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Electron weak localization in disordered films
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The logarithmic temperature dependence of resistivity, commonly observed in disordered films, has gener-
ally been interpreted as evidence for electron weak localization, with its slope indicative of the inelastic
scattering mechanism. In this work, we show that the two-dimensi@ialquantum percolatiofQP) model,
pertaining to disordered metallic films, predicts a sample-size-dependemlmductance correction that is
three times larger than that for the Anderson model. Moreover, when the film has a finite thickness, the
coefficient of I decreases to about 2/3 of its 2D value for both the QP and the Anderson models. These
results have direct implications for the interpretation of experimental {8€4.63-18206)51220-9

I. INTRODUCTION Il. MODELS AND NUMERICAL APPROACH

For both the QP model and the Anderson model, the

The logarithmic temperature dependence of the resistive,, miltonian is defined as

ity, widely observed in disordered films at temperatures be-
low 10 K, is generally regarded as evidence for the weak
localization of electrons, arising from the coherent back- — i\ AVE

scattering correction to the filniJ conductartcé.For two- : Z 6'|I><I|+t[i21] Dl @
dimensional2D) samples, this correction term has the form

a(e?/m?h)InL at T=0 , whereL denotes the sample size, Heret is the nearest-neighbor hopping matrix element, taken
e is the electronic chargé, is Planck’s constant, and is  to be 1 in this work, andij] denotes the nearest-neighbor
usually taken as a “universal” constant independent of thesite indices of a squar@ubic lattice. For the QP model,
amount of randomness and other details of the model. One

can deduce from the perturbative calculation in the weak 0 ifsitei is occupied by a metal particle
scattering limit that «=1 for the Anderson model. To link €=
this sample-size dependence to the temperature dependence,

it is recognized that, at fin.ite temperatures, the sample size \ﬁ/e also definé® to be the probability that a site is occupied
replaced by the dephasing lengthy, wheneverL > L. by a metal particle. In contrast, the Anderson model is de-

Sincelyy is relate_d to theﬁinelastic scattering length and isfined by assigninge; to be a random number with a flat
therefore proportional ta ~P?, where the value op de- distribution extending from-W/2 to W2
pends on the nature of the inelastic scattering mechanism, it g, percolating metallic films wittP ciose to 1, conduc-
immediately follows that the finite-temperature manifestationjoy electrons have a single Fermi energy throughout the
of the coherent backscattering correction has the formonnected metallic network. Also, electrons cannot penetrate
ap(e?/2m?h)InT. From the experimentally measured slopeinto the insulator. Hence, the QP model is clearly descriptive
of the InT variation and the magnitude of the resistiityit  of metallic films whenP is close to 1. In contrast, there is a
is possible to deduce the value of the produptfor various  dispersion of electronic energy levels in disordered semicon-
material systems. Based on the assumption éhistknown,  ductors, so the Anderson model is more descriptive.
the value ofp, and thus the nature of the dominant inelastic To calculate the conductané® of the sample described
scattering mechanism of the system, may be determined. by either the QP model or the Anderson model, two sides of
In this work, we show that while the value efis indeed  the disordered. X L X M samples with.>M are connected
independent of the amount of randomness, it is neverthelesg perfect leads, i.eg; =0 for all the sites in the lead, and the

nonuniversal. In particular, for the quantum percolaii@®) Landauer-Bttiker formuld is used, i.e.,
model « is about three times that of the Anderson model.

o ifsite i is occupied by an insulator.

Furthermore, our numerical results also indicate that for both N
the QP model and the Anderson model the valuer finite- \ 2> it
thickness films is about 2/3 of its 2D value. This is the case G .
when there is scattering in the vertical direction, so that the Y= 587 Z Ti|| ~ (@
coherent backscattering correction is reduced. Since for dis- E (1+ Ri—Ti)vfl
I

ordered metallic films the QP model is more realistic than

the Anderson model, which pertains to doped semiconduc-

tors, it follows that many prior experimental results on me-whereN is the number of propagating channels in the leads.
tallic films may have to be reinterpreted in regard to theirThe values ofT; andR; are related to the transmission and
implications about the inelastic scattering mechafgm reflection matrices by

