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We calculate the second-harmonic-generation spectra of Si~100! and~111! surfaces introducing the nonlin-
ear surface local-field effect. Our model consists of four interpenetrated fcc lattices of polarizable bonds, each
of which is centrosymmetric, but responds nonlinearly to the spatial inhomogeneities of the polarizing local
field. The gradient of the field induced at a bond due to the dipole moment of a neighbor leads to a second-
order polarization that is canceled out in the bulk after summing over all other bonds, but it is not compensated
at the surface, where it leads to a large nonlinear macroscopic response. Our model parameters are fitted to the
nonlinear anisotropy measured at 1.17 and 2.34 eV. The linear anisotropy spectra calculated for the Si~110!
surface are in accordance with reflectance difference measurements. The same parameters yield a nonlinear
spectrum that has peaks at 1.65 eV for a strained~100! surface and at 1.75 eV for a~111! surface, in agreement
with recent experimental results.@S0163-1829~96!53516-2#

Surface optical second-harmonic generation~SHG! is a
useful nondestructive surface probe, since the electric-
dipolar quadratic response within the bulk of centrosymmet-
ric systems is symmetry forbidden. Therefore a large portion
of the light with frequency 2v reflected from an interface
illuminated with monochromatic radiation atv is surface
originated. An added advantage is the possibility of access-
ing surfaces such as buried interfaces, out of ultrahigh
vacuum conditions and within arbitrary transparent ambients.
However, the efficiency of the surface SHG is extremely
low, typically of the order of 10220 cm2/W, and therefore
very powerful laser systems are required for its observation.
For this reason, most experiments have been performed at a
few selected frequencies such as the intense 1.17-eV line of
the Nd-YAG ~yttrium aluminum garnet! laser and its second
harmonic, emphasizing the polar and azimuthal angular de-
pendence of the signal for different crystal surfaces and com-
binations of incoming and outgoing polarizations1–11over its
frequency dependence. The possible angular dependence of
SHG is well understood in terms of the independent compo-
nents of the bulk and surface nonlinear susceptibilities and
their symmetry originated constraints.12–14

Recently, the development of high power tunable lasers
with a wide spectral range has stimulated experiments in
nonlinear surface spectroscopy. In particular, SHG spectra
have been measured for different clean, oxidized and
adsorbate-covered surfaces of Si.15,16 These spectra show a
well developed peak close to 2\v53.3 eV, whose position
and relative insensitivity to surface conditions suggests that
it is originated from a bulk transition between the valence
and conduction bands which becomes SH electric-dipolarly
active due to distortions in the crystalline structure close the
surface.15

The purpose of the present paper is the development of a
simple quantitative theory for the SHG spectra of semicon-
ductor surfaces accounting in an approximate way for the

bulk transitions and the crystalline symmetry. A previous
successful theory for the surface linear response of natural Si
incorporated the geometrical arrangement of the atoms at the
surface through the surface local-field effect.17 In this paper
we extend that theory to the nonlinear response. We expect
the local-field effect to have large consequences in SHG
through the following mechanism: Consider a localized po-
larizable entity and a semi-infinite crystal made up of its
replicas. If each entity is centrosymmetric it would have no
electric-dipole-allowed SH transition, though it may have
electric-quadrupolar and magnetic-dipolar contributions pro-
portional toEW i¹EW i , whereEW i is the local field acting at site
i . The external field has a very slow spatial variation whose
scale is of the order of the wavelengthl, although the field
induced by a nearby entityj may have a very large variation,
with a scale determined by the distance fromj to i , r i j which
of course is of atomic dimensionsa. Different neighbors
contribute to the gradient¹EW i along different directions, so
that, if the sitei is itself centrosymmetric, these large gradi-
ents will cancel out among themselves, leaving only a small
residual gradient of orderE /l. This cancellation is no longer
possible at the surface, whereu¹EW u'E /a, yielding a large
SH surface polarization. When written in terms of the mac-
roscopic fieldEW this surface polarization is then proportional
to EWEW /a which corresponds to a large surface-allowed dipo-
lar SH processes. In this paper we develop the model above
into a full calculation for Si surfaces, building upon a previ-
ous paper by Schaich and Mendoza.18

