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We consider the effect of weak nonmagnetic disorder on two chains of interacting fermions~with and
without spins! coupled by interchain hopping. For the spinless case, interchain hopping increases localization
for repulsive interactions butstabilizesthe s-wave superconducting phase for attractive interactions. For the
case with spin, thed-wave phase arising from purely repulsive interactions in the clean system is destroyed by
an infinitesimal disorder, while for attractive interactions, thes-wave superconductivity is more resistant to
disorder than in the one-chain case. In each case we compute the localization length and the conductivity.
@S0163-1829~96!52616-0#

One-dimensional electronic systems are known to be the
simplest realizations of non-Fermi liquids, and to have ge-
neric properties known as Luttinger liquids.1 Despite the
good understanding of purely one-dimensional systems, the
effects of interchain hopping, allowing us to move from one
to higher ~two or three! dimensions, are much less known.
Whether non-Fermi-liquid properties can be retained even in
the presence of finite hopping or not is still a controversial
issue.2 As a theoretical understanding of quasi-one-
dimensional strongly correlated electronic systems~espe-
cially the crossover from Luttinger to Fermi liquid! is crucial
for the physics of organic conductors, there has been in re-
cent years, a growing interest in systems of coupled interact-
ing electron chains, and mostly in systems of two chains.
They present the advantage of allowing a careful study of the
effects of hopping by being tractable by powerful
analytical3–9 and numerical techniques.10 In addition, there
exists good experimental realizations of coupled spin chains
such as Srn21Cun11O2n ~Ref. 11! and VO2P2O7 ~Ref. 12!
compounds that will give coupled Hubbard chains upon dop-
ing. Although the complete phase diagram of such systems is
still under study, a generic property of a two-coupled-chains
system is the appearance of ad-wave-like superconducting
phase for repulsive interactions.

In this work we study the effects of nonmagnetic disorder
on two-chain systems, both for the case of spinless electrons
and for electrons with spins. Such a study is relevant for
various problems: first, in real two-chain systems, disorder
will be present, and it is therefore essential to know the sta-
bility of the phases found in the pure system, as for a one-
chain system an arbitrarily weak disorder destroys supercon-
ductivity except for exceedingly attractive interactions.13

Second, on a more theoretical level, the two-chain problem is
the simplest one for studying the effects of interchain hop-
ping onto the Anderson localization in the presence of inter-
actions, giving some clues into the unsatisfactorily under-
stood physics of such a transition in more than one
dimension. It also allows for the study of the effects of in-
teractions on persistent currents. Finally, classical systems of
coupled planes, studied in the context of vortices in type-II
superconductors,14 can be mapped to coupled quantum
chains so that the results and methodology developed here
are relevant for them. We show here that for the spinless

model the superconducting phase for attractive interactions is
stabletowards weak disorder, the opposite of what happens
for a one-chain system. For the model with spins and weak
enough attractive interactions an arbitrarily weak disorder
destroys the superconductivity, as in the one-chain case.
Nevertheless, the threshold in attraction strength to induce
superconductivity is much smaller for disordered two-chain
systems and can be reached for a pure Hubbard attraction, at
variance to the one-chain case.15 On the other hand, the
d-wave–type superconductivity found for repulsive interac-
tions is completely unstable with respect to arbitrarily weak
disorder. In two spinless chains, attractive interactionsre-
duce localization compared to the case of a single chain,
whereas repulsive onesenhancelocalization. For the case
with spin, two chains are always less localized than their
one-chain counterpart. For each case we also compute physi-
cal quantities such as localization length and conductivity.

Let us consider first two chains of spinless fermions
coupled by an interchain hoppingt' . Such a model can also
be mapped to two spin chains coupled by an exchangeX-Y
term, in the presence of a magnetic field. For simplicity we
will just consider here a nearest-neighbor interactionV since
longer-range interactions do not change the main physical
results. Details will be given elsewhere.16 The disorder is a
random on-site potentiale i ,p uncorrelated from site to site
and from chain to chain. The Hamiltonian then reads

H52t(
i ,p

ci ,p
† ci11,p1H.c.1V(

i
ni ,pni11,p

1t'(
i
ci ,1
† ci ,211H.c.1(

i ,p
e i ,pni ,p , ~1!

