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A general formula for the Josephson current in ad-wave/insulator/d-wave-superconductor junction is pre-
sented by taking account of the zero-energy states formed around the interfaces. For a fixed phase difference
between the two superconductors, the current component becomes either positive or negative depending on the
injection angle of the quasiparticle. Anomalous temperature dependences are predicted in the maximum Jo-
sephson current and in the free-energy minima.

The Josephson effect ford-wave superconductors has re-
cently emerged as one of the important issues in high-Tc
superconductor physics. Sigrist and Rice predicted that the
macroscopic phase difference~w! between the two supercon-
ductors which gives the free-energy minimum is located ei-
ther at w50 or at w5p ~p junctions! when a Josephson
junction involvesd-wave superconductors.1 Their phenom-
enological theory explained the anomalous magnetization
experiment in terms of the spontaneous current in the super-
conducting loop.2 Stimulated by the theoretical work, several
experiments were performed in an attempt to observe thep
junction and half flux quanta in high-Tc superconductors.
The results strongly suggestd-wave symmetry in the pair
potential in this material.3–5 On the other hand, it has been
clarified that zero-energy bound states are formed around the
surface of thed-wave superconductor because the quasipar-
ticle experiences different signs of pair potential depending
on the direction of its motion.6–9 The zero-energy states
~ZES’s! are detectable in conductance spectra of a normal-
metal/insulator/d-wave-superconductor junction, and are ac-
tually observed in experiments.9,10Recently, several theories
for Josephson junctions comprisingd-wave superconductors
were presented.11–17However, all these theories do not con-
sider the effect of ZES’s formed at the interfaces, seriously.
It is necessary to include this effect, since the Josephson
current is carried by the bound states as shown in the study
of the s-wave/insulator/s-wave-superconductor (s/I /s)
junctions.18–20

In this paper, based on a Green’s function method,21

the Josephson current in ad-wave/insulator/d-wave-
superconductor (d/I /d) junction is calculated by taking into
account the anisotropy of the pair potentials explicitly. This
formula naturally includes the effect of ZES’s and is consis-
tent with existing theories of Josephson junctions. For some
range of orientational angles with a fixedw, the current com-
ponent becomes either positive or negative depending on the
injection angle of the quasiparticle. Each component has a
different temperature dependence. This results in an anoma-
lous temperature dependence of the maximum Josephson
current and free-energy minima especially at low tempera-
tures.

For the calculation, we assume a two-dimensionald/I /d
Josephson junction in the clean limit. The material param-
eters of the two superconductors are chosen to be equal. The
flat interfaces are perpendicular to thex axis, and are located
at x50 andx5di , respectively. The insulator is assumed to
have a square barrier potential with a heightU0 and a thick-
nessdi . We introduce two parametersl05A2mU0 /\

2 and
k5kF /l0, wherekF is the Fermi wave number in the super-
conductor. The wave function of the quasiparticles in inho-
mogeneous anisotropic singlet superconductors is given by
the solution of the Bogoliubov equation. This equation in-
cludes a nonlocal pair potential with two position coordi-
nates for the Cooper pairs. Under the semiclassical approxi-
mation and in the weak-coupling limit, the effective pair
potential reduces toD(g,r), wherer is the position andg is
the direction of motion of the quasiparticles.22,23 The quan-
tity g satisfies exp(ig)[kx /kF1 iky /kF wherek is the wave
vector of the quasiparticle (uku5kF). Although the pair
breaking effect is expected at the interface,13,23 we assume,
for simplicity, that the effective pair potentialD~g,r! is given
by D(T)cos@2(g2a)#exp(iwL) for x,0 and D(T)cos@2g

FIG. 1. Schematic illustration of reflection and transmission of
quasiparticles at the interface. ELQ and HLQ stand for electronlike
quasiparticle and holelike quasiparticle, respectively. The ELQ’s
are injected from the left hand side.
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2a)]exp(iwR), for x.di , wherea~b! is the angle between
the normal to the interface and thea axis of the left~right!
superconductor. The macroscopic phasewL (wR) of the left
~right! superconductor is measured from the normal to the
interface of the left superconductor. The temperature depen-
dence of the magnitude of the pair potentialD(T) is assumed
to obey the BCS relation.

When a quasiparticle is injected from the left supercon-
ductor at an angleu to the interface normal, four different

effective pair potentials participate in this elementary process
~Fig. 1!. This idea is the most essential part of our calcula-
tion. The four potentials areD̄L(u6)5D(T)cos@2(u62a)#
and D̄R(u6)5D(T)cos@2(u62b)# with u15u and
u25p2u, where the momentum component parallel to the
interfaces is conserved. By extending the previous theory19

to include the anisotropy of the pair potentials, the Josephson
currentI (w) is given by

RNI ~w!5
pR̄NkBT

e H(
vn

E
2p/2

p/2 Fa1~u,ivn ,w!