The semiconductor that we study has a simple diamond-
like structure, with a tetrahedron as the basic unit. This unit
can be viewed as a cube with one atom at the center linked
through four bonds to atoms sitting at alternate corners. The
diamond structure is constructed by replicating these four
bonds into four intercalated fcc lattices. The polarization in-
duced in the semiconductor originates from the displacement
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of its charge distribution, which has strong maxima at the
middle of each bond. Therefore, we model the crystal as a
collection of lattices of anisotropic cylindrically symmetric
centrosymmetric polarizable bonds. The nonlinear polariza-
tion pW nl

(tot)(2v) of thenth site of the fcc lattice corresponding
to thelth bond orientation (l51, . . . ,4) isgiven by

pW nl
~ tot!(2v)5pW nl

~nl!(2v)1aJ l~2v!•F12(
n8l8

NJ nln8l8:Q
J

n8l8
~nl! (2v)

1 (
n8l8

MJ nln8l8•p
W
n8l8
~ tot!

~2v!G , ~1!

where@pnl
(nl)(2v)# i5(x i jkl

(p)l1x i jkl
(m)l)E j¹kE l is the nonlinear

polarization at 2v due to the interaction of a single bond
with nonlinear electric and magnetic dipolar susceptibility
tensorsxJ (p) andxJ (m) with the spatially varying linear local
field EW evaluated at the centerrWnl of the bond,aJ l is the
linear anisotropic polarizability of the bond, with compo-
nentsa i anda' along and perpendicular to the bond’s axis,
and the term within the square brackets is the local field at
2v and it contains a quadrupole originated field and the field
induced by the total nonlinear dipole moments of the other
bonds. The quadrupole moment isQJ nl

(nl)(2v)5xJ (Q)l:EWEW

where x (Q)l is the quadrupolar susceptibility of thelth
bond, and the dipole-dipole and quadrupole-dipole interac-
tion tensors are

MJ nln8l85¹¹
1

urW2rWn8l8u
U
rW5rWnl

, ~2!

NJ nln8l852¹¹¹
1

urW2rWn8l8u
U
rW5rWnl

. ~3!

The linear local field is

EW nl5FEW ~ext!~rWnl!1 (
n8l8

MJ nln8l8•p
W
n8l8~v!G , ~4!

where the linear polarization obeyspW nl(v)5aJ l(v)•EW nl .
For an anisotropic harmonic oscillator there are

simple expressions relating the nonlinear susceptibilities
xJ (p), xJ (m), and xJ (Q) to the linear polarizability at the
fundamental and at the second-harmonic frequenciesaJ (v)
and aJ (2v), namely, x i jkl

(p) (v)5@a i l (2v)a jk(v)
1a ik(2v)a j l (v)]/(2e), x i jkl

(m)(v)53@a i l (2v)a jk(v)
2a ik(2v)a j l (v)]/(2e), and x i jkl

(Q)(v)5@a i l (v)a jk(v)
1a ik(v)a j l (v)]/(2e). We assume these relations to hold
approximately for the bond susceptibilities of a Si crystal and
further assume thataJ l is independent of position. Therefore,
in our model we incorporate only the surface modification to
the local fields, and we ignore any other surface modification
to the linear and nonlinear response such as those due to
transitions involving surface states.

Due to the long wavelength of light, within the bulk the
linear polarizationpW nl(v) is almost independent ofn. This
allows an analytical solution which relates the bulk dielectric
function e(v) to the principal polarizabilitiesa i and a' .
This relation is a generalization of the Clausius-Mossotti

~CM! relation to the diamond structure. Close to the visible
spectrum, we expect that the main contributions toa i can be
related to bonding-antibonding transitions, whilea' is due
to transitions involving atomic states with different symme-
try. We assume the latter have a larger resonant frequency
than the former. Therefore we assume thata'(v) may be
described by a Lorentzian centered at some relatively high
resonance frequencyv' with a weight characterized by a
frequency parametervp . Having chosen these parameters,
we solve the generalized CM relation for each frequency to
obtaina i(v) in terms of the experimentally measured bulk
dielectric functione(v).19 Having determined the polariz-
ability, and therefore also the nonlinear susceptibilities, we
solve the local-field equations to obtain firstpW nl(v), then
pW nl
(nl)(2v) and QJ nl

