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The logarithmic temperature dependence of resistivity, commonly observed in disordered films, has gener-
ally been interpreted as evidence for electron weak localization, with its slope indicative of the inelastic
scattering mechanism. In this work, we show that the two-dimensional~2D! quantum percolation~QP! model,
pertaining to disordered metallic films, predicts a sample-size-dependent lnL conductance correction that is
three times larger than that for the Anderson model. Moreover, when the film has a finite thickness, the
coefficient of lnL decreases to about 2/3 of its 2D value for both the QP and the Anderson models. These
results have direct implications for the interpretation of experimental data.@S0163-1829~96!51220-8#

I. INTRODUCTION

The logarithmic temperature dependence of the resistiv-
ity, widely observed in disordered films at temperatures be-
low 10 K, is generally regarded as evidence for the weak
localization of electrons, arising from the coherent back-
scattering correction to the film conductance.1–4 For two-
dimensional~2D! samples, this correction term has the form
a(e2/p2\)lnL at T50 , whereL denotes the sample size,
e is the electronic charge,\ is Planck’s constant, anda is
usually taken as a ‘‘universal’’ constant independent of the
amount of randomness and other details of the model. One
can deduce from the perturbative calculation in the weak
scattering limit5 thata51 for the Anderson model. To link
this sample-size dependence to the temperature dependence,
it is recognized that, at finite temperatures, the sample size is
replaced by the dephasing lengthLph wheneverL.Lph.
SinceLph is related to the inelastic scattering length and is
therefore proportional toT2p/2, where the value ofp de-
pends on the nature of the inelastic scattering mechanism, it
immediately follows that the finite-temperature manifestation
of the coherent backscattering correction has the form
ap(e2/2p2\)lnT. From the experimentally measured slope
of the lnT variation and the magnitude of the resistivity,6,7 it
is possible to deduce the value of the productap for various
material systems. Based on the assumption thata is known,
the value ofp, and thus the nature of the dominant inelastic
scattering mechanism of the system, may be determined.

In this work, we show that while the value ofa is indeed
independent of the amount of randomness, it is nevertheless
nonuniversal. In particular, for the quantum percolation~QP!
model a is about three times that of the Anderson model.
Furthermore, our numerical results also indicate that for both
the QP model and the Anderson model the valuea for finite-
thickness films is about 2/3 of its 2D value. This is the case
when there is scattering in the vertical direction, so that the
coherent backscattering correction is reduced. Since for dis-
ordered metallic films the QP model is more realistic than
the Anderson model, which pertains to doped semiconduc-
tors, it follows that many prior experimental results on me-
tallic films may have to be reinterpreted in regard to their
implications about the inelastic scattering mechanism~s!.

II. MODELS AND NUMERICAL APPROACH

For both the QP model and the Anderson model, the
Hamiltonian is defined as

H5(
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e i u i &^ i u1t(
@ i j #

u i &^ j u. ~1!

Heret is the nearest-neighbor hopping matrix element, taken
to be 1 in this work, and@ i j # denotes the nearest-neighbor
site indices of a square~cubic! lattice. For the QP model,

e i5H 0 if site i is occupied by a metal particle

` if site i is occupied by an insulator.

We also defineP to be the probability that a site is occupied
by a metal particle. In contrast, the Anderson model is de-
fined by assigninge i to be a random number with a flat
distribution extending from2W/2 toW/2.

For percolating metallic films withP close to 1, conduc-
tion electrons have a single Fermi energy throughout the
connected metallic network. Also, electrons cannot penetrate
into the insulator. Hence, the QP model is clearly descriptive
of metallic films whenP is close to 1. In contrast, there is a
dispersion of electronic energy levels in disordered semicon-
ductors, so the Anderson model is more descriptive.

To calculate the conductanceG of the sample described
by either the QP model or the Anderson model, two sides of
the disorderedL3L3M samples withL@M are connected
to perfect leads, i.e.,e i50 for all the sites in the lead, and the
Landauer-Bu¨ttiker formula1 is used, i.e.,
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whereN is the number of propagating channels in the leads.
The values ofTi andRi are related to the transmission and
reflection matrices by
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which in turn can be related to the Green’s function by3

ut i , j u25uv iv j uuGi , j
1 ~0,L11!u2 ~4!

and
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1 ~0,0!2d i , j u2. ~5!