wherep521,1 is the chain index andi is the site index. It is
convenient to rewrite the Hamiltonian in a boson
representation.1 We therefore linearize the fermions disper-
sion relation aroundkF , introduce right (R) and left movers
(L) for each chain, and take the continuum limit
cn,r ,p→Aac r ,p(na) with r5L,R, p561 the chain index,
and a the lattice spacing. We use the bonding
c05(c11c21)/A2 and antibondingcp5(c12c21)/A2
bands base and introduce the densitiesr r ,0,p(x)
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5:c r ,0,p
† (x)c r ,0,p(x):. We then define the canonically conjugate fieldsfr,i and Pr,i via ]xfr,i52(p/

A2)(rL,01rR,06rL,p6rR,p) andPr,i51/A2(rR,06rR,p2rL,07rL,p) and the fieldur,i(x)5*2`
x Pr,i(x8)dx8. In terms of

these fields the Hamiltonian becomes, for the pure case (e i ,p50),

H5Hr1H i , Hr5E dx

2p FurKr~pPr!21
ur

Kr
~]xfr!2G ,

H i5E dx

2p FuiK i~pP i!
21

ui

K i
~]xf i!

2G1E dxt'
A2
p

]xf i1E dxF 2g'

~2pa!2
cos~A8f i!1

2gf
~2pa!2

cos~A8u i!G . ~2!

The expressions ofK,u,g in terms of the original parameters of the Hamiltonian can easily be obtained.9,16 For the puret-
V model one hasKr,1 (Kr.1) andgf,0 (gf.0) for repulsive~attractive! interactions andK i51 for all t,V. By adding
interchain interactions, one has access toKr.1 andgf,0 orKr,1 andgf.0. The complete phase diagram in the pure case
has been obtained in Ref. 9 by a mapping on a problem of one chain of fermions with spin and spin-anisotropic interactions
in a magnetic field.17 The t' term suppresses cos(A8f i) so thatu i develops a gap and acquires a nonzero expectation value
determined by minimizing the ground-state energy. The operators with divergent associated susceptibilities are then

OCDWp5cR,0
† ~x!cL,p~x!1cR,p

† cL,0~x!;eıA2frcos~A2u i!, OSCs5cL,0~x!cR,p1cL,pcR,0;eıA2ursin~A2u i!,

OOAF5 i @cR,0
† ~x!cL,p~x!2cR,p

† ~x!cL,0~x!#;eıA2frsin~A2u i!, OSCd5cL,0cR,p2cL,pcR,0;eıA2urcos~A2u i!.

These operators describe out-of-phase charge-density waves
~CDW’s!, an orbital antiferromagnetic~OAF! phase, and
chain symmetric~SC! ‘‘ s’’ and antisymmetric ‘‘d’’ type su-
perconductivity. Forgf,0 we havê u i&50 giving an SCd

phase forKr.1 and the CDWp for Kr,1, whereas for
gf.0 ^u i&5p/A8 giving the SCs phase forKr.1 and the
OAF phase forKr,1.18

Now, we consider the effect of the disorder. Taking the
continuum limit for the on-site random potential, keeping
only the 2kF terms in the bosonized expressions~as forward
scattering does not induce localization19!, and finally going
to bonding and antibonding bands, one finds that the cou-
pling to disorder is represented by two terms:

Hs5E dx

pa
js~x!eıA2frcos~A2f i!1H.c., ~3!

Ha5E dx

pa
ja~x!eıA2frcos~A2u i!1H.c. ~4!

wherejs,a are two uncorrelated Gaussian random potentials

such thatjn(x)jn8
* (x8)5Dndn,n8d(x2x8) with n,n85s,a.

In the original lattice problem, the role ofjs,a would be
played, respectively, byen,16en,21 . We consider in the fol-
lowing a disorder weak enough (Dn!t') not to destroy the
gaps opened by the interchain coupling in the pure system.
The other limit wheret' andDn are small compared to the
other parameters but of arbitrary relative magnitude is only
important in the vicinity of the noninteracting point. It can be
studied by similar methods and will be discussed
elsewhere.16 In the weak disorder limit,f i has huge quantum
fluctuations, and consequentlyDs is always less relevant
than Da . We can therefore focus on the latter and forget
about the former.

