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Analytical results for a hole in an antiferromagnet
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The Green’s function for a hole moving in an antiferromagnet is derived analytically in the long-wavelength
limit. We find that the infrared divergence is eliminated in two and higher dimensions so that the quasiparticle
weight is finite. Our results also suggest that the hole motion is polaronic in nature with a bandwidth propor-
tional tot?/J exd —c(t/J)?] (c is a constantfor J/t=0.5. The connection of the long-wavelength approxima-
tion to the first-order approximation in the cumulant expansion is also clarjf#.63-182606)50522-9

It has been recognized for some tihtbat understanding Here, by treating spin waves in the long-wavelengitn-
the motion of a hole in a two-dimension&D) antiferro-  tinuum) limit, we derive an analytical expression for the hole
magnet{AF) would be an important first step towards a com-Green’s function for the hole momentum close to the band
plete understanding of the effect of doping on the Guo Minimum (w/2,7/2). As we work directly in momentum
planes of highF, cuprates, which are known to show anti- space, translational invariancerist broken. This allows us

ferromagnetism in the undoped case. The AF with one holé0 con_firm epricitI_y the polarc_)nic behavior of the hole. The
‘ . analytical expression we obtain for the hole Green’s function

s also a highly nontrivial gorrelated electron system, anq '%an also be used to directly examine the hole quasiparticle
therefore of fundamental interest from a purely theoretica eight. Our expression for the Green's function shows that
point of view. Therg havg already been many stud|e§ of th e infrared catastrophe, which leads to the vanishing of the
.one.-hole problem including ‘h‘};‘e based on e.xact diagona Juasiparticle weight in the 1D case, is eliminated in(2Rd
|zat|ons_(Ep) of smallegllgsteré, the self-cqnmstergHBorn higher dimensions so that there is a finite quasiparticle
g%pgmf\?o&(escglaghe iézg)reztrf;?ignqgsgngeE:Tasst?cZI weight in 2D. This is consistent with many other studies. We
9 13 q ! also show that our approach is equivalent to a cumulant ex-

description§®4 (see Ref. 1 for further referendes . o .
Thep few ana(llytical results which do exis;j have provedphansmn alnd 'T suitable fobrllarge and |ntermedr:]s(te af] forf
the usual polaronic problem. Our approach is therefore
%omplementary to the SCBA, which is better in the small

involved numerical calculationgven the studies using the 3/t limit

SCBA have to solve Dyson’s equation numerically for small Our study is based on thed model. Treating the spin

clusters. This has left a few points which still need clarifi- waves as the collective excitations of the Heisenberg antifer-

cation. We mention two of these. First, in the snil limit romaanet. the following effective Hamiltonian for theJ
the SCBA yielded a power law dependence for the hole gnet, 9

bandwidth[ ~t(J/t)¢].” This is consistent with the results of model has been obtained by previous autfidrs:

ED’s on small clusters and gives support to the “string” ~ .

picturel Numerical calculations based on the BdG Hi=Ho+V, Ho=2 weBlBq. (1)
equatiort? and another variational approddave suggested a

that the motion of the hole is polaronic in nature in a wide tz

parameter region. However, both of .the approaches_u_se a V= _2 hl_qhk[(uqvk—q+ quk)gg
Born-Oppenheimer type approximation, which explicitly VN*a

breaks translational invariance, and it is not clear how much

this may have affected the conclusions. Secondly, although +(Ug Vit vq¥i-g) B-ql-

numerical calculations on clusters show that the hole has Bereh, and 3, are the annihilation operators of the hole and
finite quasiparticle weight, there is still some uncertainty aghe spin wavez is the coordination numbez& 4 for a 2D
to whether the quasiparticle weight vanishes or not in thesquare latticg yq=25e'q'5/z with & the unit vectors to
thermodynamic limit® nearest neighbors, antl is the number of the lattice
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sites. The spin wave excitation spectrum,=Jzsv,  varies with timet;, reflecting the “history” of the distortion
with vq=+1-3 and s=1/2. The Bogoliubov transfor- of the spin background induced by the hole.

