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Density-matrix renormalization-group method in momentum space
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A momentum-space approach of the density-matrix renormalization-glMRG) method is developed.
Ground-state energies of the Hubbard model are evaluated using this method and compared with exact diago-
nalization as well as quantum Monte Carlo results. It is shown that the momentum-space DMRG is a very
useful numerical tool for studying the Hubbard model and other fundamental models of interacting electrons in
two dimensions. For the Hubbard model in two dimensions, the momentum-space DMRG method reproduces
accurately the exact diagonalization results of ground-state energies sl dadtice and yields new upper
bounds of ground-state energies on anlattice.[S0163-182¢06)52416-1

The real-space density-matrix renormalization-groupcurate in calculating quantities for a finite-lattice system. In
(DMRG) method, which was proposed by WHiia 1992, is  White’s original paper, two sites are added to a superblock
a powerful method for studying ground-state properties ofeach time, one to the system block and the other to the en-
interacting electrons or spins. It has been successfully apdronment block. This way of constructing a superblock pre-
plied to various one-dimensionélD) quantum models, such Serves the reflection symmetry and avoids some problems
as the spin Heisenberg modéithe Kondo lattice model, ~caused by odd-size lattices if the infinite-lattice approach is
the Hubbard modél,and other model® However, in 2D its  used in 1D. However, it is generally more efficient in com-
application is still not satisfactof¥y/In this paper we gener- putation if one adds just one site to the system block and no
alize the DMRG method to momentum space. We hope thisite to the environment block when the finite-size approach is
may enlarge the range of application of the DMRG method/sed.
and provide an accurate numerical method for studying in- The DMRG method satisfies the variational principle be-
teracting electrons in 2D. We shall take the Hubbard modegause it uses a small physical subspace to approximate the
as an example to show how the DMRG method works infull Hilbert space and no unphysical states enter the trun-
momentum space. The properties of the Hubbard model hav&ated Hilbert subspace. Thus the ground-state energy ob-
been extensively studied in both one and two dimensiond@ined using this method is always an upper bound for the
and so this provides a good background for comparing th&ue value. The error for the ground-state energy decreases as

momentum-space DMRG method with other methods. the number of retained states is increased. The truncation
The DMRG method is a diagonalization technique whicherror is generally smaller than the true error of the result.
attempts to use a small number of states, sagtates, to The Hubbard model is defined by the Hamiltonian
expand the ground statéor some low-energy excitation
state$ accurately. In conventional numerical
o H=-t c.Cc,tU ni+N;,, 1
renormalization-group(RG) methods, one keeps thm <§, iovio 2 L @

lowest-energy eigenstates of a block Hamiltorfiahin the

DMRG method, however, one keeps themost probable Where(ij) means summation over nearest neighbors. In mo-

basis states in describing the ground state of a larger blockpentum space, it reads

called a superblock. A superblock contains two blocks, a

system block and an environment block. In a DMRG itera- sz ot e 4= 2 ot e et e

tion, one diagonalizes the Hamiltonian of the superblock, & KCkoCka T Ky do kg Kl kel Phal Tk ko thgl 2

finds out the reduced density matrix for the system block 2)

from the ground state of the superblock, truncates the Hilbert

subspace by keeping te largest eigenstates of the density \ with N the lattice size. Here the periodic boundary condition

matrix, adds one or more sites to the system block to form 4 assumed. Each momentulmpomt has four degrees of

new superblock, and then repeats the above procedure unfieedom, i.e.{|0), c¢f,[0), ¢f |0), cf,c] |0)}. In the RG

the desired result is obtained. iteration, generally & point with these four states can be
There are two approaches in constructing a superblock, addded to a system block to form a new system block. How-

infinite-lattice approach and a finite-size approach. In theever, in our calculation we treat the spin degree of freedom

infinite-lattice approach, the environment block is generallyas an extra spatial coordinate and a momentum-spin point

chosen as the space reflection of the system block. In theko), which has only two degrees of freedom

finite-size approach, on the other hand, the size of the supef}0), c},|0)}, as a basic unit which is added to a system

