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In a theoretical study of solid hydrogen we explain the turnover in both the Raman and infrared frequencies,
as well as the large increase of the resonance coupling at high pressures. Moreover, we indicate the reason for
the increase of the frequencies in dilute solutions. This has particularly been achieved by calculating the
spherically averaged bond-length derivatives of the two-body intermolecular potential energy, while separating
this into a static contribution of the molecular charge clouds and a contribution of the fluctuations therein
~dispersion!. @S0163-1829~96!51222-1#

The vibrational properties of solid hydrogen at ultrahigh
pressures continue to draw enormous attention1–8 because of
the suggested implications for the metallization. Until re-
cently the Raman branch of the vibron had been experimen-
tally determined up to 150 GPa,1 but the infrared~IR! branch
only up to 60 GPa.2 The Raman frequency shows a turnover
at 36 GPa. This unexpected phenomenon was attributed to a
weakening of the bond between the hydrogen atoms, point-
ing to the onset of metallization.1 Later it was recognized
that the effect was due to resonance coupling~RC! between
the neighboring molecules.3,4 Several authors have tried to
calculate the Raman frequency, but the results at high pres-
sures were rather disappointing,5–7 moreover, the RC was
not addressed in this work. Recently, also the IR spectrum
has been measured up to 180 GPa.4 Also in this case a turn-
over was found but at much higher pressures. Again it is
suggested that there is a relation with the onset of
metallization.4,8

For our understanding of what is happening, it is of cru-
cial importance to know what is already possible in the mo-
lecular approach.3 This means a quantitative description of
the vibrational frequencies only based on a potential, which
is a function of the orientations~V i), the distances between
the centers of mass (Ri j ) and the bond lengths (r i). We have
performed such a calculation taking data about this potential
from literature, without any adjustment to the experimental
frequencies and without the assumption of charge transfer or
bond weakening. It is shown in Fig. 1 that a turnover is
found for the Raman as well as the IR branch. The agreement
with the experimental Raman frequencies is very good. The
deviation from the experimental IR branch is somewhat
larger. The reason for this discrepancy will be explained
later. The calculations show that the dispersion is the major
cause of the turnover as well as of the resonance coupling.

A study is presented on the vibrational frequencies of
solid H2 at room temperature from the melting line up to 200
GPa. We have calculated the spherically averaged deriva-
tives of the intermolecular potential energy with respect to
the bond lengths (r i). It has been suggested that at high
pressures the resonance coupling is negligible6 or could not
be extracted2,3 from the existingab initio data. However, it
will be shown that the RC contribution is large and can be
fully taken into account in calculating the Raman shift from
these data.9,10 An important aspect of our approach is also
the decomposition of the potential in a self-consistent field

~SCF! and a London dispersion contribution, using an attenu-
ation function which depends on the bond length. A proce-
dure will be provided for evaluating explicitly the dispersive
RC contribution, which must be subtracted in the case of IR.

The first theoretical approach is presented, in which the
r i dependence of the intermolecular potential is evaluated.
Before treating the theory in detail we first summarize the
well known expressions3,11,12resulting in the Raman and IR
frequencies, assuming that the derivatives of the intermo-
lecular potential energy with respect to the bond lengths are
known.

The Hamiltonian of an isolated moleculari is

V0~xi !5 1
2 f xi

21gxi
31hxi

4, ~1!

wherexi5r i2r e and r e is the equilibrium bond length; the
force constants,f, 6g, and 24h are the second, the third, and
the fourth derivatives inr e . By solving the Schro¨dinger
equation one obtains the vibrational transition energy be-
tween the 0 and 1 state:12
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FIG. 1. Theoretical results for the vibrational Raman~lower
line! and IR ~upper line! frequencies versus the pressure. In the IR
results the SCF contribution to the RC is still present. The points
are results of Raman@triangles~Ref. 8!# and IR @circles ~Ref. 4!#
experiments.
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ve is the harmonic frequency,ve xe the anharmonicity, and
m the reduced mass.

Consider two moleculesi and j. The intermolecular po-
tential energyf(V i ,V j ,Ri j ,r i ,r j ), denoted asf( i j ), can
be expanded aroundr e :