0163-1829/96/5@0)/132684)/$10.00 53 R13 268 © 1996 The American Physical Society



53 ELECTRON WEAK LOCALIZATION IN DISORDERED FILMS R13 269

N N 5.0
Ti=> |65 R=2 Iryl% ()]
j=1 =1
which in turn can be related to the Green'’s functiori by
Iti jI°=lvivl|G;(OL+1)[? (4)
and
Iri j12=1livviv;G(0,0— & j|°. 5

HererfJ-(n,n’) is the retarded Green'’s function with source
atn’ of channelj and receiver ah of the channei. The
positions 0 and_+1 are located inside the sample on the
incoming side and outside the sample on the outgoing lead, : 10 20 30
respectively.Gifj(n,n’) can be calculated numerically by

use of a recursive techniqded hard wall boundary condi- 50
tion was chosen along the transverse dire¢ipnThe (b)
Hamiltonian of the leadH ¢,q can be written as

4.0

Hiead™ Hx®H (6)

whereH, andH, are the Hamiltonians for hopping along £
the x direction and the transverse direction respectively. Q3of

The eigenfunctions and the corresponding eigenenergies of &
H, are exp{k,ax) and 2 cok,a, respectively, whera is M
the lattice constant. Furthermore, we da|l the eigenenergy 20t
of H,, the eigenfunctions of which define the channels.

. | M

Hence, the real solutioris in the dispersion relation
E=2 coka+E, (7) 10 20 30

L

determine the number of allowed propagating chanihels

The channel velocity; in Egs.(1), (4), and(5) is given by FIG. 1. Scaling results for 2D sample&): QP model for
P=0.84 @), P=0.85 (x), and P=0.90 (X). (b): Anderson

JE — model forW=4 (@) and W=3 (*). 1000—-3000 configurations
Vi=—— =V4-[E-E ()]~ tS) were used in the average. Numerical values of the slope are given in
ok
X k(i) Tables | and IL.

In our calculations the Fermi energy is fixedEt0.014

model. However, the value af decreases to 2/3 of its 2D
value for multilayer samples, i.eq=2 whenM=3. Nu-
Numerical calculations for 2DN =1) samples based on merical results based on the Anderson model show that in-
the QP model and the Anderson model are shown in Figgleeda=1 for the 2D case, as expected theoretically. How-
1(a) and Xb), respectively. 1000—3000 configurations wereever, a similar transition from 2D to multilayer samples
used in the average. The straight lines in each figure repredccurs wherM is increased to 3 and beyond, i.e5-0.7 for

Ill. RESULTS AND DISCUSSION

sent the least-squares fits of multilayer samples in the Anderson model. Thus a compari-
son between the QP model and the Anderson model shows
¥Y=7vo— B InL, (9)  both differences and similarities. The significantly different

values ofa could be due to the fact that the large contrast in
€; in the QP model0 and«) makes conventional perturba-
}ive scattering calculations inapplicable, thus putting the QP

sults for multilayer samples based on the two models. In al : ;
. . model in a different class from the Anderson model. On the
cases, the thicknedd is always much smaller than the lo- . . .
.other hand, the decrease in theralues wherM =3 is quali-

?]thljfélognéevr\‘/getgﬁlr:frgfc(;rtiénrizi]sﬁzrzn; d?areer?gsr?c-s?o IPatively understandable from the point of view that the scat-
' P b P tering in the film-thickness direction tends to decrease the

prevail. The values of and « are tabulated in Tables I and coherent backscattering correction. In the limit of a large

I. . - .
Our results clearly show that the value effor the QP f!lr’_n thicknessM . the lowest-order correctlt_)n to the conduc-
tivity along the film plane oy, can be written as

model is indeed independent Bf at least wher is close to

to the data calculated by E¢R), wherep is related toa by
a= Bw. Figures 2a) and 2b) also show the numerical re-

1. This is analogous ta's independence fronW in the 5 y Nimax
Anderson mode€flsee Figs. (b) and 2Zb)] as demonstrated by Tl = O— € _12_ qdq 2 1
the weak-localization theory.We found from the least- MIZ 0T F 272M i Nmax d° T N°7IM

squares fits of Eq9) to the data thatv=3 for the 2D QP (10
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8.0 ‘ TABLE II. Numerical values of8 and « for the Anderson
(@ model.
*
N M No. of layers M) w B a=pBm
N 1 3.0 0.33:0.01 1.04:0.03
£ 1 4.0 0.32:0.01 1.0x0.03
N&eo 3 5.0 0.22:0.01 0.6%:0.03
o °_ . 3 55 0.23:0.01 0.72:0.03
4 6.0 0.22£0.02 0.69£0.06
50 *e . 5 6.5 023002  0.72:0.06
0 ‘ =0o— —zez —InL 11
" L = IMIZ 0Tz oM 1y
60 - and the scaling relation for the conductance, Ges oM, as
(b)
21
50 - G(L)=Go— Py E'nL, (12
= which is independent oM. It should be noted that, due to
Nﬁ ol | the implicit assumption of diffusive transport in the vertical
g direction,M cannot take the value of 1 in E(L1), i.e., Eq.

