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Microscopic theory of vortex pinning: Impurity terms in the Ginzburg-Landau free energy
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In the presence of a single impurity, the Ginzburg-Landau free-energy functional for a superconductor
acquires extra terms. Using microscopic theory, we determine the structure of these terms and their coeffi-
cients. Our calculation is very general: we assumedependent order paramet&fk), which transforms
according to any one-dimensional irreducible representation of the crystalline point group. This representation
may be conventional or unconventional, as appropriate to the current models of hégiperconductors. We
treat an arbitrary Fermi surface. The physical significance of the theory is discussed, with emphasis on vortex
pinning. We estimate the pinning energy of a single vorf&0163-18206)50418-2

[. INTRODUCTION difficult.® However, the advent of tunneling and force mi-
croscopies should open new doors in this field in the near

The Ginzburg-Landau (GL) free-energy functional, future.

Qg , is widely used to analyze problems in superconductiv- The distinct temperature dependencies of vortex pinning
ity, particularly situations in which the order parameter isin the presence of isotropic or anisotropic order parameters
spatially varying. Microscopic theory shows that certainmMakes this issue timely due to the current debate over the
types of disorder, such as small pinning centers, can be takeélymmetry of the highF. pairing state. It is interesting to note
into account by adding extra terms s, . These terms can that the most cc.)ncerjtra}ted.study of _the temperature depen-
then be given a physical interpretation. For example, an extrd€nce of collective pinning in the yttrium based? compounds
term proportional tdA |2, whereA is the order parameter, is 'S consistent with exclusively isotropic symmetrfurther
referred to adT, disorder. An extra term involvingVA|? is Investigation Of single-vortex plnnln_g,_coupled W'th the re-
referred to as mean free path ¢) disorder. sults de_nved below, could clarify this |m,portant point.

. . In this paper, we extend Thuneberg’s results to a more

Some years ago, Thuneberg presented a microscopic - . .
theory which showed how small scattering centers were rege;eralk-depende?tk?rdfer parameter. We consider a singlet
flected inQg, .22 For the case of &-independents-wave order parameter of the form
order parameter, he found that a single impurity induped an A(IQ,r): n(f)tﬁ(lz)- (1)
extra term inQ g, of the|VA|? form. A further calculation, .
involving a particular type ofi-wave order parameter, found Here, ¢(k) is a normalized basis function for a one-
that in this more complex situatio)g, acquired both dimensional representation of the crystalline point group. We
|A|? and|V A|? terms, revealing botf, disorder and mean perform our calculation for an arbitrary functiap(k), and
free path disorder. an arbitrary Fermi surface; EqL1) is our main rgsult.

From this theory it is possible to estimate pinning ener- N Sec. Il we use our result, Ed11), to estimate the
gies of single vortices. In a conventional pinning theory,PiNNing energy of a vortex core to an impurity. This impor-
small defects of sizal<é&,, with &, the zero-temperature tant application is given by Ed15). An interesting concep-
coherence length, cause pinning energies proportional t@l point which emerges from our work is the following.
d3. However, the Thuneberg theory suggests much strongé'?he“? is an intuitive meth_od of deriving the smgle—lr_npurlty
pinning? proportional tod2&,. Here,d? is proportional to pontnpunon toQg, . In this approach, one starts with the
the quantum mechanical scattering cross sectigndis-  Impurity-averaged formula fof)g,, and isolates the one-
cussed below. The theory also predicts the temperature d&TPurity limit. In the cases previously considered, this ap-
pendencies of the pinning energy, with distinct estimates foProach led to the same answer as that generated by the mi-
8/ and 8T, pinning. croscopic t_heory. _How_ever, we find the_lt for the more general_