f~ i j !5f~ i j !ur i ,r j5r e
1Fi j xi1F ji xj1
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2xi
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whereFi j , Gi j , Ci j , Hi j , andKi j are the derivatives to the
corresponding bond lengths, evaluated atr i5r j5r e . These
quantities are the central objects of this study. If a lattice is
considered, in which the symmetry is such that all the mol-
ecules experience identical fields, then the new coordinate
yi5r i2(r e1ym) can be used, whereym is the change of the
equilibrium bond length. In our case this condition is ful-
filled since, at room temperature and in the pressure range of
interest, hydrogen crystallizes in the hcp structure.8 In the
case of N molecules the one- and two-body terms of Eqs.~1!
and~3! can be summed up; the results can be rewritten, such
that the linear terms are eliminated:
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It is important to note that in Eqs.~4f! and ~4g! one only
need to know thesumof the mixing and nonmixing coeffi-
cients. In the case of Raman spectroscopy the vibrational
excitation can be transferred during the process, such that
moleculei and its nearest neighbors~NN! vibrate in phase
~resonance coupling!.8,11 In Eq. ~4a! the yj of the NN are
equal to theyi and the same form as Eq.~1! arises with
solutions as given in Eq.~2!. As in Eqs.~4f! and ~4g! sum-
mations arise of mixing and nonmixing terms. In the case of
IR no coupling occurs;8,11 only the first term in Eq.~4a! has

the same form as Eq.~1!, giving a similar solution as Eq.~2!.
The vibrational average of the mixing terms then only give
small corrections.

We will now describe the calculation ofFi j , Gi j ,
Ci j , Hi j , andKi j . The vibrational and molecular motions
act on different time scales. As usual,23 it is assumed that the
intermolecular potential can be treated as a time-independent
potential with respect to the vibration, and only the average
force along the molecular axis will be calculated. First the
intermolecular potential energy@f( i j )# can be divided in a
contribution of the mutual electrostatic interactions and a
contribution of the fluctuations therein.11,13 It should be real-
ized that a SCF calculation only contains the static interac-
tion and not the fluctuations.14 For large distances the disper-
sion part can be evaluated10,11in the form of three multipoles
with coefficientsCk ; k56, 8, and 10. For smaller values of
Ri j the dispersive energy is attenuated11,15 by the overlap of
the charge distributions, a process that can be described with
an attenuation function (f at!, which is 1 for largeRi j and
becomes zero forRi j50. The spherically averaged form of
f( i j ) becomes

f~Ri j !5fSCF~Ri j !2 f at~Ri j !(
k

CkRi j
2k . ~5!

The Silvera-Goldman~SG! potential15 for hydrogen
~without the many-body term! of this form was based on
SCF ~Ref. 16! and multipole10 calculations, which had just
become available. We have improved the SCF part by the
use of the high level SCF calculations of Ree and Bender9

for small values of Ri j . Recently Hemley and
co-workers17,18 found that a negative short range correction
had to be added to this potential. We have rewritten their
potential18 in the original form of Eq.~5!. It turned out that
we could use the original SG exponential form with slightly
adjusted parameters to present the new data and the SCF part
of SG atRi j.0.26 nm. The attenuation functionf at was
obtained by substituting this SCF function and the original
multipole function10 in the right-hand side of Eq.~5! and the
empirical potential18 in the left-hand side. Thus the potential
used by us reproduces the experimentalp-V curve. We make
use of the fact that a direct relation exists betweenf at and
fSCF, because the attenuation process is due to the overlap
of the charge distributions. This relation can be deduced by
plotting f at(Ri j ) versusfSCF(Ri j ) for various values ofRi j
~see Fig. 2!. The points in Fig. 2, corresponding to equidis-
tant values forRi j can be represented by the functional form
~line in Fig. 2!:

f at~fSCF!5@110.46055„12exp~213.222fSCFf0
21!…

1fSCFf0
2110.01842~fSCFf0

21!2#21, ~6!

where f056.649310220 J. The linear part of the plot,
which is most important for this work, is due to the fact that
in this region the overlap energy completely dominates
fSCF.

The r i derivatives of the distinct parts of Eq.~5! can be
determined with the help of theab initio data.9,10 ThefSCF
has been calculated for four standard orientations
(T, P, ,X, andL!, seven values ofRi j ~including infinity!,
and five values ofr.9 For each orientation~and fixedRij! the
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data for infinity~two times the intramolecular energy, which
is the same for all orientations! were subtracted from those at
finite Ri j value. The results can be fitted with a cubic func-
tion of r and a standard deviation smaller than the numerical
rounding error offSCF. In Ref. 9 ther i of the two molecules
were not varied independently. Making use of Eq.~3! and
settingr5r i5r j gives the coefficients of the cubic fit. The
r e was derived from a third order expression of the values for
infinity. Next, the coefficients of the cubic fit were spheri-
cally averaged with the method used by Ree and Bender.9

From Eq.~3! it follows that the result for the linear coeffi-
cient gives twice the averagedFi j , while the quadratic co-
efficient gives the sum of the averagedGi j and Ci j . The
cubic coefficient gives twice the quantity (1/6Hi j11/2Ki j ).
With the help of Eqs.~2! and ~4! one can evaluate the SCF
contribution to the Raman shift. This includes the RC con-
tribution, which should not be present in the IR determina-
tion and will, therefore, give too large values for the IR fre-
quency. The rounding error prevents the evaluation of a
reliable fourth derivative offSCF. The derivatives off at are
achieved by assuming that Eq.~6! holds for all values of
r i .