VL,1
uD̄L~u1!u2

ã1~u,ivn ,w!

VL,2
uD̄L~u2!uGcosu duJ , ~1!

whereVn,L,65AD̄L
2(u6)1vn

2 andw5wL2wR . The quantityRN denotes the normal resistance andR̄N is expressed as

R̄N
215E

2p/2

p/2

sNcosu du, sN5
4Zu

2

~12Zu
2!2sinh2~ldi !14Zu

2cosh2~ld
i
!

l5~12k2cos2u!1/2l0 , Zu5
k cosu

A12k2cos2u
. ~2!

Here,sN denotes the tunneling conductance for the injected quasiparticle when the junction is in the normal state. The quantity
vn52pkBT(n11/2) denotes the Matsubara frequency, where analytic continuation is employed for the quasiparticle energy,
E, measured relative to the Fermi energy. The Andreev reflection coefficienta1(u,ivn ,w) is obtained by solving the Bogo-
liubov equation, andã1(u,ivn ,w) is obtained by substitutingp2u,2wL , and2wR for u, wL , andwR into a1(u,ivn ,w),
respectively. Straightforward calculation gives

RNI ~w!5
pR̄NkBT

e H(
vn

E
2p/2

p/2

F~u,ivn ,w!sinwsNcosu duJ , ~3!

F~u,ivn ,w!5
4hL,1hR,1@~12sN!G1~u,ivn!G2~u,ivn!1sNuG3~u,ivn ,w!u2#
u~12sN!G1~u,ivn!G2~u,ivn!1sNG3~u,ivn ,w!G4~u,ivn ,w!u2

, ~4!

G1~u,ivn!511hL,1hL,2 , G2~u,ivn!511hR,1hR,2 ,hL~R!,65zL~R!,6

D̄L,R~u6!

uD̄L,R~u6!u
,

G3~u,ivn ,w!511hL,2hR,2exp~ iw!, G4~u,ivn ,w!511hL,1hR,1exp~2 iw!, ~5!

with zL(R),65uD̄L(R)(u6)u/(vn1Vn,L(R),6) . If we consider
the depairing effect of the pair potential at the interface,
zL(R)6 is given by the wave functions at the interfaces. How-
ever, other parts of Eq.~4! are not changed. Equation~3! is
consistent with the previous formulae for the Josephson cur-
rent as limiting cases. By substituting as-wave symmetry, it
reduces to the formula for thes/I /s junction19 which in-
cludes arbitrary barrier height.24,25 If we take only theu50
component, the magnitude of the Josephson current is pro-
portional to cos~2a!cos~2b!, and the phenomenological
theory by Sigrist and Rice1 is reproduced. WhensN is set
equal to unity, Eq.~3! reproduces recent results for the pin-
hole geometry by Yip12 @see Eq.~7! in Ref. 12#. On the other
hand, whensN→0 is satisfied, replacinghL,2 and hR,2
with hL,1 andhR,1 or only taking theu;0 component in
Eq. ~3!, other previous results are reproduced.13,22

Here, we will simply survey the properties of
F(u,ivn ,w). The denominator ofF(u,ivn ,w), which we

will refer to asFd(u,ivn ,w), implies the formation of bound
states at the interface. If we replaceivn with E, the condi-
tion Fd(u,E,w)50 can be regarded as the linear combina-
tion of two types of bound-state conditions. For a high con-
ductance junction (sN→1), the condition Fd(u,E,w)
'G3(u,E,w)G4(u,E,w)50 gives the energy levels of
bound states formed between the diagonal pair potentials due
to the Andreev-reflection process~see Fig. 1!. For a low
conductance junction (wN→0), the conditionFd(u,E,w)
'G1(u,E)G2(u,E)50 gives the energy level of bound
states formed around the surfaces of isolated semi-infinite
superconductors. The latter bound states become ZES’s when
D̄L(u1)D̄L(u2),0 @D̄R~u1!D̄R(u2),0# is satisfied.6–9

When ZES’s exist, the Josephson current rapidly
increases with decreasing temperature due to the vanishing
of Fd(u,ivn ,w). On the other hand, the sign of
F(u,ivn ,w) is determined by the numerator, i.e., the sign of
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D̄L(u1)D̄R(u1), independent of temperature. The change of
sign ofF(u,ivn ,w) yields a negative current~2sinw! com-
ponent. This effect results in the shift of the free-energy
minimum fromw50 which includes the case of thep junc-
tion. The total property is determined by the integration of all
components weighted bysNcosu.

