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A momentum-space approach of the density-matrix renormalization-group~DMRG! method is developed.
Ground-state energies of the Hubbard model are evaluated using this method and compared with exact diago-
nalization as well as quantum Monte Carlo results. It is shown that the momentum-space DMRG is a very
useful numerical tool for studying the Hubbard model and other fundamental models of interacting electrons in
two dimensions. For the Hubbard model in two dimensions, the momentum-space DMRG method reproduces
accurately the exact diagonalization results of ground-state energies on a 434 lattice and yields new upper
bounds of ground-state energies on an 838 lattice.@S0163-1829~96!52416-1#

The real-space density-matrix renormalization-group
~DMRG! method, which was proposed by White1 in 1992, is
a powerful method for studying ground-state properties of
interacting electrons or spins. It has been successfully ap-
plied to various one-dimensional~1D! quantum models, such
as the spin Heisenberg model,1,2 the Kondo lattice model,3

the Hubbard model,4 and other models.5 However, in 2D its
application is still not satisfactory.6 In this paper we gener-
alize the DMRG method to momentum space. We hope this
may enlarge the range of application of the DMRG method
and provide an accurate numerical method for studying in-
teracting electrons in 2D. We shall take the Hubbard model
as an example to show how the DMRG method works in
momentum space. The properties of the Hubbard model have
been extensively studied in both one and two dimensions,
and so this provides a good background for comparing the
momentum-space DMRG method with other methods.

The DMRG method is a diagonalization technique which
attempts to use a small number of states, saym states, to
expand the ground state~or some low-energy excitation
states! accurately. In conventional numerical
renormalization-group~RG! methods, one keeps them
lowest-energy eigenstates of a block Hamiltonian.7–9 In the
DMRG method, however, one keeps them most probable
basis states in describing the ground state of a larger block,
called a superblock. A superblock contains two blocks, a
system block and an environment block. In a DMRG itera-
tion, one diagonalizes the Hamiltonian of the superblock,
finds out the reduced density matrix for the system block
from the ground state of the superblock, truncates the Hilbert
subspace by keeping them largest eigenstates of the density
matrix, adds one or more sites to the system block to form a
new superblock, and then repeats the above procedure until
the desired result is obtained.

There are two approaches in constructing a superblock, an
infinite-lattice approach and a finite-size approach. In the
infinite-lattice approach, the environment block is generally
chosen as the space reflection of the system block. In the
finite-size approach, on the other hand, the size of the super-
block is fixed and the environment block is chosen as the
remaining part of the lattice for a given system block. The
infinite-lattice approach allows the size of the superblock to
be flexible and can be used to study directly the thermody-
namic limit. The finite-size approach is, however, more ac-

curate in calculating quantities for a finite-lattice system. In
White’s original paper, two sites are added to a superblock
each time, one to the system block and the other to the en-
vironment block. This way of constructing a superblock pre-
serves the reflection symmetry and avoids some problems
caused by odd-size lattices if the infinite-lattice approach is
used in 1D. However, it is generally more efficient in com-
putation if one adds just one site to the system block and no
site to the environment block when the finite-size approach is
used.

The DMRG method satisfies the variational principle be-
cause it uses a small physical subspace to approximate the
full Hilbert space and no unphysical states enter the trun-
cated Hilbert subspace. Thus the ground-state energy ob-
tained using this method is always an upper bound for the
true value. The error for the ground-state energy decreases as
the number of retained states is increased. The truncation
error is generally smaller than the true error of the result.

The Hubbard model is defined by the Hamiltonian

H52t (
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cis
† cjs1U(

i
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where^ i j & means summation over nearest neighbors. In mo-
mentum space, it reads
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with N the lattice size. Here the periodic boundary condition
is assumed. Each momentumk point has four degrees of
freedom, i.e.,$u0&, ck↑

† u0&, ck↓
† u0&, ck↑

† ck↓
† u0&%. In the RG

iteration, generally ak point with these four states can be
added to a system block to form a new system block. How-
ever, in our calculation we treat the spin degree of freedom
as an extra spatial coordinate and a momentum-spin point
(ks), which has only two degrees of freedom
$u0&, cks

† u0&%, as a basic unit which is added to a system
block. In this case, the spin rotation symmetry is broken, but
the total number of degrees of freedom of a superblock is
reduced and more states can be retained at each truncation of
Hilbert subspace. This can reduce truncation errors and save
computer time.
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For convenience in the discussion below, we label a su-
perblock as (A d B), whered represents a momentum-spin
point (ks) which has just been added to the system block,
A represents the collection of all the momentum-spin points
in the system block excluding the point (ks), andB repre-
sents the collection of all the momentum-spin points in the
environment block. There are many ways of orderingk
points in a system. In calculation, one should test a few pos-
sibilities of orders ofk points and choose the one which
gives the lowest ground-state energy.