First, we considergf,0 ~i.e.,V.0 for thet-V model!. In
that case, we can replace cos(A2u i) by its ~nonzero! mean

value. Then the coupling to disorder~4! reduces to
C*dxja(x)e

iA2fr(x)1H.c. The RG equations for the disor-
der are derived, following13

dDa

dl
5Da~32Kr!, ~5!

where l5 ln(a) is the standard logarithmic scale associated
with cutoff renormalization. ~5! implies a localization-
delocalization transition13 at Kr53. As a consequence, the
d-wave superconducting phase is unstable in the presence of
disorder except for huge attractive interactions. For a simple
t-V model for whichKr,1, the CDW ground state is also
unstable to disorder. The localized phase is a pinned-charge-
density-wave phase, with a localization length given by
L2ch5(1/D)1/(32Kr). L2ch is smaller than the localization
length of a one-dimensional spinless systemL1ch
5(1/D)1/(322Kr). For repulsive interactions the effects of the
interchain hopping is therefore to make the two-chain system
more localized. The conductivity above the pinning tempera-
ture u/L2ch can be obtained by methods similar to Ref. 13
and varies ass(T);T22Kr.

On the other hand, if one considersgf.0, i.e., attractive
interactions for at-V model, then̂ u i&5p/A8 and in a first
approximation̂ cos(A2u i)&50 so that there is apparently no
coupling at all to the disorder. Obviously, this approximation
is too crude and we must integrate the fluctuations ofu i
around its mean value. This gives the following effective
action forfr :

Sr5E dxdtF ~¹fr!2

2pKr
1@j~x!eıA8fr~x,t!1H.c.#G ~6!

with j(x)j* (x8)5Dd(x2x8) and D;Da
2 . The renormal-

ization of the disorder is again given by an equation similar
to ~5!, but with a coefficient (324Kr)/2 in front ofDa . The
disorder is now relevant only forKr,3/4, leading to three
different phases forgf.0: a random orbital antiferromagnet
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for Kr,3/4 ~with a localization length L2ch5(1/
D)2/(324Kr)), an ordered orbital antiferromagnet for
3/4,Kr,1 and an s-wave superconducting phase for
Kr.1. For thet-V model,Kr.1, and the ‘‘s’’-wave super-
conducting phase is thereforestablewith respect to weak
disorder, at variance to the single-chain problem. For the
latter the delocalization only occured for extremely attractive
interactions, i.e.,Kr.3/2. For the two-chain problem the
localization-delocalization transition arises in the immediate
vicinity of the noninteracting point. In contrast to the case of
repulsive interactions, interchain hopping now strongly re-
duces the localization effects. The determination of the criti-
cal properties at the boundary between the repulsive~local-
ized! regime and the attractive~superconducting! one
requires that we treat the case where the gaps induced by the
hopping and the disorder have arbitrary relative strength.16

The conductivity now behaves ass(T);T224Kr, and di-
verges asT→0 since the ground state is superconducting. In
addition, since the disorder is less relevant for attractive in-
teractions than for repulsive ones, one can also expect the
charge stiffness20 and persistent currents for a disordered
finite-length two-chain system to be larger for the attractive
case than for the repulsive one, similarly to the one-chain21,15

system, but with much more dramatic effects.
Let us consider now the problem with spins. Here again,

we will make the simplifying assumption of a local Hubbard
interaction. More general interactions can be treated by the
same method, giving rise to a richer phase diagram.6 The
Hamiltonian is now

H52t (
i ,s,p

ci11,s,p
† ci ,s,p1H.c.2t' (

i ,s,p
ci ,s,p
† ci ,s,2p

1U(
i ,p

ni ,↑,pni ,↓,p1 (
i ,s,p

e i ,pni ,s,p . ~7!

We proceed as for the spinless case, introduce boson fields
for each spin degree of freedom, and make the symmetric
~charge! fr5f↑1f↓ and antisymmetric~spin! fs5f↑
2f↓ linear combinations. The bosonized Hamiltonian,
which contains four bosonic fields instead of two for the
spinless case, is quite lengthy and will not be reproduced
here for reasons of space. It can be found in Ref. 6, and we
use in the following the notations of this paper. All physical
quantities depend on a parameterKr1 of the symmetric
charge mode, analogous to theKr of the spinless problem.
For the purely repulsive caseU.0, only one of the four
bosonic fields (fr1) is gapless.6 The mean values of the
three other fields are determined by minimizing the energy of
the ground state, giving ^ur2&50, ^fs1&5p/2,
^fs2&5p/2, leading to ad-wave superconductive phase.6

For the attractive caseU,0, fr1 is again massless in the
pure case. But now we havêur2&50, ^fs1&50,
^fs2&50. Here, the most divergent fluctuations are associ-
ated with the operatorOSCs;eıfr1cos(fs1)cos(fs2), which
is the order parameter fors-wave superconductivity.