(nl)(2v), which substituted into Eq.~1!

yields the total nonlinear polarizationpW nl
(tot)(2v). The details

of this procedure will be described elsewhere.20 Finally, av-
eragingpW nl

(tot)(2v) we obtain the bulk and surface polariza-

tion PW (B)(2v) andPW (s)(2v) per unit volume and unit area,
respectively, and from them the nonlinear surface and bulk
susceptibilities and the SHG efficiencyR(2)(v), defined as
the quotient of the reflected intensityI r(2v) to the square
I i(v)

2 of the incident intensity.
We chose the parameters\v'57.17 eV and\vp51.68

eV in order to reproduce the anisotropy of the SHG of
Si~111! that has been measured for all possible combinations
of incoming and outgoings and p polarizations at
\v51.17 eV and 2.34 eV.1–4 Our value ofv' is of the
order of the transition energy between the atomic states of Si
3p2 3P with J50 and 3d3D0 with J51, in qualitative
agreement with our argument above.21 We have calculated20

with these parameters the surface-induced anisotropy of the
linear reflectance of Si~110! and found the result in agree-
ment with experiment22 and with a previous calculation
which employed only one fcc lattice of tetrahedral isotropic
polarizable entities.17

In Fig. 1 we showR(2)(v) calculated for light incident on
Si~100! at an angleu545° with the plane of incidence at
f530° from the@001# direction withp~in!P~out! polariza-
tion. To account for strain within the first few layers, we
have introduced a parameterD5d1 /dB21, wheredB is the

FIG. 1. SHG efficiencyR(2) as function of frequency for
Si~100!. The angle of incidence isu545°, the azimuthal angle is
f530°, and we chosep→P polarization. We presentR(2) for
D510.05,0,20.025,20.032,20.042,20.05.
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separation between consecutive fcc planes in the bulk, and
d1 the corresponding separation between the first and second
layers. For the bulk-truncated crystal (D50) we find a struc-
tureless spectrum, which is barely modified by stretching
d1 . However, if we shrinkd1 by as little as 5% a very well
developed peak appears at\v51.65 eV, with a width
\dv'0.14 eV, in excellent agreement with experiment. For
even larger contractions the height of the peak increases but
its position remains mostly unchanged. Therefore, it seems
that the surface local field alone is able to explain the experi-
mental findings on the flat, oxidized, strained Si~100! sur-
faces. Experiment shows a similar SHG spectrum for the
clean (231) reconstructed surface.15 A SHG spectrum cal-
culation for a reconstructed surface would be desirable to
understand the robustness of its structure. However, it would
be impossible within our present formalism without intro-
ducing an unacceptable number of additional parameters to
describe the polarizability of the topmost reconstructed layer.

In Fig. 2 we showR(2)(v) for Si~111! with u545° and
f530° from the@110# direction withp~in!P~out! polariza-
tion. In this case even the undistorted crystal presents a peak
at \v'1.75 eV. Notice the huge change of scale between
Figs. 1 and 2. The height of the latter peak is five orders of
magnitude larger than that of the former.

An analysis of the different bulk and surface components
of the nonlinear susceptibility reveals that the peak of
Fig. 1 originates from a corresponding peak inx i i '

(s)

5]2Pi
(s)(2v)/]Ei]E' , which is displayed in Fig. 3 for dif-

ferent values ofD. A similar analysis shows that the peak in
Fig. 2 has contributions fromx i i '