mation coefficients areug=[(1+ v4)/(2vy)]1*? and v, Based on Wick's theorem, the expectation véllsee(6)],

= —sgn(yg) (u3—1)"2 Although (1) is not an exact map- (M, q,,(t2m) - - -Mygq,(t1)), is composed of contractions
ping of thet-J model, very good agreement between thelike

results obtained from the effective Hamiltonian and those

from the originalt-J model have been demonstrated for Bioiaq; (1 +1) =My ()M g, (1))
small clusters by many authd?s'° We take the Hamiltonian B — . —
(1) as our starting point. _Ckiquiqj 5% qu[wqi(ti)ﬁqi(ti»
The hole Green’s function is defined as —  —
- _ +(BL (1) Bq (t))], (7)
G(k,t )=—i(Th(t )hF1(0)), @ Lhere
wheret denotes time throughout the papét!(t) is the
Heisenberg operator with respectiio The thermal average Ckik,-qiq,-:(uqi Y tug, 7ki+qi)(“qi7qui+qu7kj)' ®
(- ) is for the spin subsystem. Since there is no hole for thgya find that
spin subsystem, we can write
_ - = 1 . :
G(KD) = —i 6(t )(Te oth, e Hop1/6duV( Wh), Chkqa,= STq[(q‘XSIrkX+ diySinky)?+0(g*,q%cosk) ],
w 9
=—if(t) Z Gm(k,t_), (3) for k near the band minimurk, and for small momentum
m=0 transfers{q;}. The important feature of Eq(9) is that
where Ckiquiqj does not depend on the exact value of the hole mo-
o _ mentak; andk;, but only on the momentum transfer and
—_ ! t— t— the initial momentumk. This result requires only that
Gm(ka )= ] dtl"' dt2m _ 2 _
(2m)! Jq 0 Yq=1+0(q%) for small g and, for k=ko+(k,dk,),
S _ Y= (K + 5ky)+0(5k3). We can then formally rewrite
X(Th(t)V(ty) - - V(tzmhy) Gy(kit) in (6) as
(2™ < [ [ (itz)?m g
= dt;--- | dt I P it .-+ | dt..
(2m)IN™ q,, komdzm /0 ! o " Gn(kit) (2m)!IN™g, --E-qu Odt1 fodtzm
X{TMy, g, (tam) - - My q,(t1)) X<TM_I<,q2m(Em)' . M_k,ql(t_l»i (10)
X(O[Th(t )pi, q, (tam) - - - Pk g (1) where
xhi(0)[0). @ 1 A
— R — My o(t )= —=|q,sink,+ q,sink t)y+BL,(t)]. (11
Herepk,q(t ):hl,q(t )hk(t ), and k,q( ) \/8—1/q|qx X qy y|[:8q( ) ,B q( )] ( )
Mia(t)=(Ug¥-q* vard BY(T) Using (3), we have
+(UgVtvgYi-g)B-q(t). 5 Gkt )= _ie(t_)<Te*ithédt_12qu.q<Tl)> (12)

Formally we are treatiny as a perturbation. The operators gnd henct

O(t) are now_defined in_an interaction picture with o L o

O(t )= exp(Hot )Oexp(=iHgt). - G(k,t )=—if(t )e 'tV (13
The hole part in (4), (O[h(t)py, g, (tom)

