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Magnetoplasma excitations in two-dimensional electron rings are studied using a hydrodynamic theory
based on the Thomas–Fermi–Dirac–von Weizsa¨cker approximation to the electronic ground state. This system
is found to support a rich spectrum of excitations including bulk and edge magnetoplasmons. Good agreement
between theory and experiment is found with respect to the magnetic-field dispersion of the modes and their
dependence on the ratio of the inner to outer ring diameters.@S0163-1829~96!51816-3#

In this paper we present a calculation of the magneto-
plasma excitations in two-dimensional electron rings. These
systems have recently been studied experimentally1 and have
been shown to exhibit excitations which have characteristics
of both quantum dots2 and antidot arrays.3 We make use of a
hydrodynamic approach which is based on the Thomas–
Fermi–Dirac–von Weizsa¨cker ~TFDW! approximation of
the equilibrium electronic structure. The method was previ-
ously developed4 in the context of three-dimensional~3D!
parabolic wells, where it was shown to provide a realistic
description of the magnetoplasma excitations in that geom-
etry. Our purpose here is to show that the same method can
also be used to account for the excitations in the ring geom-
etry and to provide an interpretation of the various modes
that have been observed experimentally. There have been a
few previous calculations in this geometry: two are self-
consistent field calculations with an idealized ring geometry5

and another is a hydrodynamic calculation6 in the so-called
fully screened limit. Neither of these apply directly to the
experimental situation of interest.

The experimental system studied previously1 consisted of
a two-dimensional electron gas with densityns52.3
31011 cm22, which was patterned into an array of rings
arranged on a square lattice. The rings were fabricated with
an outer diameter of approximately 50mm and an inner di-
ameter of either 12mm ~wide rings! or 30 mm ~narrow
rings!. As we shall show, the important geometrical param-
eter determining the character of the modes is the aspect ratio
of the inner to outer diameters.

Because of the large physical size of the experimental
rings and their proximity to a neutralizing positive back-
ground provided by ionized donor impurities, it is reasonable
to consider a model in which the electrons and positive back-
ground are confined to a plane. The positive background it-
self has the geometry of a ring with the desired aspect ratio
and is chosen to have a uniform density equal to that of the
electron gas in the experiments. With this definition of the
external electrostatic potential confining the electrons, the
equilibrium properties are determined from the TFDW en-
ergy functional
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wheren~r ! is the two-dimensional electron density distribu-
tion. The first term is the Thomas-Fermi kinetic energy, the
second term is the von Weizsa¨cker correction to the kinetic
energy, and the third term is the Dirac local exchange en-
ergy. The Thomas-Fermi and exchange7 energies are written
in a form suitable for a two-dimensional situation with coef-
ficients C15p/2 and C35

4
3A2/p, respectively ~we use

atomic unitse2/e5m*5\51 throughout!. In the von Weiz-
säcker coefficientC25lw/8, thelw parameter is chosen to
have the value 0.25, which was found in other applications to
provide the best agreement between the TFDW and full
density-functional calculations.8 The last two terms in Eq.
~1! are the Hartree and external energies.

The equilibrium density is found by minimizing
E[n] subject to the constraint of a fixed number of electrons
N. By defining the von Weizsa¨cker ‘‘wave function’’
c(r )5An(r ), the equilibrium condition is equivalent to the
solution of the Schro¨dinger-like equation,
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wherem is the chemical potential and
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Heref~r !5*dr 8n~r 8!/ur2r 8u is the Coulomb potential. The
self-consistent solution of Eqs.~2! and ~3! with the normal-
ization *drc2~r !5N yields the equilibrium wave function
c0(r ) and densityn0(r ).

The dynamics of the electrons in the presence of a per-
pendicular magnetic fieldB is described using the linearized
hydrodynamic equations,4
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where the density fluctuation isdn52c0dc and the internal
force fluctuation is

dF52“Fdveff1 1
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The term involving the ground-state Hamiltonian
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arises from the von Weizsa¨cker term in the energy func-
tional.

