ) at the larget̄ limit contributes a finite quasi-

particle weight and the spectral functionA(k,v) is then of
the form

A~k,v!52pZkd~v2ek!1Ainc~k,v!, ~15!

where the quasiparticle weightZk5exp@2ck(t/J)
2# (ck are

constants!. This exponential factor is reminiscent of the
Huang-Rhys factor17,18 in the usual electron-phonon prob-
lem, indicating polaronic behavior. This Huang-Rhys factor
is in agreement with that obtained using the BdG equation.12

Using ~13! and linear dispersion as the spin wave spec-
trum, we obtain that in two dimensions the hole spectral
function atk0 is given by

A~k0 ,v!52pZk0d~v2ek0!

1ReE
0

`

dt̄ei ~v2ek0
! t̄Zk0@e

ia~e2 i jc t̄21!/ t̄21#,

~16!

where c5Jzs and a5(t/J)2/(4pc). The second term in
~16!, i.e., the incoherent part, is well behaved.A(k0 ,v) is
shown in Fig. 1. The incoherent part is almost constant over
a broad energy region. In the results of very small cluster
calculations ~both exact and SCBA!,1,21 many secondary
peaks inA(k0 ,v) were found above the lowest quasiparticle
one. These secondary peaks were attributed to ‘‘string’’ reso-
nances. However, the cluster calculations also show that,
when the size of the system increases, these peaks become
less pronounced. Recently, Leung and Gooding3 found in
exact diagonalizations that the secondary peaks which are
well defined for a 16-site lattice disappear in a 32-site system
and that the secondary peaks are a finite size effect. Our
results are consistent with this suggestion. If the secondary
peaks were smeared out the spectral function obtained from

the small-cluster calculations would have the same broad
feature as that shown in Fig. 1.

We note that the hole Green’s function~13! has the same
form as that of the first-order approximation in the cumulant
expansion. In fact, in the cumulant expansion17

G~k, t̄ !52 iu~ t̄ !expH (
n51

`

Fn~k, t̄ !J , ~17!

where F1(k, t̄ )5G1(k, t̄ ), F2(k, t̄ )5G2(k, t̄ )2
1
2!F1

2 ,
F3(k, t̄ )5G3(k, t̄ )2F1F22

1
3!F1

3 , . . . . HereGi is de-
fined in ~6!. The first order term is given by

F1~k, t̄ !5~ tz!2(
q

~uqgk2q1vqgk!
2

vq
$ i t̄1@~e2 ivqt̄21!

3~Nq11!1~eivqt̄21!Nq#/vq%. ~18!

Since in the long-wavelength limit the spin waves are uncor-
related for the hole at the band minimum,Fi(k, t̄ )50 for
i>2 andF1(k, t̄ )52 i ekt̄2fk( t̄ ). So the result of the first-
order approximation in the cumulant expansion is exact in
the long-wavelength limit for the hole momemtumk5k0 .
For the usual polaron problem,19,20 numerical calculations
have indicated that the cumulant expansion converges rap-
idly for weak and intermediate couplings.20 But quite why
the resummation into the exponential like the cumulant ex-
pansion is a proper choice for the problem has not been
understood clearly. Here for the spin polaron problem, we
have established a connection between the first order ap-
proximation in the cumulant expansion and the long-
wavelength approximation~LWA ! for the boson excitations.

The LWA gives a hole energy proportional tot2/J ~14!.
This is just the first term in an expansion int/J. We expect
that the higher order terms would contribute the usual po-
laron ~band-narrowing! effect, which is described by the
Huang-Rhys factor~the quasiparticle weightZk). The po-
laron bandwidth,W, would then scale as22

W/t5a~ t/J! e2c~ t/J!2, ~19!

with a and c constants. We can justify this expression, at
least for small t/J, using Brillouin-Wigner perturbation
theory ~the usual Rayleigh-Schrodinger expansion is diver-
gent!. Since the contribution of the second-order vertex cor-
rection in the Brillouin-Wigner expansion vanishes and that
of the third-order vertex is small,8 the lowest order diagrams
are given by those of the SCBA. The hole energy is then
given by6–10

Ek5(
q

~ tz!2~uqgk2q1vqgk!
2

Ek2vq2S~k2q,Ek2vq!
, ~20!

where S(k,v) is the self-energy of the hole and
Ek5S(k,Ek) for a self-consistent solution. We expand

S~k2q,Ek2vq!5Ek2q1
]S~k2q,v!

]v U
v5Ek2q

3~Ek2vq2Ek2q!1O~q2!, ~21!

for smallq and, using the LWA, we obtain

FIG. 1. The hole spectral functionA(k0 ,v) as a function of
v. We takej5p andJ/t51.0. v is in unit of Jzs.
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Ek5(
q

~ tz!2
~uqgk2q1vqgk!

2

Ek2vq2Ek2q
Zk2q , ~22!

whereZk2q5(12 ]S(k2q,v)/]vuv5Ek2q
)21. From ~14!,

we haveZk2q5Zk1O(q2) neark5k0 , and Eq.~22! reduces
to Ek5Zkek in LWA @note thatEk2Ek2q5O(q2) near
k5k0]. This is the result we expected and justifies in part the
assumption that the bandwidth scales as given in~19!.

To see how well the universal functional~19! can repre-
sent the hole bandwidth, we compare it with numerical re-
sults of other studies. We show various estimates for the hole
bandwidth in Fig. 2. The dashed-dotted line and ‘‘* ’’ corre-

spond to results obtained using the variational approach by
Sachdev23 and ED on clusters of 20 sites by Poilblancet al.2

The variational approach is reliable in the largeJ/t case,
while most ED’s are only available for smallJ/t. For com-
parison, the results of SCBA~open circles! are also shown in
Fig. 1. We choosea52.8 andc50.5 for the functional de-
pendence to fit results of other studies. The functional depen-
dence is shown by the solid curve in Fig. 2. It is close to the
variational results for largeJ/t and to the ED results for
smallJ/t, especiallyJ/t>0.5. For smallJ/t, a power law fit
to the functional dependence givesb1d(J/t)0.667 ~the
dashed curve!. The coefficientsb and d are different from
those obtained from the numerical calculations.2,3,1The form
~19! is thus only qualitatively correct in the smallJ/t limit.
In the region ofJ/t between 1.0 and 2.0, the functional de-
pendence describes a smooth crossover fromt/J behavior in
the J/t limit to roughly J/t behavior in the smallJ/t limit.

In conclusion, we have derived an analytical expression
for the Green’s function of the hole moving in an antiferro-
magnet near the band mimimum in the long-wavelength
limit. The Green’s function clearly indicates that the infrared
divergence is eliminated in two dimensions so that the qua-
siparticle weight is finite. It also suggests that the hole mo-
tion has a polaronic nature for intermediate and largeJ/t.
We have shown that the cumulant expansion is a good
choice for studying the hole motion in the weak and inter-
mediate coupling cases, with the first-order approximation
equivalent to the long-wavelength approximation at the band
minimum of the hole. This should be complementary to the
self-consistent Born approximation which is better for small
J/t limit.
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