— with
Pi,.a,(t)NL(0)I0),  equals (O]hy(t )h(0)[0)  when
ki=k—=|_1q,, and is zero otherwise. We can therefore t2 1. qZsintk,+qZsirtk,
trace out the hole part and writd) as &= 3 NE 2 )
q Vq
— itz)2m T— o — [t — . .
G(kit )=(m—)(2m)!ftdt2m~--Jt3dt2 24t _1(t|21( oZsintk,+glsirk,
N™(2m)! 0 0 0 b(t)=—==] =2 3
21J) N4 vy
qu _Zqzm (My_s2m-1q o tzm) Mg, 0, X[(e 194 1)(Ng+1)+ (e s 1)Ng]. (14)
X(t_z)Mk,ql(t_l))- 6) Here we will only discuss properties of the hole at zero

temperature. AfT=0, Ny—0. In 1D, after performing the
In general, it is impossible to obtain an analytical expressiorsum (integration for an infinite systemover q in (14),
for (6) for large m since the momentunk; in My o(t) we find that the function ¢(t ke mo~IN(A+iEL),
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3 the small-cluster calculations would have the same broad
feature as that shown in Fig. 1.
We note that the hole Green’s functi¢h3) has the same

5 2 form as that of the first-order approximation in the cumulant
. expansion. In fact, in the cumulant expangfon
=

! G(k,t)= —ia(t_)exp{ > Fn(k,t_)}, (17)

n=1
0 ————— where Fi(kt)=Gi(kt), Fa(kt)=Ga(kt)=4F7,
2 a0 1 2 3 Fa(k,t )=Gs(k,t )—F,;F,—4F3, ... . HereG; is de-
w fined in (6). The first order term is given by
FIG. 1. The hole spectral functioA(ky,w) as a function of (u n )2 .
o. We takeé=7 andJ/t=1.0.  is in unit of Jzs Fi(k,t)=(tz)2>, M{iﬁ_[(e—iwqt_l)
q Wq

wheret=tJzsand the momentum cutoff~O(1). Wehave o

approximated the spin spectrum by linear dispersion. The X(Ng+1)+(e"“d=1)Ng]/ wg}. (18)
logarithmic divergence at large times leads to the so-callednce in the long-wavelength limit the spin waves are uncor-
ortho_gonality catastrophe. The correspi)nding spectralajated for the hole at the band minimui,(k,t )=0 for
function = A(ko, @)~ Bo—e)(0—€ )P With g =2 andF,(k,t )= —iet— Hy(t ). So the result of the first-
=(t/3)/2m, and there is no quasiparticle behavior in thisorder approximation in the cumulant expansion is exact in
case. In 2D, however, we obtain thatp(t) the long-wavelength limit for the hole momemtuke= K.
T Y(e €'~ 1)— ¢ For larget (orT ), since the first term FOr the usual polaron problett?° numerical calculations

is irrelevant, there is no logarithmic term. The constant ternf!@Ve indicated that the cumulant eXPangiO” CONVerges rap-
left in ¢ (t) at the larget limit contributes a finite quasi- idly for weak and intermediate couplingSBut quite why

ficl ioht and th tral functicx(k is th ¢ the resummation into the exponential like the cumulant ex-
fha; :%remwelg and the spectral functiét(k, ) is then o pansion is a proper choice for the problem has not been

understood clearly. Here for the spin polaron problem, we
_ have established a connection between the first order ap-
Alk,w) =27Z 5w =€) + Ak, @), (19 proximation in the cumulant expansion and the long-
where the quasiparticle weightt, = exf —c(t/J)?] (c, are  Wavelength approximatioLWA) for the boson excitations.
constants This exponential factor is reminiscent of the The LWA gives a hole energy proportional t&/J (14).
Huang_RhyS factér18in the usual e|ectr0n_phonon prob_ This is jUSt the first term in an expansionti/n]. We expect
lem, indicating polaronic behavior. This Huang-Rhys factorthat the higher order terms would contribute the usual po-
is in agreement with that obtained using the BdG equdfion. laron (band-narrowiny effect, which is described by the
Using (13) and linear dispersion as the spin wave specHuang-Rhys factothe quasiparticle weighZy). The po-
trum, we obtain that in two dimensions the hole spectralaron bandwidthW, would then scale 4%
function atk, is given by