The Hubbard interaction is local in real space. However,
it is nonlocal in momentum space; it contains terms which
link two or morek points in momentum space. The summa-
tion in the second term of~2! containsN3 terms. They can be
grouped into the terms which are defined purely in each sub-
block and the terms containing interactions amongA, d,
andB. To evaluate matrix elements of the Hamiltonian, we
find it is very useful to define the following composite op-
erators of electrons: in blockA,

a0~ps!5cpsd~ps!PA ,

a1~ps!5(
q

a0
†~qs!a0~p1qs!,

a2~p!5(
q

a0
†~q↑ !a0~p1q↓ !, ~3!

a3~ps!5 (
q1q2

a0
†~q1s̄ !a0~q2s̄ !a0~p1q12q2s!d~ps!¹A ,

a4~p!5(
q

a0~q↓ !a0~p2q↑ !,

wheres̄52s; in block B, the corresponding operators can
be obtained by changing (a,A) into (b,B). They are the
basic operators whose matrix elements are kept and updated
in our DMRG iterations. The total number of these compos-
ite operators is 6N at each subblock. Using these composite
operators, the Hamiltonian~2! can be rewritten as
H5Hd1HA1HB1HAd1HBd1HAB1HAdB , whereHd

5eknks , HA is the same as the Hamiltonian~2! with cks

replaced bya0(ks),
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and HB and HBd can be obtained fromHA and HAd by
changinga into b. In HAdB , ã2(p)5a2

†(p) if s5↑ or
a2(p) if s5↓.

The breaking of lattice symmetries in truncating basis
states is an unavoidable source of errors in the DMRG
method. It is also the main difficulty in using the DMRG
method in real space in 2D. In real space, the translation
symmetry, i.e., the momentum conservation, is broken in the
DMRG method. In momentum space, however, this symme-
try is preserved. This symmetry property is undoubtedly very
useful. Combined with two other conserved quantities, the
number of up spinsN↑ and the number of down spinsN↓ , it
can be used to block diagonalize the Hamiltonian. Not only
can this save computer time, but also it allows us to keep
many more eigenstates in the truncation of Hilbert space as
the number of nonzero matrix elements is now significantly
reduced. Basis states at each block can be classified by three
quantum numbers (N↑ ,N↓ ,P) with P the total momentum.
For the composite operators defined in~3! it can be shown
that their matrix elements are nonzero only when the differ-
ence between the momentum of the initial state and that of
the final state isp.

In the DMRG method, the basis states for both the system
block A and the environment blockB are incomplete. If the
Hamiltonian contains terms with interactions betweenA and
B, the matrix elements of these terms will be less accurately
approximated after the truncation of the Hilbert space com-
pared with the matrix elements of other terms which are
defined purely within each block. In 1D in real space one can
chooseA andB so that no interactions exist betweenA and
B, i.e.,HAB5HAdB50, if all terms in the Hamiltonian are
local in space. In real space in 2D or in momentum space in
any dimension, however, interaction terms betweenA and
B always exist no matter howA andB are constructed. Thus
in general results obtained by the DMRG method in real
space in 2D or in momentum space in any dimension will not
be as accurate as, for example, the ground state energy of the
1D spin-1 Heisenberg model that White and Huse obtained
using the real-space DMRG method.2

In momentum space, different size lattices have different
k points. Thus in using the DMRG method in momentum
space, the size of the lattice needs to be fixed at the begin-
ning. This means that only the finite-size approach of the
DMRG method can be used in momentum space. To use the
finite-size approach, however, one needs first to build up a
series of initial system blocks and the corresponding envi-
ronment blocks. As the infinite lattice approach of the
DMRG is not applicable in this case, we shall use the con-
ventional RG method8,9 to build up the initial system and
environment blocks. The steps in building up the initial sys-
tem blocks~similarly for the environment blocks! are as fol-
lows: ~1! Start from a small system blockA1 , which can be
handled without truncation of basis states.~2! Add a new
(ks) point toA1 to form a new system blockA2 . ~3! Diag-
onalize the Hamiltonian in the Hilbert space spanned by
A2 . ~4! Truncate the Hilbert space by retainingm lowest
energy eigenstates, but restrict the number of states retained
at each (N↑ ,N↓ ,P) subspace not more than a small integer
n. Heren is a variational parameter which should be deter-
mined so that the final result for the ground-state energy is
minimized. In our calculations, we find thatn51 or 2 gen-
erally gives the best result for the ground-state energy for
838 systems with 1000 states retained. The reason for lim-
iting the number of retained states at each (N↑ ,N↓ ,P) sub-

