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In the presence of a single impurity, the Ginzburg-Landau free-energy functional for a superconductor
acquires extra terms. Using microscopic theory, we determine the structure of these terms and their coeffi-
cients. Our calculation is very general: we assume ak̂-dependent order parameterD( k̂), which transforms
according to any one-dimensional irreducible representation of the crystalline point group. This representation
may be conventional or unconventional, as appropriate to the current models of high-Tc superconductors. We
treat an arbitrary Fermi surface. The physical significance of the theory is discussed, with emphasis on vortex
pinning. We estimate the pinning energy of a single vortex.@S0163-1829~96!50418-2#

I. INTRODUCTION

The Ginzburg-Landau ~GL! free-energy functional,
VGL , is widely used to analyze problems in superconductiv-
ity, particularly situations in which the order parameter is
spatially varying. Microscopic theory shows that certain
types of disorder, such as small pinning centers, can be taken
into account by adding extra terms toVGL . These terms can
then be given a physical interpretation. For example, an extra
term proportional touDu2, whereD is the order parameter, is
referred to asTc disorder. An extra term involvingu“Du2 is
referred to as mean free path (5l ) disorder.

Some years ago, Thuneberg presented a microscopic
theory which showed how small scattering centers were re-
flected inVGL .

1,2 For the case of ak-independent,s-wave
order parameter, he found that a single impurity induced an
extra term inVGL of the u“Du2 form. A further calculation,
involving a particular type ofd-wave order parameter, found
that in this more complex situation,VGL acquired both
uDu2 and u“Du2 terms, revealing bothTc disorder and mean
free path disorder.

From this theory it is possible to estimate pinning ener-
gies of single vortices. In a conventional pinning theory,
small defects of sized!j0 , with j0 the zero-temperature
coherence length, cause pinning energies proportional to
d3. However, the Thuneberg theory suggests much stronger
pinning,3 proportional tod2j0 . Here,d

2 is proportional to
the quantum mechanical scattering cross sectionssc dis-
cussed below. The theory also predicts the temperature de-
pendencies of the pinning energy, with distinct estimates for
dl anddTc pinning.

These results have been applied in several laboratory sys-
tems. In the high-Tc superconductors, oxygen vacancies play
an important role as point defects.4 The temperature depen-
dencies given by Thuneberg appear to be well borne out for
this type of disorder.5, 6 Line defects, such as screw disloca-
tions, have also been investigated in the high-Tc’s.

7 The de-
pendence of the pinning energy on the defect length scale
d has also been confirmed.8 In all of these experiments con-
clusions may only be inferred by means of collective pinning
theory,9 leaving some flexibility for their interpretation. The
investigation of the pinning of single vortices has proven

difficult.10 However, the advent of tunneling and force mi-
croscopies should open new doors in this field in the near
future.

The distinct temperature dependencies of vortex pinning
in the presence of isotropic or anisotropic order parameters
makes this issue timely due to the current debate over the
symmetry of the high-Tc pairing state. It is interesting to note
that the most concentrated study of the temperature depen-
dence of collective pinning in the yttrium based compounds
is consistent with exclusively isotropic symmetry.6 Further
investigation of single-vortex pinning, coupled with the re-
sults derived below, could clarify this important point.

In this paper, we extend Thuneberg’s results to a more
generalk̂-dependent order parameter. We consider a singlet
order parameter of the form

D~ k̂,r !5h~r !f~ k̂!. ~1!

Here, f( k̂) is a normalized basis function for a one-
dimensional representation of the crystalline point group. We
perform our calculation for an arbitrary functionf( k̂), and
an arbitrary Fermi surface; Eq.~11! is our main result.

In Sec. III we use our result, Eq.~11!, to estimate the
pinning energy of a vortex core to an impurity. This impor-
tant application is given by Eq.~15!. An interesting concep-
tual point which emerges from our work is the following.
There is an intuitive method of deriving the single-impurity
contribution toVGL . In this approach, one starts with the
impurity-averaged formula forVGL , and isolates the one-
impurity limit. In the cases previously considered, this ap-
proach led to the same answer as that generated by the mi-
croscopic theory. However, we find that for the more general
case considered in this paper, there is an ambiguity associ-
ated with the intuitive approach, which can only be resolved
via the complete single-impurity theory. This point is dis-
cussed in Sec. V.