HereGi , j
1 (n,n8) is the retarded Green’s function with source

at n8 of channelj and receiver atn of the channeli . The
positions 0 andL11 are located inside the sample on the
incoming side and outside the sample on the outgoing lead,
respectively.Gi , j

1 (n,n8) can be calculated numerically by
use of a recursive technique.2 A hard wall boundary condi-
tion was chosen along the transverse direction~s!. The
Hamiltonian of the leadH lead can be written as

H lead5Hx%H' , ~6!

whereHx andH' are the Hamiltonians for hopping along
the x direction and the transverse direction~s!, respectively.
The eigenfunctions and the corresponding eigenenergies of
Hx are exp(ikxax) and 2 coskxa, respectively, wherea is
the lattice constant. Furthermore, we callE' the eigenenergy
of H' , the eigenfunctions of which define the channels.
Hence, the real solutionskx in the dispersion relation

E52 coskxa1E' ~7!

determine the number of allowed propagating channelsN.
The channel velocityv i in Eqs.~1!, ~4!, and~5! is given by

v i5
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In our calculations the Fermi energy is fixed atE50.01.4

III. RESULTS AND DISCUSSION

Numerical calculations for 2D (M51) samples based on
the QP model and the Anderson model are shown in Figs.
1~a! and 1~b!, respectively. 1000–3000 configurations were
used in the average. The straight lines in each figure repre-
sent the least-squares fits of

g5g02b lnL, ~9!

to the data calculated by Eq.~2!, whereb is related toa by
a5bp. Figures 2~a! and 2~b! also show the numerical re-
sults for multilayer samples based on the two models. In all
cases, the thicknessM is always much smaller than the lo-
calization length. Therefore these systems are quasi-2D in
nature, and we still expect the lnL sample-size dependence to
prevail. The values ofb anda are tabulated in Tables I and
II.

Our results clearly show that the value ofa for the QP
model is indeed independent ofP, at least whenP is close to
1. This is analogous toa ’s independence fromW in the
Anderson model@see Figs. 1~b! and 2~b!# as demonstrated by
the weak-localization theory.5 We found from the least-
squares fits of Eq.~9! to the data thata53 for the 2D QP

model. However, the value ofa decreases to 2/3 of its 2D
value for multilayer samples, i.e.,a52 whenM>3. Nu-
merical results based on the Anderson model show that in-
deeda51 for the 2D case, as expected theoretically. How-
ever, a similar transition from 2D to multilayer samples
occurs whenM is increased to 3 and beyond, i.e.,a;0.7 for
multilayer samples in the Anderson model. Thus a compari-
son between the QP model and the Anderson model shows
both differences and similarities. The significantly different
values ofa could be due to the fact that the large contrast in
e i in the QP model~0 and`) makes conventional perturba-
tive scattering calculations inapplicable, thus putting the QP
model in a different class from the Anderson model. On the
other hand, the decrease in thea values whenM>3 is quali-
tatively understandable from the point of view that the scat-
tering in the film-thickness direction tends to decrease the
coherent backscattering correction. In the limit of a large
film thicknessM , the lowest-order correction to the conduc-
tivity along the film plane ,sM i , can be written as

sM i5s02
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~10!