These results have been applied in several laboratory sy§8S€ considered in this paper, there is an ambiguity associ-
tems. In the highF, superconductors, oxygen vacancies play€d With the intuitive approach, which can only be resolved
an important role as point defeéhe temperature depen- V12 the pomplete single-impurity theory. This point is dis-
dencies given by Thuneberg appear to be well borne out fofUSsed in Sec. V. , _
this type of disordef: © Line defects, such as screw disloca- N the context of the higfT, superconductors, various
tions, have also been investigated in the higts.” The de-  forms for ¢ (k) are currently of great interest. One focus is a
pendence of the pinning energy on the defect length scaleroken symmetry statéy(k) whose Fermi surface average
d has also been confirmédn all of these experiments con- Vvanishes:" A simple example of a function displaying this
clusions may only be inferred by means of collective pinningsymmetry is
theory? leaving some flexibility for their interpretation. The ~ s 2
investigation of the pinning of single vortices has proven $a(K)~ (ke —ky). 2
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There is also great interest i¢(|2)’s which have the full Here,N(0) is the total density of states at the Fermi surface,
crystal symmetry, but change sign as a functiokk 3f Both  and vg(k) is the Fermi velocity ak. The Fermi surface
symmetry types are encompassed in the following analysisaverage of a quantiti# (k) is given by

Il. RESULTS (F)= JFSdzkn(R)F(IZ), ®)

In this section we present our results. The derivation is
provided in Sec. IV. We write the GL free energy in the

following form: wheren(lz) is the angle-resolved density of statekanor-

malized to 1:
QGL:Qb_I_ Qi . (3)
The first term,Q),, is the usual bulk GL free energy f dzﬁn(lz)=1. (9
Fs
Qb:f d*r{al 7|+ B|7|*+ 3K (D; 7(Df 7*)}. (4) We now introduce an impurity at positid®. For simplic-

. . I . , ity, we take the impurity potential to bewave with strength
Here, the gauge-invariant derivative is defined by, " \ve define a dimensionless paramateas
D=V +2ieAl#c. '

Within the usual Fermi-liquid theory of superconductivity, N2(0) 7202
we can derive the following values for the coefficients in o= . (10)
Qp: 1+N“(0)7v
7#2N(0)¢(3) In this notation the cross section of the impurity. is pro-
i :8772—|(|23-|-2<UFiUFj|¢|2>1 (5)  portional toa/kZ . We assume thats<£3, where&, is the
C

zero-temperature correlation length; this furnishes the key
small parameter beyond the usual assumptions of quasiclas-

a=N(0) TTTC, (6) sical theory®
c To leading order imsclgg, the term(}; is evaluated ac-
7£(3)N(0) cording 'Fo the_fqllqwing recipe_. We first qbtain thg solution
=———>—{¢|". 7) 7(r) which minimizes(,. This is then inserted into the
167°kgT; following expression which is evaluated fat R:

U= g MR+ ool R 3614+ 2()(6* 13+ 2(6 )l #1201 (#)2))

oh? oh?
- W<|¢|2|VF' Dn(r)|?),—r+ W[U*(R)((WF— #{(*))(Ve-D)?n(r)),—r+ c.Cl. (11

Qi represents the Change in free energy due to the presen@@is is Thuneberg’s original result, and reflects Anderson’s
of the impurity located at positioR. Note that(| ¢|?)=1 by theorem'® the thermodynamics of an isotrogevave super-
normalization, so thal ¢)|<1, and{|¢|*)=1. conductor is unaffected bg-wave impurity scattering.
Several points are worth stressing. (3) For an arbitrary¢(k), one may ask which terms
(1) In general(); contains gradient terms, and terms pro-dominate in();, the gradient terms, or the term proportional
portional to| 7 and| 7|*. Close toT, when the GL expan- 1g | |22 The answer is that thiey|? term is always more
sion of the free energy is valid, theg|? term is always larger important unles$( )| is close to 1(see previous pointIn
than thef 7|* term, since the latter carries an additional factornat case, it is possible for the gradient term to dominate.
of | 7|%/(kgT¢)2. This differs from the situation for the bulk However, the largest valu®| can assume is typically of

i i 2 4
free energy)y,, in which the| 5|* and the| |* terms are of order | noud/ £(T), where | 7pud = Val2B and £(T) is the

comparable SiZA& - temperature-dependent coherence length
(2) When $(k) is constant and equal to 1 for dll the (4) For an unconventional order parameter, we have