Meyer10 presented multipole coefficients for various val-
ues of r. With the help of these values and of the first six
terms of Eq.~3!, one can determine the first derivativeFi j
and once again thesumof Gi j andCi j . Fortunately, in this
case the mixing coefficient~RC! for theCk can be evaluated
separately by deriving the following relation:

d2Ck

dridr j
5QkS dCk

dri
D 2Ck

21, ~7!

whereQk is only dependent onk. For that purpose we ex-
tended the work of Thie´ry et al.19 on C6 to the C8 and
C10. TheCk are functions of the polarizability~a! and the
ionization energy(I). From the relation between these two
quantities13,19also a relation ofCk with its derivatives can be
obtained by using the Slater-Kirkwood approximation,13,19

which holds very good for H2. The first r i derivative ofCk
from Meyer’s data appeared to be consistent within about
1.5% with these relations. Our results areQk510/9, 17/18,
and 26/25 fork56, 8, and 10 respectively. Note that for the
dispersion it is possible to separate the RC contribution, but

not to evaluate the third and fourthr i derivative, needed for
a possible contribution to the anharmonicity.

To calculate the frequencies we have first performed the
summations of Eqs.~4b!–~4g! on an ideal hcp lattice. For the
dispersive RC only the NN contributions were taken into
account. The room temperature pressures, determined with
the equation of state of Ref. 17, were between 5.5 and 200
GPa. TheJ51 vibron was considered and sov054155
cm21 was taken as the value of the isolated molecule.11 The
results have been plotted as lines in Fig. 1 along with the
experimental Raman8 and IR ~Ref. 4! data.

The Raman calculation shows very good agreement with
experiment. The turnover behavior is well described and is
due to the fact that the dispersive contributions become
dominant. The attenuation contribution to the dispersive ef-
fect is positive and in magnitude about 15%, which is a
considerable amount. The IR results are somewhat too high,
because they still contain the RC of the SCF, which turns out
to be much smaller than the RC of the dispersion. Note that
the calculated IR curve is also going through a maximum.
Taking only the SCF contribution into account, the fre-
quency increases with pressure and the shift with respect to
v0 is 1900 cm21 at 200 GPa. The anharmonicity hardly
changes up to 30 GPa, whereas above this pressure it in-
creases rapidly up to almost twice the value of the lowest
pressure. We also have decreased thec/a ratio of the hcp
lattice with 5%, which is about the expected deviation at 1.8
GPa.20,24 It only gives a decrease of 3 cm21 at the highest
pressure.

The extrapolation of the Raman shift to zero pressure
gives a value of 16 cm21 belowv0, which is 5 cm21 lower
than the experimental value.21 This is possibly due to lack of
data for ther i derivatives offSCF aboveRi j50.26 nm. In
the present work we divided the SCF values forFi j by those
of fSCF and fitted this ratio linearly to make the extrapola-
tions forRi j.0.26 nm, needed to calculate the contributions
of the next nearest neighbors and further. Inspection learns,
that if we use an extrapolation such that agreement with ex-
periment atp50 is achieved, perfect agreement will be ob-
tained with the experimental Raman shift over the whole
pressure range.

If it is assumed, that ther derivatives of the intermolecu-
lar energy for H2 and D2 are identical, one can calculate the
Raman shift of D2 by substituting twice the reduced mass of
H2 in Eq. ~2!. It turns out, that up to 80 GPa the Raman shift
of D2 ~Ref. 8! is well described; above 80 GPa the deviation
becomes larger than that of H2, at the highest pressure being
30 cm21 larger. A possible explanation is that above 80 GPa
the r i derivatives of D2 are slightly different from that of
H2. Another possibility is that at the highest pressures the
r i derivatives are not fully correct,which has a different in-
fluence on H2 than on D2.

We note that the remarkably large increase of the frequen-
cies of H2, diluted in He or Ne,

3 can now easily be explained.
The dispersion effect is roughly proportional to the disper-
sive energy itself, which decreases enormously in an envi-
ronment of He and Ne, causing the upwards effect. This also
explains why the influence of low pressure is negative in
pure systems, while it is positive in diluted systems, and why
N2 diluted in He shows the same effect.22

FIG. 2. The reciprocal attenuation function minus one versus the
intermolecular SCF energy. The points correspond to equidistantR
values; the line is Eq.~6!.
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