The solution of Eqs.~4!–~6! is achieved by expanding the
fluctuating variables (}e2 ivt) in a complete set of functions
defined byĥw i5m iw i . Specifically, we havedc5 ( iciw i
andc0f5( i f iw i with the expansion coefficients related by
f i5( j M̃ i j cj . The matrixM̃ i j follows from the definition of
f in Eq. ~6! and is given explicitly in our earlier work.4

Substitution of these expansions in Eqs.~4! and~5! with the
elimination of the velocity fieldv leads to the generalized
eigenvalue problem
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with
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Here,vc5eB/m* c is the cyclotron frequency. The solutions
of Eq. ~8! define the mode frequencies and corresponding
mode eigenvectors.

For the ring geometry with circular symmetry, the basis
functions have the formwnm~r !5unm(r )e

imu wherem is an
azimuthal quantum number andn is a radial index. In this
case,M̃nm,n8m8 andAnm,n8m8 are diagonal in them index and
Eq. ~8! reduces to an independent set of equations for eachm
value. The dipolar modes of interest havem561.

In Fig. 1 we show the dipole mode dispersion as calcu-
lated for rings withN5400. Although the absolute values of
the mode frequencies depend on the electron numberN, the
frequencies, scaled by the lowest nonzeroB50 eigenfre-
quencyv0 , are found to be approximatelyN independent as
a function of the scaled cyclotron frequency. When the theo-
retical and experimental results are plotted in this way, it can
be seen that there is a very good correspondence between the
observed mode frequencies and a subset of the theoretical
modes for both aspect ratios studied experimentally.

Since Eq.~8! is a cubic equation inv, the eigenfrequen-
cies appear in threes with one pair being degenerate atB50
and the third having a zero limiting frequency asB→0. The
latter modes are analogous to those found in the dot
geometry9 and will be discussed in more detail shortly. The
remaining modes which have a finite limiting value atB50
are of more experimental interest since only these have an

FIG. 1. Mode frequencies as a function of magnetic field;~a! is
for the wide ring ~d1 /d250.24! and ~b! is for the narrow ring
(d1 /d250.58!. The open circles are the experimental results~Ref.
1!, scaled by the zero-field frequency, as explained in the text. The
upper and lower branches starting fromvn /v051 correspond to
v01 andv02 , respectively; the next two branches with increasing
frequency correspond tov11 andv12 .

FIG. 2. Mode densities as a function of the radial distance for
thev02 mode~solid line! and thev01 mode~dashed line!. Panels
~a!, ~b!, and~c! correspond to magnetic fields ofB50, 2, and 4 T,
respectively; atB50 T both modes have the same density.
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observable oscillator strength when excited by a uniform ex-
ternal electric field. These modes, denoted byvn6 , are the
dipolar magnetoplasma excitations. The indexn50,1,... rep-
resents the number of radial nodes in the mode densities,
while the ‘‘1’’ and ‘‘ 2’’ designation distinguishes the coun-
terclockwise and clockwise sense of angular rotation, respec-
tively. The pair of frequencies,v06 , decreasing with in-
creasingB for largeB correspond to edge magnetoplasmons
~EMP!. The remaining modes withnÞ0 asymptotically ap-
proach the cyclotron frequency and represent bulk magneto-
plasmons.

The mode density ofv06 at B50 is shown in Fig. 2~a!.
The density distribution is almost symmetric with respect to
the midpoint of the ring and is the analogue of the 1D plas-
mon in a straight 1D wire with a wavelength equal to the
mean circumference of the ring@l. 1

2p(d11d2)]. The slight
asymmetry is a consequence of the wire being bent into a
ring. In Figs. 2~b! and 2~c! we show thev06 mode densities
at higher fields. In contrast to the parabolic center-of-mass
modes which have thesamedensity distribution for both
modes at all magnetic fields,9,10 the ringv06 modes are the
same only atB50 and then display a very strong variation
with increasing field. At higher fields they evolve into
EMP’s localized at the inner~v01! and outer~v02! edges of
the ring. The frequency splitting can be understood simply in
view of the wave-vector dispersion@v(k)}k ln(1/ukau)# of
the EMP in the semi-infinite plane11 and the fact that the ring
EMP’s have different effective wave numbers,k.2/d1 for
v01 and k.2/d2 for v02 . This also explains why the
modes approach each other with increasing aspect ratio, as is
evident on going from Figs. 1~a! to 1~b!. In the linear strip
geometry~d1 /d2→1!, the two EMP’s propagating in oppo-
site directions on the two sides of the strip are degenerate for
the same wave vector.