In the context of the high-Tc superconductors, various
forms forf( k̂) are currently of great interest. One focus is a
broken symmetry statef( k̂) whose Fermi surface average
vanishes.11 A simple example of a function displaying this
symmetry is

fd~ k̂!;~kx
22ky

2!. ~2!
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There is also great interest inf( k̂)’s which have the full
crystal symmetry, but change sign as a function ofk̂.12 Both
symmetry types are encompassed in the following analysis.

II. RESULTS

In this section we present our results. The derivation is
provided in Sec. IV. We write the GL free energy in the
following form:

VGL5Vb1V i . ~3!

The first term,Vb , is the usual bulk GL free energy

Vb5E d3r $auhu21buhu41 1
2Ki j ~Dih!~Dj*h* !%. ~4!

Here, the gauge-invariant derivative is defined by
D[“12ieA/\c.

Within the usual Fermi-liquid theory of superconductivity,
we can derive the following values for the coefficients in
Vb :

Ki j5
7\2N~0!z~3!

8p2kB
2Tc

2 ^vFivF j ufu2&, ~5!

a5N~0!
T2Tc
Tc

, ~6!

b5
7z~3!N~0!

16p2kB
2Tc

2 ^ufu4&. ~7!

Here,N(0) is the total density of states at the Fermi surface,
and vF( k̂) is the Fermi velocity atk̂. The Fermi surface
average of a quantityF( k̂) is given by

^F&[E
FS
d2k̂n~ k̂!F~ k̂!, ~8!

wheren( k̂) is the angle-resolved density of states atk̂, nor-
malized to 1:

E
FS
d2k̂n~ k̂!51. ~9!

We now introduce an impurity at positionR. For simplic-
ity, we take the impurity potential to bes wave with strength
v. We define a dimensionless parameters as

s5
N2~0!p2v2

11N2~0!p2v2
. ~10!

In this notation the cross section of the impurityssc is pro-
portional tos/kF

2 . We assume thatssc!j0
2 , wherej0 is the

zero-temperature correlation length; this furnishes the key
small parameter beyond the usual assumptions of quasiclas-
sical theory.13

To leading order inssc/j0
2 , the termV i is evaluated ac-

cording to the following recipe. We first obtain the solution
h(r ) which minimizesVb . This is then inserted into the
following expression which is evaluated atr5R:

V i5
s

4kBTc
uh~R!u2~12u^f&u2!1

s

192~kBTc!
3uh~R!u4@23^ufu4&12^f&^f* ufu2&12^f* &^fufu2&2112s~12u^f&u2!2#

2
s\2

192~kBTc!
3 ^ufu2uvF•Dh~r !u2& r5R1

s\2

192~kBTc!
3 @h* ~R!^~ ufu22f^f* &!~vF•D!2h~r !& r5R1 c.c.#. ~11!

V i represents the change in free energy due to the presence
of the impurity located at positionR. Note that̂ ufu2&51 by
normalization, so thatu^f&u<1, and^ufu4&>1.

Several points are worth stressing.
~1! In general,V i contains gradient terms, and terms pro-

portional touhu2 anduhu4. Close toTc , when the GL expan-
sion of the free energy is valid, theuhu2 term is always larger
than theuhu4 term, since the latter carries an additional factor
of uhu2/(kBTc)2. This differs from the situation for the bulk
free energyVb , in which theuhu2 and theuhu4 terms are of
comparable size.14

~2! Whenf( k̂) is constant and equal to 1 for allk̂, the
uhu2 anduhu4 terms both vanish, leaving only a single gradi-
ent term. If we also consider a spherical Fermi surface we
obtain in this limit

V i~ isotropics wave!52
s\2vF

2

576~kBTc!
3uDh~r !ur5R

2 . ~12!

This is Thuneberg’s original result, and reflects Anderson’s
theorem:15 the thermodynamics of an isotropics-wave super-
conductor is unaffected bys-wave impurity scattering.

~3! For an arbitraryf( k̂), one may ask which terms
dominate inV i , the gradient terms, or the term proportional
to uhu2? The answer is that theuhu2 term is always more
important unlessu^f&u is close to 1~see previous point!. In
that case, it is possible for the gradient term to dominate.
However, the largest valueuDhu can assume is typically of
order uhbulku/j(T), where uhbulku5Aa/2b and j(T) is the
temperature-dependent coherence length.