Wit=a(t/J) e ctd?) (19

A(ko’w)zzwzkoa(w_eko) with a and ¢ constants. We can justify this expression, at

% _ = least for smallt/J, using Brillouin-Wigner perturbation
+Rej dte' (@~ &) tZko[ei“(ef'f“’””— 1], theory (the usual Rayleigh-Schrodinger expansion is diver-
0 gend. Since the contribution of the second-order vertex cor-
(16) rection in the Brillouin-Wigner expansion vanishes and that

of the third-order vertex is smdllthe lowest order diagrams

where c=Jzs and a=(t/J)%/(4mc). The second term in are given by those of the SCBA. The hole energy is then
(16), i.e., the incoherent part, is well behavell(kg,w) is given by~10

shown in Fig. 1. The incoherent part is almost constant over

a broad energy region. In the results of very small cluster (tz)z(uqyk,quvqyk)2

calculations (both exact and SCBY?! many secondary S — S (k=B wy)’ (20
peaks inA(ko, ) were found above the lowest quasiparticle 4 Tk T e T

one. These secondary peaks were attributed to “string” resowhere X (k,w) is the self-energy of the hole and
nances. However, the cluster calculations also show thag,=3.(k,E,) for a self-consistent solution. We expand

when the size of the system increases, these peaks become

less pronounced. Recently, Leung and Gootlifaund in 0% (k—q,w)

exact diagonalizations that the secondary peaks which are 2 (k=0,Ex—wq) =Ex—qt Jo

well defined for a 16-site lattice disappear in a 32-site system ©=Ex—q

and that the secondary peaks are a finite size effect. Our X(Ek—wq—Ek_q)+O(q2), (21)

results are consistent with this suggestion. If the secondary
peaks were smeared out the spectral function obtained frofior small q and, using the LWA, we obtain
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FIG. 2. The hole bandwidthiv/t as a function ofl/t for a hole
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spond to results obtained using the variational approach by
Sachde® and ED on clusters of 20 sites by Poilblagical 2

The variational approach is reliable in the largé case,
while most ED’s are only available for smallt. For com-
parison, the results of SCBfpen circlegare also shown in
Fig. 1. We choose=2.8 andc=0.5 for the functional de-
pendence to fit results of other studies. The functional depen-
dence is shown by the solid curve in Fig. 2. It is close to the
variational results for large/t and to the ED results for
smallJ/t, especiallyd/t=0.5. For smalll/t, a power law fit

to the functional dependence gives+d(J/t)%5¢7 (the
dashed curve The coefficientd andd are different from
those obtained from the numerical calculatiérig.The form

(19) is thus only qualitatively correct in the smallt limit.

moving in a 2D antiferromagnetic background. The functional de-In the region ofJ/t between 1.0 and 2.0, the functional de-

pendenceW/t=2.8/J) e *5)’ (see the tejtis shown by the

pendence describes a smooth crossover fridnibehavior in

solid curve, along with the results from the exact diagonalizationth€ J/t limit to roughly J/t behavior in the small/t limit.

calculations on 20 site§'*”) (Ref. 2, from the self-consistent
Born approximation on a cluster of ¥6L6 (open circley (Ref. 9,
and using a variational approadRef. 23. The dashed curve,

which is proportional to §/t)%677 is the best fit to the solid curve

for small J/t.

u _qtVv 2
EkZE (tZ)Z( qYk-q q'}’k)

Z —q>
q Ek—wq—Ek_q k=q

(22)
whereZ,_4=(1— aE(k—q,w)/aw|w:Ek_q)‘l. From (14),
we haveZy_4=Z,+ 0(g?) neark=Kk,, and Eq{(22) reduces
to Ey=Zyex in LWA [note thatE,—E,_,=0(g?) near

k=Kg]. This is the result we expected and justifies in part th

assumption that the bandwidth scales as give(19).
To see how well the universal functiondl9) can repre-

e

In conclusion, we have derived an analytical expression
for the Green’s function of the hole moving in an antiferro-
magnet near the band mimimum in the long-wavelength
limit. The Green'’s function clearly indicates that the infrared
divergence is eliminated in two dimensions so that the qua-
siparticle weight is finite. It also suggests that the hole mo-
tion has a polaronic nature for intermediate and ladge
We have shown that the cumulant expansion is a good
choice for studying the hole motion in the weak and inter-
mediate coupling cases, with the first-order approximation
equivalent to the long-wavelength approximation at the band
minimum of the hole. This should be complementary to the
self-consistent Born approximation which is better for small
J/t limit.