In Figs. 3~a!–3~c! we show the mode densities for the
v16 modes. These modes have a single radial node and are
therefore dipolar in characteracrossthe width of the ring.
With increasing magnetic field thev11 mode density tends
to concentrate on the outer edge of the ring, whereas the
v12 mode has the opposite tendency. These modes are the
first in a series of bulk magnetoplasmons with an increasing
number of radial nodes.

Of all the modes displayed in Fig. 1, only a few are
strongly excited by a uniform electric field. To illustrate this
we show in Fig. 4 the power absorption as a function of the
excitation frequency at magnetic fields of 1, 2, and 4 T
(vc /v050.68, 1.36, and 2.72!. These results are obtained by
adding an additional driving term to the right-hand side of
Eq. ~5!, together with a phenomenological damping term
which gives the resonances a finite width. In an earlier study
of electron dots,10 we found that a damping rate inversely
proportional to frequency provided the most realistic descrip-
tion of the observed widths. This same assumption is used
here, although it should be stressed that whether or not the
damping has this form has no influence on the relative
strength of the resonances. At zero magnetic field, thev06

modes are degenerate and carry the bulk of the oscillator
strength, although the strength of the degeneratev16 modes
is also appreciable. With increasing magnetic field, the
v01 mode becomes weaker relative to thev02 mode, and
both of these modes lose intensity with respect to thev16

modes. Although the twov1 modes start off with equal in-
tensity, thev12 mode rapidly loses strength relative to the
v11 mode so that byB54 T, thev12 mode is unobservable.
This is precisely the behavior seen experimentally in the

FIG. 3. As in Fig. 2, but for thev11 mode~solid line! and the
v12 mode~dashed line!.

FIG. 4. The calculated power absorption for the wide ring as a
function of the excitation frequency at magnetic fields of~a! 1 T,
~b! 2 T, and~c! 4 T ~vc /v050.68, 1.36, and 2.72, respectively!.
The various peaks are identified by the mode index.
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wide ring for which thev12 branch terminates atvc /v0
.1.5. Of the remaining calculated resonances, thev21

mode is the strongest and presumably corresponds to one of
the higher frequency experimental modes displayed in Fig.
1~a!.

Finally, we turn to the series of modes which start at zero
frequency and disperse linearly withB at small fields. As
Fig. 4 shows, none of these modes has observable dipole

oscillator strengths and no evidence of them was seen experi-
mentally. They are analogous to the modes first found in
parabolically confined quantum dots9 and more recently at
the edge of a two-dimensional12,13 and three-dimensional
electron gas.4 In the 2D geometry, these modes have a linear
wave-vector dispersion and are therefore referred to as
‘‘acoustic’’ excitations. As emphasized by Aleiner and
Glazman,12 their existence depends crucially on the fact that
the electron density varies smoothly at the edge of the
bounded electronic system. In Fig. 5 we illustrate the typical
character of some of these modes at a magnetic field of 4 T.
In comparison to Fig. 2~c!, it can be seen that the mode
densities have a node in the surface region and are therefore
dipolar in character. In this sense, these modes can be clas-
sified as multipolar EMP’s in contrast to the monopolar
v06 modes.

In summary, we have shown that the TFDW hydrody-
namic theory provides a good description of the magneto-
plasma excitations in electron rings. In particular, the theory
accounts for the observed dependence of the magnetic-field
dispersion on the aspect ratio. Our calculation of the power
absorption confirms the original classification1 of the modes
observed experimentally, and the explicit calculation of
mode densities provides a more complete understanding of
the physical nature of these excitations.
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FIG. 5. Examples of the dipole edge magnetoplasmons for the
wide ring atB54 T. The inner~dashed! EMP rotates counterclock-
wise and the outer~solid! EMP clockwise. The small ripples are an
artifact of the basis set truncation.
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