~4! For an unconventional order parameter, we have
^f&50. In this case theuhu2 term is always the largest since
h(r ) never varies with a characteristic length smaller than
j(T). Note thatj(T) may be anisotropic.

~5! We emphasize that the form ofV i in Eq. ~11! should
not be used to obtain GL differential equations in the usual
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way, unless further justification is provided. We plan to ad-
dress this point in a future publication.

III. VORTEX PINNING

We now use the result~11! to discuss the pinning energy
of a vortex line. This is the energy which makes it favorable
for a vortex core to be located at the impurity siteR. The
pinning energyEpinning is defined as

Epinning5V i~ vortex atR!2V i~ vortex at`!. ~13!

To estimate this, we note that near the vortex core,
uDhur5R approximately takes on its maximum value
uhbulku/j(T). We emphasize again that theh(r ) used to
evaluateV i is determined, to this level of approximation, in
the absenceof any pinning center atR. In terms of the co-
efficients ~5!–~7!, the temperature-dependent coherence
lengthj(T) is given by

j2~T!;
Ki j

uau
;

\2vF
2

kB
2Tc

2~12T/Tc!
. ~14!

We use this gradient to estimateV i(vortex atR). However,
V i(vortex atr5`) must be dominated by theuhu2 term in
~11! since in this case there are no local gradients near the
pinning center.

Our estimate forEpinning is finally

Epinning52
suhbulku2

kBTc
Fg1~12u^f&u2!1g2S 12

T

Tc
D G ,

~15!

where g1 and g2 are dimensionless constants of order 1.
g1 originates from theuhu2 term in Eq.~11!, and represents
dTc fluctuations. This term clearly vanishes for an isotropic
(s-wave! pairing state. Its temperature dependence is due to
uhbulku2;(Tc2T). g2 originates from the gradient terms in
Eq. ~11!, and representsdl fluctuations. The temperature
dependence of this term is proportional to (Tc2T)2. Near
Tc it is clearly weaker than the preceding term, except in the
case of a~mostly! isotropic order parameter.

IV. DERIVATION

In this section we sketch the microscopic derivation of the
main result, Eq.~11!. Thuneberg, Kurkija¨rvi, and Rainer
~TKR! have explained the basic method for computing the
free energy of a superconductor in the presence of an
impurity.3 For our purposes, we generalize their formulation
to the case of ak̂-dependent order parameter and a general
Fermi surface.

In the quasiclassical approach of TKR, the single-particle
propagatorĝ( k̂,r ,«) is the key quantity.r represents the
mean coordinate (r11r2)/2 as the particle propagates from
r1 to r2 , while k is the Fourier transform of the relative
coordinater12r2 . The primary achievement of the quasi-
classical formulation is the coarse graining of irrelevant in-
formation, which leads tok being evaluated only at the
Fermi surface.16 We denote this ask̂. The « are Matsubara
energies. For singlet pairing, the spin indices become redun-

dant, and we may takeĝ to be a 232 matrix in particle-hole
space.

To determineĝ( k̂,r ,«) with an impurity at r5R, we
solve the following equation of motion:

F S i«2
e

c
vF~ k̂!•A~r ! D t̂32D̂~ k̂,r !,ĝ~ k̂,r ,«!G

1 i\vF~ k̂!•“ĝ~ k̂,r ,«!5@ t̂~«!,ĝint~ k̂,r ,«!#d3~r2R!,

~16!

along with the normalization condition

ĝ~ k̂,r ,«!ĝ~ k̂,r ,«!52\2p2. ~17!

We now explain the ingredients of Eq.~16!. The t̂ i are
Pauli matrices in particle-hole space. The self-energy
D̂( k̂,r ) is given by

D̂~ k̂,r !5 iD1~ k̂,r !t̂11 iD2~ k̂,r !t̂2 , ~18!

whereD1( k̂,r ) andD2( k̂,r ) are, respectively, the imaginary
and the real parts of the order parameter,D( k̂,r ). The impu-
rity t̂ matrix is determined from the following equation:

t̂~«!5v1
N~0!v

\ E d2k̂n~ k̂!ĝint~ k̂,r5R,«! t̂~«!. ~19!

