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Effects of weak disorder on two coupled Hubbard chains
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We consider the effect of weak nonmagnetic disorder on two chains of interacting fertwiahsand
without sping coupled by interchain hopping. For the spinless case, interchain hopping increases localization
for repulsive interactions bugtabilizesthe s-wave superconducting phase for attractive interactions. For the
case with spin, the-wave phase arising from purely repulsive interactions in the clean system is destroyed by
an infinitesimal disorder, while for attractive interactions, th@ave superconductivity is more resistant to
disorder than in the one-chain case. In each case we compute the localization length and the conductivity.
[S0163-182696)52616-0

One-dimensional electronic systems are known to be thenodel the superconducting phase for attractive interactions is
simplest realizations of non-Fermi liquids, and to have gestabletowards weak disorder, the opposite of what happens
neric properties known as Luttinger liquillsDespite the for a one-chain system. For the model with spins and weak
good understanding of purely one-dimensional systems, thenough attractive interactions an arbitrarily weak disorder
effects of interchain hopping, allowing us to move from onedestroys the superconductivity, as in the one-chain case.
to higher (two or three dimensions, are much less known. Nevertheless, the threshold in attraction strength to induce
Whether non-Fermi-liquid properties can be retained even iguperconductivity is much smaller for disordered two-chain
the presence of finite hopping or not is still a controversialsystems and can be reached for a pure Hubbard attraction, at
issuez_ As a theoretical understanding of quasi-one-variance to the one-chain caSeOn the other hand, the
dimensional strongly correlated electronic systefaspe- d-wave—type superconductivity found for repulsive interac-
cially the crossover from Luttinger to Fermi liquits crucial ~ tions is completely unstable with respect to arbitrarily weak
for the physics of organic conductors, there has been in redisorder. In two spinless chains, attractive interactioss
cent years, a growing interest in systems of coupled interaceluce localization compared to the case of a single chain,
ing electron chains, and mostly in systems of two chainsWhereas repulsive oneanhancelocalization. For the case
They present the advantage of allowing a careful study of th&ith spin, two chains are always less localized than their
effects of hopping by being tractable by powerful One-chain counterpart. For each case we also compute physi-
analyticaf~® and numerical techniqué8.In addition, there cal quantities such as localization length and conductivity.
exists good experimental realizations of coupled spin chains Let us consider first two chains of spinless fermions
such as Sr_1Cu,;10,, (Ref. 11 and VOP,0, (Ref. 12  coupled by an interchain hoppirtg. Such a model can also
compounds that will give coupled Hubbard chains upon dopbe mapped to two spin chains coupled by an exchatiye
ing. Although the complete phase diagram of such systems #rm, in the presence of a magnetic field. For simplicity we
still under study, a generic property of a two-coupled-chaingvill just consider here a nearest-neighbor interactiosince
system is the appearance oflavave-like superconducting longer-range interactions do not change the main physical
phase for repulsive interactions. results. Details will be given elsewhel®The disorder is a

In this work we study the effects of nonmagnetic disorderrandom on-site potentiad; , uncorrelated from site to site
on two-chain systems, both for the case of spinless electrorgnd from chain to chain. The Hamiltonian then reads
and for electrons with spins. Such a study is relevant for
various problems: first, in real two-chain systems, disorder
will be present, and it is therefore essential to know the sta- H= —tz CiT,pCiH,er H.c.+ VZ NipNi+1p
bility of the phases found in the pure system, as for a one- hP '
chain system an arbitrarily weak disorder destroys supercon-
ductivity except for exceedingly attractive interactidfs. +HE CiT,lci,flJr H-C-+2 € pNip, (1
Second, on a more theoretical level, the two-chain problem is ! hP
the simplest one for studying the effects of interchain hop- ] o o o ]
ping onto the Anderson localization in the presence of interWherep=—1,1 is the chain index aridis the site index. Itis
actions, giving some clues into the unsatisfactorily underconvenient to rewrite the Hamiltonian in a boson
stood physics of such a transition in more than Oner('apresent.atmﬁ.We thergfore Imea.rlze the fermions disper-
dimension. It also allows for the study of the effects of in- Sion relation around, introduce right R) and left movers
teractions on persistent currents. Finally, classical systems éf) for each chain, and take the continuum limit
coupled planes, studied in the context of vortices in type-1iCn p— Vi p(na) with r=L,R, p==+1 the chain index,
superconductor¥’ can be mapped to coupled quantumand « the lattice spacing. We use the bonding
chains so that the results and methodology developed hergy= (i1 + 1//_1)/\/5 and antibondingy,= (1— ¥ — 1)/\/5
are relevant for them. We show here that for the spinleshands base and introduce the densitigs g ,(x)
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=:¢Iy0v7(x) Urox(X):. We then define the canonically conjugate fields,; and II,; via d¢d, =—(7/
\/5)(p|_:0+ PROE AL~ PR ) andIl, ;=12 (pro* pr.-—PLoF PL.») and the fieldd, (x) = .IT, (x")dx". In terms of
these fields the Hamiltonian becomes, for the pure casg<0),