R10 446 53T. XIANG



space is to prevent the retained states from being centralized
in a few (N↑ ,N↓ ,P) subspaces inA2 . Otherwise, some of
the (N↑ ,N↓ ,P) subspaces inA2 , which may make a sub-
stantial contribution to the final ground-state energy, may be
neglected in the DMRG iterations later.~5! ReplaceA2 by
A1 and repeat steps 2–5 until all the initial system blocks
required are established.

All ( N↑ ,N↓ ,P) subspaces that a system block can have
are determined purely by the (ks) points the block contains.
In the above initialization step, in fact, not all (N↑ ,N↓ ,P)
subspaces in a system~or environment! block need be con-
sidered. If a subspace with the quantum numbers
(N1,↑ ,N1,↓ ,P1) in a system~environment! block cannot find
a subspace with the quantum numbers (N2,↑ ,N2,↓ ,P2) in the
corresponding environment~system! block such that
(N1,↑1N2,↑ ,N1,↓1N2,↓ ,P11P2) is equal to the quantum
numbers of the ground state required, then this
(N1,↑ ,N1,↓ ,P1) subspace in the system~environment! block
will make no contribution to the ground state and can be
ignored.

After the above initialization step, thefinite-size approach
of the DMRG methodwill be used to find out the eigenvalue
and eigenfunction of the ground state for a given filling fac-
tor and momentum. Nowm largest eigenstates of thedensity
matrix are retained at each truncation of Hilbert space and
the number of retained states at each (N↑ ,N↓ ,P) subspace
will no longer be limited.

We have evaluated ground-state energies of the Hubbard
model in both 1D and 2D using this momentum-space
DMRG method. In most of our calculations 1000 states are
retained at each truncation of basis states. The number of
states retained at each (N↑ ,N↓ ,P) subspace on average is
small. Our results are much better than those obtained by the

conventional RG method.9 For a ten-electron system with
U54 ~the energy is measured in units oft, i.e., t51) in 2D,
for example, the momentum-space DMRG result for the
ground-state energy with 1000 states kept is219.57, which
is much lower than the conventional RG result with even
3000 states kept,218.541~Ref. 9! ~their relative errors with
respect to the exact diagonalization result10 are 0.05% and
5%, respectively!.

Table I compares the ground-state energies obtained by
the DMRG method in momentum space with those obtained
in real space11 at half-filling in 1D. The ground-state energies
obtained by the DMRG method are lower in real space than
in momentum space if the same number of states is kept,
which means that in 1D the DMRG method works better for
the Hubbard model in real space than in momentum space.
This is not surprising because the Hubbard interaction is a
local interaction and at half-filling all electrons are localized
in space as a result of a Mott insulator transition.

Table II compares the momentum-space DMRG results
with the exact diagonalization and the quantum Monte Carlo
results on 2D square lattices. The largest lattice we have
studied so far is 12312. Compared with the exact results on
a 434 lattice, we find that the DMRG results are very accu-
rate whenU is small. The relative error for the DMRG result
with U52 is 331024. The momentum-space DMRG
method works better in the weak-coupling limit because the
single-particle basis state used here is the plane-wave state.
WhenU50, the ground state is a filled Fermi sea of nonin-
teracting electrons; the momentum-space DMRG method
gives the exact result for the ground state even when only
one state is kept. For largeU, the DMRG results are not as
good as in the weak-coupling limit. However, they are still
comparable with those obtained by the projected quantum

TABLE I. Comparison of the ground-state energy per site obtained using the DMRG method in momen-
tum space with that obtained in real space at half-filling on a 16-site chain.

Momentum space Real space~Ref. 11!
m U51 U54 U51 U54

400 -1.02925 -0.51316 -1.02958 -0.575896
600 -1.02944 -0.53574 -1.02969 -0.575900
800 -1.02952 -0.53724 -1.02972 -0.575901
1000 -1.02958 -0.54562
1200 -1.02959 -0.55218

TABLE II. Comparison of the ground-state energy obtained using the DMRG method withm51000 with
the exact results on 434 lattices~Exact!, the cluster diagonalization results on 636 lattices~CD!, and the
projected quantum Monte Carlo~QMC! and the stochastic diagonalization~SQ! results on 2D square lattices
with N electrons.