(11) cannot be expected to agree with the 2D result by letting
M M =1. The factor 1/2 in front of | on the right-hand side of
8o M ] Eq. (12) is due to the reduction in the probability of coherent
M backscattering in the limit when electron transport in the
vertical direction is also fully diffusive. While our numerical
20 o 2 results on multilayer samples do not indicate a full 1/2 re-
L duction in the value ofy, they are nevertheless smaller than
that of the 2D samples. Hence the qualitative trend of our
FIG. 2. (@) Scaling results for multilayer sampleg): QP model  numerical results on multilayer samples can be explained by
for M=3 andP=0.8 (@), M=3 andP=0.85 (X), andM =4 the weak-localization theory_
and P=0.8 (x). (b): Anderson model forM=3 and W=5.5 Since the QP model and the Anderson model give differ-
(@), M=3 andW=5.0 (x), andM=4 andW=6.0 (). 1000-  ent values fora, it follows that many prior experimental
3000 configurations were used in the average. Numerical values ghglts may have to be reinterpreted in regard to their impli-

the slope are given in Tables I and II. cations about the inelastic scattering mecharssniror ex-
ample, for low-resistivity Cu filmg50-500 A at tempera-

whereN ., in the summation is the same as the upper cutoffures between 1 and 20 K, Ref. 6 reported that=2. By
in the g integration, oy is the Drude conductivitfdue to ~ assuminge=1, p was assigned a value of 2. Reference 10
ladder diagrams andl andL are the elastic mean free path also reported the value @f=2 in silver films. On the other
and sample size along the film plane, respectively. It shouldhand, Ref. 7 reported that in high mobility MOSFET inver-
be noted that Eq(10) contains the implicit assumption that sion layers at temperatures down to 0.05 K, the indepen-
the film is sufficiently thick so that the electron transport in dently measuredrp and « values are #0.1 and 1.0, re-
the vertical direction is diffusive as well. By performing the spectively. Since inversion layers are intrinsically 2D
summation and the integration and retaining only the ternsystems, thex value agrees well with the Anderson model
that depends o, we get the Ih dependence in the limit prediction. Thusp=1 may be deduced for these semicon-
L>M as ductor samples.

In general, a value op=2 is attributed to electron-
phonon scattering; ' whereas a value gi=1 is attributed
to electron-electron scatterifid! If we now describe the

TABLE I. Numerical values of3 and« for the quantum perco-

lation model. elastic scattering in metallic films by the QP model and take
No. of layers () P B a=pm the_ multilayer yalu_e ok, i.e.,a=2, _then the inelastic scat-
tering mechanism in the two material systems, metallic films
1 0.84 1.06:0.04 3.10.1 and MOSET inversion layers, are the same at low tempera-
1 0.85 0.94-0.04 2.9-0.1 tures, i.e., electron-electron scattering witk 1.
1 0.90 0.96:0.04 2.8-0.1 In summary, our results on the QP model show that per-
3 0.80 0.65-0.03 2.0:0.1 colating metallic films follow a different In slope than that
3 0.85 0.64-0.04 2.0-0.1 of the semiconducting films, thus demonstrating the nonuni-
4 0.80 0.680.03 2101 versality of thea value. Moreover, we show that the value of

« for finite-thickness films differs from the 2D case. When
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these differences are taken into account in the interpretatiobut would also provide an independent verification of our
of experimental data, a different conclusion about the inelaseonclusions.

tic scattering mechanism is reached for metallic fims. In 5,4 of us(Tan Li) wishes to thank Z. Q. Zhang for many
view of our results, an experimental determinationa0in  helpful discussions. Tan Li was supported by research grant
low-resistivity metallic films would not only be interesting, CERG HKUST612/95P.
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