block is fixed and the environment block is chosen as thélock. In this case, the spin rotation symmetry is broken, but

remaining part of the lattice for a given system block. Thethe total humber of degrees of freedom of a superblock is

infinite-lattice approach allows the size of the superblock taeduced and more states can be retained at each truncation of

be flexible and can be used to study directly the thermodyHilbert subspace. This can reduce truncation errors and save

namic limit. The finite-size approach is, however, more ac-computer time.
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For convenience in the discussion below, we label a su- The breaking of lattice symmetries in truncating basis
perblock as A @ B), where® represents a momentum-spin states is an unavoidable source of errors in the DMRG
point (ko) which has just been added to the system blockmethod. It is also the main difficulty in using the DMRG
A represents the collection of all the momentum-spin pointsnethod in real space in 2D. In real space, the translation
in the system block excluding the poirkd), andB repre-  symmetry, i.e., the momentum conservation, is broken in the
sents the collection of all the momentum-spin points in theDMRG method. In momentum space, however, this symme-
environment block. There are many ways of orderikig try is preserved. This symmetry property is undoubtedly very
points in a system. In calculation, one should test a few posdaseful. Combined with two other conserved quantities, the
sibilities of orders ofk points and choose the one which number of up spindl; and the number of down spimé, , it
gives the lowest ground-state energy. can be used to block diagonalize the Hamiltonian. Not only

The Hubbard interaction is local in real space. Howevercan this save computer time, but also it allows us to keep
it is nonlocal in momentum space; it contains terms whichmany more eigenstates in the truncation of Hilbert space as
link two or morek points in momentum space. The summa-the number of nonzero matrix elements is now significantly
tion in the second term d®) containsN® terms. They can be reduced. Basis states at each block can be classified by three
grouped into the terms which are defined purely in each subguantum numbersN; ,N, ,P) with P the total momentum.
block and the terms containing interactions amaxng®, For the composite operators defined(8) it can be shown
andB. To evaluate matrix elements of the Hamiltonian, wethat their matrix elements are nonzero only when the differ-
find it is very useful to define the following composite op- ence between the momentum of the initial state and that of

erators of electrons: in block, the final state ig.
In the DMRG method, the basis states for both the system
ao(Po) =CpeO(poyen block A and the environment block are incomplete. If the
Hamiltonian contains terms with interactions betwéeand
a,(po) =2, al(qo)ag(p+qo), B, the matrix elements of these terms will be less accurately
q approximated after the truncation of the Hilbert space com-

pared with the matrix elements of other terms which are
&) defined purely within each block. In 1D in real space one can
chooseA andB so that no interactions exist betweanand
B, i.e.,Hag=HAeg=0, if all terms in the Hamiltonian are
local in space. In real space in 2D or in momentum space in
any dimension, however, interaction terms betwéeand
B always exist no matter how andB are constructed. Thus
in general results obtained by the DMRG method in real
ay(p)= Eq ao(al)ao(p=at), space in 2D or in momentum space in any dimension will not
L be as accurate as, for example, the ground state energy of the
whereo = — o in block B, the corresponding operators can 1D spin-1 Heisenberg model that White and Huse obtained
be obtained by changinga(A) into (b,B). They are the using the real-space DMRG methbd.
basic operators whose matrix elements are kept and updated In momentum space, different size lattices have different
in our DMRG iterations. The total number of these composk points. Thus in using the DMRG method in momentum
ite operators is Bl at each subblock. Using these compositespace, the size of the lattice needs to be fixed at the begin-
operators, the Hamiltonian(2) can be rewritten as ning. This means that only the finite-size approach of the
H=Heg+Has+Hz+H e+ Hge+Hag+Hpres, WhereHg DMRG method can be used in momentum space. To use the
=€ Ny, , Ha is the same as the Hamiltonid®) with c,, finite-size approach, however, one needs first to build up a

a2<p>=§ af(an)ag(p+ql),

ag(po)= E ag(%U_)ao(QZU_)ao(p"'Q1_QZ¢T)5(pa)¢A,

q192

replaced byay(ko), series of initial system blocks and the corresponding envi-
U ronment blocks. As the infinite lattice approach of the
Hae=—{N,a.(00)+c as(ko)+al(ka)cy,), DMRG is not applicable in this case, we shall use the con-

ne N{ 031(0.0)+ Cpd3( ko) +as(ko) ey} ventional RG methdtf to build up the initial system and