(s) , x' i i
(s) , andx i i i

(s) .
Finally, in Fig. 4 we show the polarization profile

@pW nl
(tot)(2v)# i corresponding to the efficiency maximum of

the ~100! face, i.e., the peak of Fig. 1. Notice that the total
nonlinear polarization is largest in the second crystalline
plane, after which it decays towards the negligible bulk po-
larization. This could explain the lack of sensitivity of this
resonant peak to the surface condition. We have recalculated
the SHG spectra modifying arbitrarily the surface polariz-
abilities and have found that the presence of the peak is very
robust,20 though its position is slightly shifted and its height

is diminished. A very large change, such as that expected for
a fully hydrogenated surface, would be necessary to remove
it.15,23

In summary, we developed a model for the surface SHG
of crystals with the structure of diamond which takes into
account the nonlinear polarization induced by the micro-
scopic spatial variation of the linear local field. The inputs to
our calculation are the bulk dielectric function, the geometry
of the crystal, and two parameters describing the response of
an individual bond in the direction normal to its axis. The
latter were fitted to several SHG anisotropy measurements
on the ~100! and ~111! surfaces and we verified that they
yield a linear reflectance difference spectrum for the~110!
surface in agreement with experiment. We remark that a
similar model with only one fcc lattice of isotropic polariz-
able entities,24,18each representing a tetrahedral arrangement
of bonds, cannot reproduce either the bulk SHG anisotropy
which is evident in the experiments on the~100! surface4 or
the peak at 3.3 eV. Although we have neglected all effects
due to the surface modification of the electronic structure, we
have obtained agreement with the first experimental spectra

FIG. 2. SHG efficiencyR(2) as a function of frequency for
Si~111!. The angle of incidence isu545°, the azimuthal angle is
f530°, and we chosep→P polarization. In this case,R(2) is for
the unstretched~111! surface.

FIG. 3. Surface nonlinear susceptibility Im(x i i '
(s) ) as a function

of frequency for Si~100! corresponding toD510.05,0,20.025,
20.032,20.042,20.05.

FIG. 4. Dipole moment Re@{ pW nl
(tot)(2v)} i# corresponding to the

peak of Fig. 1 forD520.05 as a function of the positionznl of
their centroid. We show results for each of the four bond orienta-
tions, l51–4 ~diamonds! and for their sum~crosses!. The four
bonds of the first plane are displaced from their nominal position by
5%. The vertical lines denote the nominal positions of the fcc~100!
planes. Notice that the maximum nonlinear polarization is at the
second planen52.
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available for different surfaces of Si. For a bulk truncated
~100! face we obtained a structureless spectrum which ac-
quired a well defined peak when we allowed for surface re-
laxation. For the~111! face a much larger peak at a nearby
frequency was found even without relaxation. In our calcu-
lation, the position of the peak differs from that of the bulk
interband transitions due to a local-field-induced shift. Our
results also suggest a possible explanation for the lack of
sensitivity of the shape SHG spectra on the surface treat-
ment, since they show that the total SH polarization peaks
below the first crystalline plane, and it extends for a few
other planes before vanishing into the bulk. Appreciable
modifications to the polarizability of the first layer change
the height of the resonant peak but shift only slightly its
position.

In conclusion, our results yield a plausible explanation for
the experimentally found SHG resonance. The peak in our
model does not arise from a SH transition that becomes di-
polarly allowed due to a lattice distortion.15 Rather, it comes
from the large uncompensated local-field gradient at the sur-

face and is therefore allowed even for a centrosymmetrical
bond, but within the noncentrosymmetrical environment of
the surface. According to our model, the peak observed on
the ~111! surface is present even without surface relaxation,
so its observation should not be interpreted as evidence for a
lattice expansion. On the other hand, the peak on the~100!
face only arises within our model in the presence of a surface
contraction. We remark that with the same parameters our
model yields agreement with linear optical anisotropy of
Si~110!, with the surface and bulk anisotropy of the SHG
from Si~111! and Si~100! at 1.17 eV and 2.34 eV, and with
thep→P SHG spectra of Si~111! and Si~100!. In this paper
we have restricted our attention to the surface local-field ef-
fect, and further theoretical developments would be neces-
sary to find the contributions to SHG from other effects
which might also be present.
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13G. Lüpke, D. J. Bottomley, and H. M. van Driel, Phys. Rev. B47,
10 389~1993!.
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