The impurity potentialv is taken to be purelys wave. Fi-
nally, the ‘‘intermediate’’ progagatorĝint( k̂,r ,«) is deter-
mined from the impurity-free equations of motion

F S i«2
e

c
vF~ k̂!•A~r ! D t̂32D̂~ k̂,r !,ĝint~ k̂,r ,«!G

1 ivF~ k̂!•“ĝint~ k̂,r ,«!50, ~20!

ĝint~ k̂,r ,«!ĝint~ k̂,r ,«!52\2p2. ~21!

The change in the free energy due to the impurity is de-
termined from the following expression:

V i5
N~0!kBT

\ E
0

1

dl(
«
E
FS
d2k̂n~ k̂!

3E d3r Trt@dĝ~ k̂,r ,«,l!D̂~ k̂,r !#, ~22!

where Trt is a trace in particle-hole space, and
dĝ( k̂,r ,«,l)[ĝ( k̂,r ,«,l)2ĝint( k̂,r ,«,l).

Note the following points.
~1! In evaluating bothĝ( k̂,r ,«) and ĝint( k̂,r ,«) via Eqs.

~16!–~17! and~20!–~21!, and in evaluatingV i with Eq. ~22!,
we use the order parameterD( k̂,r ) which minimizes the free
energy in theabsenceof the impurity. That is, theD( k̂,r )
which we require is obtained by minimizingVb from Eq.
~4!. This provides the leading contribution toV i in terms of
the small parameterssc/j0

2 .
~2! Equation ~22! employs a dimensionless coupling-

constant integration overl. ĝ(l) and ĝint(l) here denote
propagators which are determined using the rescaled order
parameterD( k̂,r )→lD( k̂,r ).
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To evaluate ~22!, we adopt the GL assumption that
D( k̂,r ) is a slowly varying function ofr . This allows us to
solve for ĝint( k̂,r ,«) in terms of a gradient expansion of
D( k̂,r ). The expression forĝint( k̂,r ,«) is then used to com-
pute thet̂ matrix. We also employ a gradient expansion of
D̂( k̂,r ) in Eq. ~22!. In these expansions short distance details
are lost, but information is retained on length scales suitable
to the GL theory. The algebra in all of these steps is consid-
erably simplified by keeping only terms of lowest order.

V. DISCUSSION

The main result of this paper is Eq.~11!, which expresses
the correction to the free energy due to an isolated impurity.
This formula is valid for a small impurity, whose cross sec-
tion ssc satisfiesssc!j0

2 . However, there is no requirement
that the impurity potentialv be small. Equation~11! allows
us to estimate the pinning energy of a vortex line, as given
by Eq. ~15!.

As a final point, we note that there is a second way to
derive Eq.~11!, as discussed by Thuneberg.1,9 In this intui-
tive method, we start with the formula for the impurity-
averaged GL free energy, and take its low concentration
limit. We then replace the impurity concentrationc by the
single-impurity form: c→d3(r2R). We illustrate this
method for one of the terms in Eq.~11!, namely the gradient
term.

In the presence of a densityc of impurities, and for a
singlet order parameter, the coefficientKi j in Eq. ~4! is re-
placed by17

Ki j5N~0!pkBTc\
2(

«.0

^vFivF j uf1\^f&/2t«u2&
~«1\/2t!3

, ~23!

where

\

2t
5

N~0!pv2

11N2~0!p2v2
c5

s

N~0!p
c. ~24!

To obtain the single impurity limit of~23!, we expand to first
order in\/2t. This gives our previous ‘‘bulk’’ result of Eq.
~5! plus an additional impurity correctiondKi j . Making the
single-impurity substitution forc, dKi j becomes

dKi j→
s\2d3~r2R!

96~kBTc!
3 ŠvFivF j~f^f* &1f* ^f&23ufu2!‹.

~25!

This correction term, inserted into~4!, becomes the gradient
contribution toV i .

Note however that a further ‘‘integration by parts’’ is re-
quired to convert this ‘‘intuitive’’ correction into the combi-
nation of gradient terms of Eq.~11!. A weakness of the in-
tuitive approach is that this decomposition is not unique; the
fraction of (Dih)(Dj*h* ) which should be transformed into
h* (DjDih), via the integration by parts, can only be speci-
fied by microscopic theory. However, in spite of these limi-
tations, the intuitive derivation ofV i remains instructive, and
even provides the correct result in the limit considered by
Thuneberg.
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