2 and| 5|* terms both vanish, leaving only a single gradi- , , : ’ . .
|eyr]1|t term|.77llc we also consider a spher?cal I¥ermi gurfgce wé¢>_o' In this case t.h¢77| term is a.'W.ayS the largest since
obtain in this limit n(r) never varies with a characteristic length smaller than
&(T). Note thaté(T) may be anisotropic.
. . o2 ) (5) We emphasize that the form 6f; in Eqg. (11) should
(;(isotropics wave) = — Wm’?(r”rﬂ- (120 not be used to obtain GL differential equations in the usual
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way, unless further justification is provided. We plan to ad-dant, and we may takg to be a 2<2 matrix in particle-hole

dress this point in a future publication. space. )
To determineg(k,r,e) with an impurity atr=R, we
Il. VORTEX PINNING solve the following equation of motion:

We now use the resu(tll) to discuss the pinning energy
of a vortex line. This is the energy which makes it favorable
for a vortex core to be located at the impurity sRe The ) R ) )
pinning energyE iyning is defined as +itve(k)-Vak,r,e)=[t(e),qim(k,r,e)]18%(r—R),

(16)

ie— gvp(lz)A(r) 73— Ak, G(k,re)

Epinning= i( vortex atR) — Q;( vortex at»).  (13) . o N
along with the normalization condition
To estimate this, we note that near the vortex core,

IDn|,—g approximately takes on its maximum value Q(ﬁ,r,s)@(ﬁ,r,s):—hzwz. a7
[7oud/E(T). We emphasize again that the(r) used to .
evaluate); is determined, to this level of approximation, in ~ We now explain the ingredients of E(L6). The 7, are

the absenceof any pinning center aR. In terms of the co- Pauli matrices in particle-hole space. The self-energy
efficients (5)—(7), the temperature-dependent coherenceA(k,r) is given by

length ¢(T) is given by ~ ~
A(k,r)=iA1(k,r)Tl+iAz(k,r)Tz, (18

2.2 R R

“L_ (14) whereA (k,r) andA,(k,r) are, respectively, the imaginary
kgTe(1=T/Te) and the real parts of the order paramesfi,r). The impu-
rity t matrix is determined from the following equation:

K.
2(T)~ 3
LR

We use this gradient to estimagg (vortex atR). However,
Q;(vortex atr =) must be dominated by thigy|? term in N(0)
(11) since in this case there are no local gradients near the t(e)=v+
pinning center.

v Aa L A A
Jd2kn(k)gim(k,r=R,s)t(s). (19

Our estimate foiEinqing is finally The impurity potential is taken to be purely wave. Fi-
5 nally, the “intermediate” progagatog(K,r,e) is deter-
| Mouid T mined from the impurity-free equations of motion

Epinning= - W y1(1- |<¢>|2)+ 72( 1- T_) )
(195

. e . A mn A
(Is—EVF(k)-A(r))Ta—A(k.r),gim(k,r,s)
where y, and vy, are dimensionless constants of order 1.

v, originates from theg »|? term in Eq.(11), and represents +iVe(K) - V(K1) =0, (20
6T, fluctuations. This term clearly vanishes for an isotropic
(s-wave pairing state. Its temperature dependence is due to gim(ﬁ,r,g)@im(ﬁ,r,s): — %272, (21

| 7oul >~ (Tc—T). 7, originates from the gradient terms in

Eqg. (11), and represent$/ fluctuations. The temperature  The change in the free energy due to the impurity is de-
dependence of this term is proportional @, T)2. Near termined from the following expression:

T. it is clearly weaker than the preceding term, except in the

i i N(O)kgT
case of amostly) isotropic order parameter. 0= ( ) B f ™ E d2kn
IV. DERIVATION
5 A -
In this section we sketch the microscopic derivation of the X f d*r TrLg(k.r.e, M)Ak, (22

main result, Eq.(11). Thuneberg, Kurkijevi, and Rainer

(TKR) have explained the basic method for computing theVhere Tt is a trace in particle-hole space, and
free energy of a superconductor in the presence of add(K.re\)= §(k,r,eN) = Gin(k,r e N).

impurity.® For our purposes, we generalize their formulation ~ Note the following points. o

to the case of &-dependent order parameter and a general (1) In evaluating bottg(k,r,e) andGi(k.r,¢) via Egs.
Fermi surface. (16)—(17) and(20)—(21), and in evaluating); with Eq. (22),

In the quasiclassical approach of TKR, the single-particleve use the order paramet&(k,r) which minimizes the free
propagatorg(k,r,e) is the key quantityr represents the energy in theabsenceof the impurity. That is, theA(k r
mean coordinater¢+r,)/2 as the particle propagates from which we require is obtained by minimizin@, from Eq.

r, to r,, while k is the Fourier transform of the relative (4). This provides the Ieadmg contribution £, in terms of
coordinater,;—r,. The primary achievement of the quasi- the small parameter/&5.

classical formulation is the coarse graining of irrelevant in- (2) Equation (22) employs a dimensionless coupling-
formation, which leads tk being evaluated only at the constant integration ovex. g(\) and gi,(\) here denote
Fermi surfacé® We denote this ak. Thee are Matsubara Propagators which are determined using the rescaled order
energies. For singlet pairing, the spin indices become redurparametenA (k,r) —NA(K,r).
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To evaluate (22, we adopt the GL assumption that where
A(k,r) is a slowly varying function of. This allows us to )
solve for gi(Kk,r,e) in terms of a gradient expansion of i: N(O) v c= c
A(K,r). The expression fogi(K,r,¢) is then used to com- 27 1+N*0)7m*v*" N(O)7
pute thgt matrix. We also employ_ a gradlent_expansmn quo obtain the single impurity limit of23), we expand to first
A(k,r) in Eg.(22. In these expansions short distance details,,qer inz/27. This gives our previous “bulk” result of Eq.

are lost, but information is retained on length scales suitabl?s) plus an additional impurity correctiodK; . Making the
to the GL theory. The algebra in all of these steps is ConSid'singIe-impurity substitution foc. K. becollines
] ij

erably simplified by keeping only terms of lowest order.

(24)

oh28%(r—R) ,
V. DISCUSSION 5Kij—>96(k—BTc)3<vFivFj(¢<¢>*>+ ¢*(d)—3[¢]%)).

The main result of this paper is E(lL1), which expresses (29

the correction to the free energy due to an isolated impurityThis correction term, inserted intd), becomes the gradient
This formula is valid for a small impurity, whose cross sec- gntribution t0Q; .
tion o satisfiesos<£5. However, there is no requirement — Note however that a further “integration by parts” is re-
that the impurity potentiab be small. Equatiori1l) allows  quired to convert this “intuitive” correction into the combi-
us to estimate the pinning energy of a vortex line, as givemation of gradient terms of Eq11). A weakness of the in-
by Eq. (15). _ _ tuitive approach is that this decomposition is not unique; the
As a final point, we note that there is a second way tOraction of (D;7)(D} #*) which should be transformed into
derive Eq.(11), as discussed by Thunebérgln this intui- 77*(D;D;7), via the integration by parts, can only be speci-
tive method, we start with the formula for the impurity- fieq by microscopic theory. However, in spite of these limi-
averaged GL free energy, and take its low concentratioRations, the intuitive derivation d®; remains instructive, and
limit. We then replace the impurity concentratienby the  oyen provides the correct result in the limit considered by
single-impurity form: ¢—&%(r—R). We illustrate this Thuneberg.
method for one of the terms in E(L1), namely the gradient

term.
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