U environment blocks. The steps in building up the initial sys-
_- 1 / T T , / tem blocks(similarly for the environment blochksre as fol-
Has N Ep: (2,: [ 81(po)ba(=pa) +bo(Po’)as(pa) lows: (1) Start from a small system blodk;, which can be
handled without truncation of basis stat¢2) Add a new
(ko) point to A; to form a new system block,. (3) Diag-
onalize the Hamiltonian in the Hilbert space spanned by
A,. (4) Truncate the Hilbert space by retainimg lowest

+(a=b)]+al(p)bs(p)—bay(p)al(p) } +H.c.,

U, o _ o energy eigenstates, but restrict the number of states retained
HA.B:NCKUE {ai(k—po)bg(po)—ax(p—k)be(po) at each N, ,N;,P) subspace not more than a small integer
P n. Heren is a variational parameter which should be deter-
+Ubg(pg_)a4(k+ p)+(a—b)}+H.c., mined so that the final result for the ground-state energy is

minimized. In our calculations, we find that=1 or 2 gen-
and Hg and Hge can be obtained fronH, and H,e by  erally gives the best result for the ground-state energy for
changinga into b. In Hpeg, Ez(p):ag(p) if o=17 or 8X8 systems with 1000 states retained. The reason for lim-
ay(p) if o=1. iting the number of retained states at eabh (N, ,P) sub-



53 DENSITY-MATRIX RENORMALIZATION-GROUP METHOD IN ... R10 447

TABLE I. Comparison of the ground-state energy per site obtained using the DMRG method in momen-
tum space with that obtained in real space at half-filling on a 16-site chain.

Momentum space Real spa(Ref. 11
m u=1 Uu=14 u=1 u=4
400 -1.02925 -0.51316 -1.02958 -0.575896
600 -1.02944 -0.53574 -1.02969 -0.575900
800 -1.02952 -0.53724 -1.02972 -0.575901
1000 -1.02958 -0.54562
1200 -1.02959 -0.55218

space is to prevent the retained states from being centralizembnventional RG methot.For a ten-electron system with
in a few (N;,N,,P) subspaces ii\,. Otherwise, some of U=4 (the energy is measured in unitstofi.e.,t=1) in 2D,

the (N;,N,P) subspaces im\,, which may make a sub- for example, the momentum-space DMRG result for the
stantial contribution to the final ground-state energy, may beround-state energy with 1000 states kepti$9.57, which
neglected in the DMRG iterations latedb) ReplaceA, by  is much lower than the conventional RG result with even
A; and repeat steps 2—5 until all the initial system blocks3000 states kept; 18.541(Ref. 9 (their relative errors with

required are established. respect to the exact diagonalization re¥liire 0.05% and
All (N;,N,,P) subspaces that a system block can haves%, respectively
are determined purely by th&§) points the block contains. Table | compares the ground-state energies obtained by