FIG. 1. Scaling results for 2D samples.~a!: QP model for
P50.84 (d), P50.85 (* ), and P50.90 (3). ~b!: Anderson
model forW54 (d) andW53 (* ). 1000–3000 configurations
were used in the average. Numerical values of the slope are given in
Tables I and II.
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whereNmax in the summation is the same as the upper cutoff
in the q integration,s0 is the Drude conductivity~due to
ladder diagrams!, and l andL are the elastic mean free path
and sample size along the film plane, respectively. It should
be noted that Eq.~10! contains the implicit assumption that
the film is sufficiently thick so that the electron transport in
the vertical direction is diffusive as well. By performing the
summation and the integration and retaining only the term
that depends onL, we get the lnL dependence in the limit
L@M as

sM i5s02
e2

\p2

1

2M
lnL, ~11!

and the scaling relation for the conductance, i.e.,G5sM , as

G~L !5G02
e2

\p2

1

2
lnL, ~12!

which is independent ofM . It should be noted that, due to
the implicit assumption of diffusive transport in the vertical
direction,M cannot take the value of 1 in Eq.~11!, i.e., Eq.
~11! cannot be expected to agree with the 2D result by letting
M51. The factor 1/2 in front of lnL on the right-hand side of
Eq. ~12! is due to the reduction in the probability of coherent
backscattering in the limit when electron transport in the
vertical direction is also fully diffusive. While our numerical
results on multilayer samples do not indicate a full 1/2 re-
duction in the value ofa, they are nevertheless smaller than
that of the 2D samples. Hence the qualitative trend of our
numerical results on multilayer samples can be explained by
the weak-localization theory.

Since the QP model and the Anderson model give differ-
ent values fora, it follows that many prior experimental
results may have to be reinterpreted in regard to their impli-
cations about the inelastic scattering mechanism~s!. For ex-
ample, for low-resistivity Cu films~50–500 Å! at tempera-
tures between 1 and 20 K, Ref. 6 reported thatap52. By
assuminga51, p was assigned a value of 2. Reference 10
also reported the value ofp52 in silver films. On the other
hand, Ref. 7 reported that in high mobility MOSFET inver-
sion layers at temperatures down to 0.05 K, the indepen-
dently measuredap and a values are 160.1 and 1.0, re-
spectively. Since inversion layers are intrinsically 2D
systems, thea value agrees well with the Anderson model
prediction. Thusp51 may be deduced for these semicon-
ductor samples.

In general, a value ofp52 is attributed to electron-
phonon scattering,8–10 whereas a value ofp51 is attributed
to electron-electron scattering.7,11 If we now describe the
elastic scattering in metallic films by the QP model and take
the multilayer value ofa, i.e.,a52, then the inelastic scat-
tering mechanism in the two material systems, metallic films
and MOSET inversion layers, are the same at low tempera-
tures, i.e., electron-electron scattering withp51.

In summary, our results on the QP model show that per-
colating metallic films follow a different lnL slope than that
of the semiconducting films, thus demonstrating the nonuni-
versality of thea value. Moreover, we show that the value of
a for finite-thickness films differs from the 2D case. When

FIG. 2. ~a! Scaling results for multilayer samples.~a!: QP model
for M53 andP50.8 (d), M53 andP50.85 (3), andM54
and P50.8 (* ). ~b!: Anderson model forM53 and W55.5
(d), M53 andW55.0 (3), andM54 andW56.0 (* ). 1000–
3000 configurations were used in the average. Numerical values of
the slope are given in Tables I and II.

TABLE I. Numerical values ofb anda for the quantum perco-
lation model.

No. of layers (M ) P b a5bp

1 0.84 1.0060.04 3.160.1
1 0.85 0.9460.04 2.960.1
1 0.90 0.9060.04 2.860.1
3 0.80 0.6560.03 2.060.1
3 0.85 0.6460.04 2.060.1
4 0.80 0.6860.03 2.160.1

TABLE II. Numerical values ofb and a for the Anderson
model.

No. of layers (M ) W b a5bp

1 3.0 0.3360.01 1.0460.03
1 4.0 0.3260.01 1.0160.03
3 5.0 0.2260.01 0.6960.03
3 5.5 0.2360.01 0.7260.03
4 6.0 0.2260.02 0.6960.06
5 6.5 0.2360.02 0.7260.06
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these differences are taken into account in the interpretation
of experimental data, a different conclusion about the inelas-
tic scattering mechanism is reached for metallic films. In
view of our results, an experimental determination ofa in
low-resistivity metallic films would not only be interesting,

but would also provide an independent verification of our
conclusions.
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