Lx3Ly U N Exact ~Ref. 10!/CD ~Ref. 12! DMRG QMC ~Ref. 13! SQ ~Ref. 13!

434 2 16 -18.01757 -18.012
434 4 14 -15.74459 -15.673
434 4 16 -13.62185 -13.571 -13.6 -13.59
434 8 16 -8.46887 -8.263 -8.48
636 4 26 41.49 41.108 41.98 40.77
838 4 10 -34.325 -34.3 -34.31
838 4 18 -54.394 -54.6 -54.37
838 4 26 -66.098 -66.8 -66.05
12312 4 18 -64.107
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Monte Carlo and the stochastic diagonalization methods.
Both the DMRG method and the stochastic diagonalization
method satisfy the variational principle~the projected quan-
tum Monte Carlo method does not satisfy the variational
principle due to the important sampling!, and the results ob-
tained from these two methods give upper bounds of ground-
state energies. On an 838 lattice, the ground-state energies
obtained by the DMRG method are systematically lower
~and hence better! than the stochastic diagonalization results.
The DMRG results therefore provide new upper bounds for
the ground-state energies of the Hubbard model on these
lattices.

In 1D, no exact diagonalization results are available for
the 16-site Hubbard model, but the results obtained with the
real-space DMRG method are very accurate.11 If we use the
best result for the ground-state energy of the 1D 16-site Hub-
bard model obtained by the real-space DMRG method as the
true value of the ground-state energy, we estimate that the
relative error for the ground-state energy obtained by the
momentum-space DMRG method withm51000 is 5% when
U54, which is higher than the corresponding value in 2D.
Thus the momentum-space DMRG method works better for
the Hubbard model in 2D than in 1D. Physically this is be-
cause the contribution of the kinetic energy term to the
ground state, which is rigorously treated in the momentum-
space DMRG method, is larger in 2D than in 1D.

The above discussion for the momentum-space DMRG
method has been focused mainly on the Hubbard model.
However, it can be easily generalized to apply to several
other physically interesting models, such as the Anderson
lattice model and the interacting fermion model with nearest-
neighbor Coulomb potentials. For the Anderson lattice
model, the composite operators defined in~3! can be used
without modification. In other cases we need to generalize
the definitions of the composite operators in~3! @for example
a3 in ~3! should be defined as

a3~ps!5 (
q1q2s8

V~q12q2!a0
†~q1s8!a0~q2s8!

3a0~p1q12q2s!d~ps!¹A

for a general electron-electron interacting model
(V(q2q8)cqs

† cq8scq91q8s8
† cq91qs8# and introduce some

new composite operators of electrons. For an arbitrary inter-
acting fermion model with a Coulomb-type potential, the
number of composite operators required is generally of order
N2, which will limit the application of the momentum-space
DMRG method to small lattices. However, ifV(q2q8) can
be factorized as a sum of products of a function ofq and a
function of q8, i.e., V(q2q8)5( l

nf l(q)gl(q8), it can be
shown that the total number of composite operators required
can be reduced to the order of the system sizeN. In that case
a 12312 or even larger lattice system is accessible by the
momentum-space DMRG method with presently available
computer facilities. The Hubbard model is obviously a fac-
torizable potential, withf 15g151 andn51. The nearest-
neighbor Coulomb potential is also a factorizable potential:
V(q2q8);cos(q2q8)5cosqcosq81sinqsinq8. For this
nearest-neighbor Coulomb potential, the total number of
composite operators needed is 5N in 1D and 7N in 2D if
fermions are spinless.

In conclusion, we have generalized successfully the
DMRG method to momentum space and studied ground-
state properties of the Hubbard model. Our results show that
the momentum-space DMRG method is a powerful numeri-
cal method for studying the Hubbard model in 2D. There is
no reason to believe that this is the only model for which the
momentum-space DMRG method can work. For any finite
ranged potential, if it is factorizable, we believe that the
momentum-space DMRG should work even better than for
the Hubbard model.

The numerical calculations reported here were performed
on a HP735/99 workstation. In the DMRG iteration, all in-
termediate data were stored in a hard disk. For the calcula-
tion on an 838 ~12312! lattice with 1000 states kept the
computer memory space needed is 36~45! Mb in RAM and
200 ~500! Mb in hard disk.
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