In the following calculation, the critical temperatures of
the two superconductors are tentatively chosen to be
Td590 K;~7.8 meV/kB). This particular choice forTd is
not essential. We will denoteD~0! by D0. It is sufficient to
calculateI (w) for 0,w,p, since I (w)52I (2w) is satis-
fied. Figures 2 and 3 show the temperature dependences of
the current-phase relation and a maximum Josephson current

I C , respectively, for variousa~52b!. When a50,
D̄L(u1)D̄R(u1), D̄L(u1)D̄L(u2), and D̄R(u1)D̄R(u2) are
positive. In this case,I (w) becomes maximum at about
w5p/2 for any temperature, andI C is a monotonically in-
creasing function with decreasing temperature as shown by
Fig. 2~a! and in curveA of Fig. 3. Figure 2~b! and curveB in
Fig. 3 @Fig. 2~c! and curveC in Fig. 3# show the results when
a50.05p ~a50.1p!. As a and b deviate from zero,
D̄L(u1)D̄R(u1), D̄L(u1)D̄L(u2), and D̄R(u1)D̄R(u2) be-
come negative depending on the value ofu. Correspond-
ingly, I (w) deviates from a sinusoidal function, and therefore
I c has a nonmontonous temperature dependence.

To clarify matters, let us decomposeRNI (w) into its
negative componentGn(w) and the positive component
Gp(w). In the above case, sincea52b is satisfied, the quan-
tity F(u,ivn ,w) becomes negative for6p/42uau,u,6p/4
1uau. These conditions happen to coincide with those for the
formation of ZES’s at the interfaces. The quantityGn(w) is
given by

Gn~w!5
R̄NpkBT

e H(
vn

E
2p/42a

2p/41a

F~u,ivn ,w!sNcosudu1E
p/42a

p/41a

F~u,ivn ,w!sNcosuduJ sinw, ~6!

andGp(w)5RNI (w)2Gn(w). We denote the phase differ-
encew by wM , whereI (w) gives the maximum Josephson
current. ForsN→0, GP(w) andGn(w) can be regarded as
the Josephson current in the 0 junction andp junction. In
Fig. 4, uGn(wM)u andGp(wM) are plotted using the same
parameters used for curveC in Fig. 3. In the inset of Fig. 4,
the temperature dependence ofwM is also plotted. It is clear
that uGn(wM)u andGp(wM) have different temperature de-
pendences. The magnitude ofuGn(wM)u is drastically en-
hanced at low temperatures reflecting the divergence of the
denominator due to the formation of ZES’s. This effect re-
sults in the jump ofwM and the current inversion atTp(Tp
;0.2Td), whereuGn(wM)u5Gp(wM) is satisfied.

Let us consider the free-energy minima (w0), where
I (w)50 and the first derivative ofI (w) is positive. When

D̄L(u1)D̄R(u1).0 is satisfied for anyu, w0 equals zero for
all temperatures~curve A in Fig. 5!. Conversely, when
D̄L(u1)D̄R(u1),0 is satisfied for anyu, w0 equalsp for all
temperatures~this corresponds to thep junction, not shown
in the figure!. When the sign ofD̄L(u1)D̄R(u1) depends on
u, w0 is not constant and can vary between 0 andp. Even in
the absence of ZES’s,w0 can be neither 0 norp when
sN'1 is satisfied as discussed by Yip12 ~curveB in Fig. 5!.
However, the existence of ZES’s exaggerates the anomalous
temperature dependence ofw0 ~curveC in Fig. 5!.

In this paper, a generalized formula for the Josephson
current in d/I/d junctions has been presented fully taking
account of the anisotropy of the pair potentials. In the tun-
neling limit, the Josephson junction can be expressed by the

FIG. 2. Josephson currentI (w) plotted as a function ofw for
l0di51 andk50.5 with ~a! a5b50, ~b! a52b50.05p, and ~c!
a52b50.10p. A: T/Td50.025, B:T/Td50.15, C:T/Td50.3,
and D:T/Td50.6.

FIG. 3. Maximum Josephson current plotted as a function of
temperature forl0di51 and k50.5. A: a5b50, B: a52b
50.05p, and C:a52b50.1p.
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combination of the 0 junction andp junction. The different
temperature dependence of the Josephson current in each
junction induces nonmontonous temperature dependence of
the Josephson current. The calculated features are completely
different from those expected for conventionals/I /s junc-
tions. Similar properties can also be expected for Josephson
junctions of other symmetries where the pair potential has
the opposite sign for some regions of the Fermi surface.

Throughout this paper, depairing effects in the pair potential
around the interface is neglected in the actual numerical cal-
culation. Even if we were to adopt self-consistently obtained
pair potentials, the quantitative results would change some-
what, the essence of the present results would not change,
since the formation of ZES’s would still be expected.26
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FIG. 4. Positive and negative components ofRNIC obtained
from curveC of Fig. 3 as a function of temperature. A:Gp(wM), B:
uGn(wM)u, and C:RNIC . In the insetwM is plotted as a function of
temperature.

FIG. 5. Position of the free-energy minimaw0 plotted as a func-
tion of temperature. A:a5b50, l0di51, andk50.5, B: a52b
50.1p, l0di50, and k50.5, C: a52b50.12p, l0di51, and
k50.5.
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