dx 2 uP 2
H=H, L = | o UK (L) ()2,

dx N7
HH:IZ +J' dXtL?ﬁxd)”-i-f dx

The expressions df,u,g in terms of the original parameters of the Hamiltonian can easily be obt&ifidtbr the puret-

V model one ha¥ ,<1 (K,>1) andg;<0 (g;>0) for repulsive(attractive interactions and ;=1 for all t,V. By adding
interchain interactions, one has acceskfo-1 andg;<0 orK,<1 andg;>0. The complete phase diagram in the pure case

has been obtained in Ref. 9 by a mapping on a problem of one chain of fermions with spin and spin-anisotropic interactions
in a magnetic field’ Thet, term suppresses coﬁm) so that¢ develops a gap and acquires a nonzero expectation value
determined by minimizing the ground-state energy. The operators with divergent associated susceptibilities are then

Ocowr= ¥k X)L o(X) + Yk i o(X)~€"2%c0dv26)), Oses=h o(X) Yr.nt YL nibr o~ € 20sin(/26)),

Oonr=i[ ¥k oX) ¥ -(X) = P -(X) b o(X)]~€"2%esiN(126)), Oscs= ¥ o¥¥r »— Ym0~ € 2%cogV26)).

2 2
UK (T %+ E—”(am)z ﬁcos{@bw w%)zcos NCLD I

These operators describe out-of-phase charge-density wavealue. Then the coupling to disordefd) reduces to
(CDW's), an orbital antiferromagneti¢€OAF) phase, and C[dx¢,(x)e""2%®+H.c. The RG equations for the disor-
chain symmetri¢SC) “s” and antisymmetric ‘td” type su-  der are derived, followintf
perconductivity. Foig;<0 we have(d))=0 giving an sc
phase forK,>1 and the CDW for K,<1, whereas for dDa _ (3-K ) 5
g¢>0 <0H>=7r/\/§ giving the SC phase forK ,>1 and the dl a P
OAF phase foiK <11

Now, we consider the effect of the disorder. Taking the
continuum limit for the on-site random potential, keeping

ggztg;ﬁwg(g(iee:rsmr?oltni;Zifgslggzlazliez:gt’?&xnp;s dSIgr?;I;OgY)?r:g d-wave superconducting phase is unstable in the presence of
. : ; . disorder except for huge attractive interactions. For a simple
to bonding and antibonding bands, one finds that the cou- : .
pling to disorder is represented by two terms: t-V. model fo_r whichK <1, the_ CcDW grou_nd state Is also
unstable to disorder. The localized phase is a pinned-charge-
density-wave phase, with a localization length given by
H :fﬂg (X)€"245cog \2 ) + H.C 3) Loe=(1D)YC K L, is smaller than the localization
s ma 7S | o length of a one-dimensional spinless systein
=(1/D)YC~2K,) For repulsive interactions the effects of the
dx _ interchain hopping is therefore to make the two-chain system
H,= f —§a(x)e"’2¢pcos( \/50”) +H.c. (4) more localized. The conductivity above the pinning tempera-
e ture u/L,¢, can be obtained by methods similar to Ref. 13
where¢, , are two uncorrelated Gaussian random potentialsa n%xiﬂeeso?;; (rT%;nLZ_i: gne considays>0, i.e., attractive
* ’ ' H ’ ’ LI
such tha’gf,?(x)gn,(g )=Dndnn 6(X=X") with n,n"=s,a.  jieractions for a-v model, then( )= /+/8 and in a first
In the original _Iattlce problem, the role cﬁ_s,a would be approximation(cos(\/iau)>=0 so that there is apparently no
played, respectively, by, ,= €, 1. We consider in the fol- o \5jing at all to the disorder. Obviously, this approximation
is too crude and we must integrate the fluctuationsgpf