One of the authorgY.M.L.) acknowledges support from

sent the hole bandwidth, we compare it with numerical rethe EPSRC of the United Kingdom under Grant No.
sults of other studies. We show various estimates for the hol&RK42233 and from MURST/British Council under Grant

bandwidth in Fig. 2. The dashed-dotted line and’‘torre-

No. Rom/889/92/47.

IFor reviews, see E. Dagotto, Rev. Mod. Ph§8, 763(1994; L.
Yu et al, Chin. J. Phys31, 579(1993.

2D. Poilblancet al, Phys. Rev. B47, 3268(1993; D. Poilblanc
et al, ibid. 47, 14 267(1993.

3p. W. Leung and R. J. Gooding, Phys. Rev5B 15 711(1995.

4C.-X. Chen and H. B. Scthitler, Phys. Rev. Bi1, 8702(1990.

SE. Dagottoet al, Phys. Rev. B41, 9049(1990).

6S. Schmitt-Rinket al,, Phys. Rev. Lett60, 2793(1988.

7C. L. Kaneet al, Phys. Rev. B39, 6880(1989.

8Z. Liu and E. Manousakis, Phys. Rev.45, 2425(1992.

9G. Marfinez and P. Horsch, Phys. Rev.48, 317 (1991).

0F Marsiglioet al, Phys. Rev. B43, 10 882(1991).

115, A. Trugman, Phys. Rev. 87, 1597(1988); 41, 892(1990; B.
M. Elrick and A. E. Jacobspid. 52, 10 369(1995; and refer-
ences therein.

127 B. Suet al, Phys. Rev. Lett63, 1318(1989; Int. J. Mod.
Phys. B3, 1913(1989. ]

3L, N. Bulaevskii et al, Zh. Eksp. Teor. Fiz.27, 1562 (1968
[Sov. Phys. JETR7, 836(1968].

14B. I. Shraiman and E. D. Siggia, Phys. Rev. Létt, 467(1989;
62, 1564(1989.

15pW. Anderson, Phys. Rev. Let4, 1839 (1990; S. Sorella,
Phys. Rev. B46, 11 670(1992; E. Muller-Hartmann and C. .
Ventura,ibid. 50, 9235(1990; Q. F. Zhong and S. Sorelldid.
51, 16 135(1995; Z. Y. Weng, Y. C. Chen, and D. N. Sheng
(unpublisheg .

n deriving Eq. (13) we use the relation( Texp{[5dtM(t)})
=exp(3/Ldt,[Ldt,(TM(t;)M(t,))}, whereM is a linear com-
bination of boson operatopsg and B,. Equation(13) can also
be obtained from the cumulant expansion from the usual polaron
problem; see Ref. 17.

17G. D. Mahan,Many-Particle Physics2nd ed.(Plenum, New
York, 1990.

18K. Huang and A. Rhys, Proc. R. Soc. London Ser2@4, 406
(1950.

19G. D. Mahan, Phys. Rew.45, 602 (1966.

20D, punn, Can. J. Phy&3, 321 (1975.

217. Liu and E. Manousakis, Phys. Rev.5, 3156(1995.

22strictly speaking, the functional forrtl9) relates to the inverse
effective mass of the hole. We take this as a measure of the
bandwidth in order to compare with numerical results.

233, sachdev, Phys. Rev. 89, 12 232(1989.