The coupling to disorder arises again via two terms:

Ha5E ja~x!OCDWp~x!1ja* ~x!OCDWp
†

~x!dx, ~8!

Hs5E js~x!OCDW0~x!1js* ~x!OCDW0
†

~x!dx, ~9!

where jn(x)jn8(x8)*5Dndn,n8d(x2x8)(n,n85a,s), the
jn being random Gaussian distributed potentials. The opera-
tor OCDW0 represents the in-phase charge-density wave, and
OCDWp the out-of-phase one.

Assuming again that the disorder is weak enough not to
destroy the gaps, theO operators have the simple form for
repulsive interactions,

OCDW0;eıfr1sin~fr2!, ~10!

OCDWp;eıfr1sin~us2!. ~11!

These two operators have exponentially decaying correlation
functions and no direct coupling with disorder would exist if
one just took into account the mean values of the fields
fr,2 andus,2 . As in the spinless case one should integrate
over fluctuations to get the effective coupling,

Sr1
disorder5E jeff~x!eı2fr1~x,t!dxdt1H.c. ~12!

One can also view~10! as the coupling of the fermions with
thekF06kFp Fourier component of the disordered potential.
The problem has in fact been reduced to a problem of spin-
less fermions. The localization-delocalization would occur at
Kr153/2 ~Ref. 22! but purely repulsive interaction implies
K,1. Thed-wave phase is therefore unstable to abitrarily
weak disorder. The symmetric~9! and the antisymmetric~8!
part of the disorder contribute equally to destroy the
d-wave superconductivity, in contrast to the spinless case
where the antisymmetric part was the most relevant. The
localization length in that phase isL2ch;(1/D)2/(322Kr1),
and therefore longer than the corresponding one,
L1ch;(1/D)1/(22Kr1), of the one chain with spin. The two-
chain problem is less localized than the corresponding one-
chain one even for repulsive interactions, in contrast to the
spinless case. This is in qualitative agreement with what one
expects in the absence of interactions where the localization
length is proportional to the number of channels in the sys-
tem.

For the attractive case, theO operators take a different
simplified form, due to the different gaps in the system:

OCDW0;eıfr1cos~fr2!, ~13!

OCDWp;eıfr1sin~us2!sin~fs1!. ~14!

By substituting in~8! and ~9! and integrating over fluctua-
tions we end with an effective coupling of the form~12!.
This time,Kr1.1, so that we can attain the localization-
delocalization transition atK53/2. This transition arises for
much weaker attraction than in the one-dimensional case13

whereKr53. For the two-chain problem the critical value of
K can be attained for a Hubbard model23,15whereas the one-
chain Hubbard model is always localized even for very nega-
tive U.15 In addition, the localization length is increased:
L2ch5(1/D)2/(322Kr1), whereas in the one-chain case
L1ch5(1/D)1/(32Kr). Opposite to what happens for the one-
dimensional case where the attractive localization length was
smaller than the repulsive one,24,13 here the two lengths are
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the same, up to prefactors. Therefore, the enhancement of
charge stiffness by repulsive interactions found in the one-
chain case15 should be absent or strongly reduced for two
chains. This issue would need a more detailed study. The
conductivity behaves ass(T);T222Kr1.

Clearly, these effects are due to the existence of a spin
gap and to the freezing of interchain charge excitations.6 As
a consequence, it would be worth studying the localization
effects in a three-chain model~where there should be no spin
gap! to see if the delocalizing effect of attractive interaction

does persist or if we fall back on the one-chain case.
Note added:Recently, we learned about the work of

Kawakami and Fujimoto.25 These authors considered the re-
lated, albeit different, problem of disordered coupled Hub-
bard chains with a ferromagnetic Hund’s exchange and no
hopping. They also found reduction of the localization ef-
fects in this system.

We are grateful to H. J. Schulz for many useful discus-
sions.
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