o Maround its mean value. This gives the following effective
The other limit where, andD,, are small compared to the action for é:
o

other parameters but of arbitrary relative magnitude is only
important in the vicinity of the noninteracting point. It can be
studied by similar methods and will be discussed S,= f dxdr
elsewheré?® In the weak disorder limity; has huge quantum
fluctuations, and consequent) is always less relevant with &(x)&*(x')=D&(x—x') and D~D2. The renormal-
than D,. We can therefore focus on the latter and forgetization of the disorder is again given by an equation similar
about the former. to (5), but with a coefficient (3-4K,)/2 in front of D,. The
First, we consideg;<0 (i.e., V>0 for thet-V mode). In  disorder is now relevant only fak ,<3/4, leading to three
that case, we can replace cd§6”) by its (nonzerg mean  different phases fog;>0: a random orbital antiferromagnet

wherel =In(a) is the standard logarithmic scale associated
with cutoff renormalization.(5) implies a localization-
delocalization transitior! at K,=3. As a consequence, the

(Vo,)?

|\s‘§¢>ﬂ(x,r)
2K, +[&(x)e +H.c] (6)
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for K,<3/4 (with  a localization length L,c=(1/
D)?G=4K,)), an ordered orbital antiferromagnet for
3/4<K,<1 and an s-wave superconducting phase for — , ,
K,>1. For thet-V model,K ,>1, and the s"-wave super- Where &(X)&w (X')* =Dpdyn S(x—x")(n,n"=a,s), the
cgnducting phase is therelf‘osiable with respect to weak &, being random Gaussmn distributed potentlals. The opera-
disorder, at variance to the single-chain problem. For thdO" Ocowe represents the in-phase charge-density wave, and

latter the delocalization only occured for extremely attractive@cowr the out-of-phase one. _
interactions, i.e.K,>3/2. For the two-chain problem the _ASSUMIng again that the disorder is weak enough not to

localization-delocalization transition arises in the immediated€Stroy the gaps, th® operators have the simple form for
vicinity of the noninteracting point. In contrast to the case of €PUISive interactions,

HSZJ £4(X)Ocowo(X) + €5 (X)Ogpue(¥)dx,  (9)

repulsive interactions, interchain hopping now strongly re- —albpiai 1
duces the localization effects. The determination of the criti- Ocowe~e%r*sin(¢,-), (0
cal properties at the boundary between the repuldneal- Ocowr~€'¢r+sin(6,_). (11)

ized regime and the attractivgsuperconducting one

requires that we treat the case where the gaps induced by tidese two operators have exponentially decaying correlation
hopping and the disorder have arbitrary relative strefyth. functions and no direct coupling with disorder would exist if
The conductivity now behaves as(T)~T? 4%, and di- one just took into account the mean values of the fields
verges ag —0 since the ground state is superconducting. In¢, - andé,, _ . As in the spinless case one should integrate
addition, since the disorder is less relevant for attractive inover fluctuations to get the effective coupling,

teractions than for repulsive ones, one can also expect the

c_hgrge stiffnes® anq persistent currents for a disordergd Sdiiorder:f £oi(X)€2%0+ XD dxdr+ H.c. (12
finite-length two-chain system to be larger for the attractive b

case than for the repulsive one, similarly to the one-ciath 5 <an also view10) as the coupling of the fermions with

system, but with much more dramatic effects. the kgo= kg, Fourier component of the disordered potential.

LeFIlus clfnf;]der.novl\_/ the problemt\_/wth ?pwl]s. Weéebiga'(;"'rhe problem has in fact been reduced to a problem of spin-
we will make the simplifying assumption of a local Hubbar less fermions. The localization-delocalization would occur at

interaction. More general interactions can be treated by thR —3/2 . L
S | . . = (Ref. 22 but purely repulsive interaction implies
i'ameltmetho.d' giving rise to a richer phase diagtarhe K<1. Thed-wave phase is therefore unstable to abitrarily
amiitonian 1S now weak disorder. The symmetr{®) and the antisymmetri(8)
part of the disorder contribute equally to destroy the

_ t t d-wave superconductivity, in contrast to the spinless case
H - _tizp Ci+1,o’,pci,0',p+ HC_tJ_E Ci,a,pci,a,—p p y p
10,

i\o,p where the antisymmetric part was the most relevant. The
localization length in that phase is,q~ (1/D)%G~2Kp+),
U N+ € Nioo- 7 and therefore longer than the corresponding one,
;p LTPTLLP i;p LPrheP @) Ly~ (1/D)YZ K1) of the one chain with spin. The two-

chain problem is less localized than the corresponding one-
We proceed as for the spinless case, introduce boson fieldhain one even for repulsive interactions, in contrast to the
for each spin degree of freedom, and make the symmetrispinless case. This is in qualitative agreement with what one
(charge ¢,=d¢;+ ¢, and antisymmetric(spin ¢,= ¢, expects in the absence of interactions where the localization
—¢, linear combinations. The bosonized Hamiltonian,length is proportional to the number of channels in the sys-
which contains four bosonic fields instead of two for thetem.
spinless case, is quite lengthy and will not be reproduced For the attractive case, th@ operators take a different
here for reasons of space. It can be found in Ref. 6, and wsimplified form, due to the different gaps in the system:
use in the following the notations of this paper. All physical

quantities depend on a parametéf, of the symmetric Ocpwo~e€'?r+cog ¢, ), (13
charge mode, analogous to tKg of the spinless problem. bor i )
For the purely repulsive casd>0, only one of the four Ocpwr~€'?r*sin(f,_)sin( ¢, ). (14

bosonic fields ¢,.) is gaples. The mean values of the By substituting in(8) and (9) and integrating over fluctua-
three other fields are dete_rmmed by minimizing the energy ofions we end with an effective coupling of the for(®2).
the ground state, giving (6,-)=0, (¢,+)=7/2,  This time,K,,>1, so that we can attain the localization-
(#,-)=l2, leading to ad-wave superconductive phaSe. gelocalization transition & =3/2. This transition arises for
For the attractive cas®l<0, ¢, is again massless in the mych weaker attraction than in the one-dimensional Gase
pure case. But now we haved, )=0, (¢,+)=0, whereK,=3.For the two-chain problem the critical value of
(¢,-)=0. Here, the most divergent fluctuations are associx can be attained for a Hubbard mo@éf whereas the one-
ated with the operatoDscs~ €'’ +CoS(b,+)cos(h,-), Which  chain Hubbard model is always localized even for very nega-
is the order parameter farwave superconductivity. tive U.'® In addition, the localization length is increased:
The coupling to disorder arises again via two terms: L= (1/D)¥32%.1) " whereas in the one-chain case
L1cr= (1/D)YCK) Opposite to what happens for the one-
+ dimensional case where the attractive localization length was
Ha:f £a(X)Ocow(X) + £3 (%) Ocppa(x)dx, (8) smaller than the repulsive 0A&!® here the two lengths are
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the same, up to prefactors. Therefore, the enhancement dbes persist or if we fall back on the one-chain case.

charge stiffness by repulsive interactions found in the one-

Note added:Recently, we learned about the work of

cha!n casg’ S_hould be absent or strongly re(_:iuced for twoKawakami and Fujimoté® These authors considered the re-
chains. This issue would need a more detailed study. Thiated, albeit different, problem of disordered coupled Hub-

conductivity behaves as(T)~ T2 Ko+,

bard chains with a ferromagnetic Hund’s exchange and no

Clearly, these effects are due to the existence of a spiRopping. They also found reduction of the localization ef-

gap and to the freezing of interchain charge excitatfoAs.

a consequence, it would be worth studying the localization

effects in a three-chain modethere there should be no spin

fects in this system.

We are grateful to H. J. Schulz for many useful discus-

gap to see if the delocalizing effect of attractive interaction sions.
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