In the above initialization step, in fact, not alN(,N ,P) the DMRG method in momentum space with those obtained
subspaces in a systefar environment block need be con- in real spac¥ at half-filling in 1D. The ground-state energies
sidered. If a subspace with the quantum numberobtained by the DMRG method are lower in real space than
(N1;,Nq,Py) in a systemenvironmenk block cannot find  in momentum space if the same number of states is kept,
a subspace with the quantum numbe¥s (,N,  ,P,) inthe  which means that in 1D the DMRG method works better for
corresponding environment(system block such that the Hubbard model in real space than in momentum space.
(Ng;+Nz; Ny +Ny  ,P;+P,) is equal to the quantum This is not surprising because the Hubbard interaction is a
numbers of the ground state required, then thidocal interaction and at half-filling all electrons are localized
(Ny1;,Nyg,P;) subspace in the systefanvironmenk block  in space as a result of a Mott insulator transition.
will make no contribution to the ground state and can be Table Il compares the momentum-space DMRG results
ignored. with the exact diagonalization and the quantum Monte Carlo
After the above initialization step, tHmite-size approach results on 2D square lattices. The largest lattice we have
of the DMRG methodill be used to find out the eigenvalue studied so far is 18 12. Compared with the exact results on
and eigenfunction of the ground state for a given filling fac-a 4x 4 lattice, we find that the DMRG results are very accu-
tor and momentum. Nown largest eigenstates of tlidensity  rate whenU is small. The relative error for the DMRG result
matrix are retained at each truncation of Hilbert space anavith U=2 is 3x10 % The momentum-space DMRG
the number of retained states at eath (N ,P) subspace method works better in the weak-coupling limit because the
will no longer be limited. single-particle basis state used here is the plane-wave state.
We have evaluated ground-state energies of the Hubbard/henU =0, the ground state is a filled Fermi sea of nonin-
model in both 1D and 2D using this momentum-spaceeracting electrons; the momentum-space DMRG method
DMRG method. In most of our calculations 1000 states arajives the exact result for the ground state even when only
retained at each truncation of basis states. The number afe state is kept. For larde, the DMRG results are not as
states retained at eaciN{,N,,P) subspace on average is good as in the weak-coupling limit. However, they are still
small. Our results are much better than those obtained by theomparable with those obtained by the projected quantum

TABLE Il. Comparison of the ground-state energy obtained using the DMRG methodnith000 with
the exact results on>44 lattices(Exac, the cluster diagonalization results oix 6 lattices(CD), and the
projected quantum Monte Carl@MC) and the stochastic diagonalizati@®Q) results on 2D square lattices
with N electrons.

LXLy U N  Exact(Ref. 10/CD (Ref. 12 DMRG  QMC (Ref. 13  SQ(Ref. 13
4x 4 2 16 -18.01757 -18.012

4x 4 4 14 -15.74459 -15.673

4x 4 4 16 -13.62185 -13.571 -13.6 -13.59
4x 4 8 16 -8.46887 -8.263 -8.48

6X6 4 26 41.49 41.108 41.98 40.77
8x8 4 10 -34.325 -34.3 -34.31

8x8 4 18 -54.394 -54.6 -54.37

8x8 4 26 -66.098 -66.8 -66.05

12x12 4 18 -64.107
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Monte Carlo and the stochastic diagonalization methodsfor a general electron-electron interacting model

Both the DMRG method and the stochastic diagonalizatiorEV(q_q')cgacq,(rc;mrq, Cqr+qor] a@nd introduce some

method satisfy the variational princip(ehe projected quan- new composite operators of electrons. For an arbitrary inter-
tum Monte Carlo method does not satisfy the vananonalactmg fermion model with a Coulomb-type potential, the

principle due to the important samplingind the results ob-  \her of composite operators required is generally of order

tained from these two methods give upper bounds of grounfﬁlz which will limit the application of the momentum-space
state energies. On an<3 lattice, the ground-state energies DI\}IRG method to small lattices. However,\{q—q’') can

obtained by the DMRG method are systematically Iowerb factorized f broducts of a functiornaind
(and hence bettgthan the stochastic diagonalization results. € a_c orize as_ a sum of pro U%S of a func |qu nda
function of g’, i.e, V(q—q')=Z/f|(q)gi(q’), it can be

The DMRG results therefore provide new upper bounds fo : )
the ground-state energies of the Hubbard model on thesghown that the total number of composite operators required

lattices. can be reduced to the order of the system Bizén that case

In 1D, no exact diagonalization results are available fora 12<12 or even larger lattice system is accessible by the
the 16-site Hubbard model, but the results obtained with thénomentum-space DMRG method with presently available
real-space DMRG method are very accuraté.we use the computer facilities. The Hubbard model is obviously a fac-
best result for the ground-state energy of the 1D 16-site Hubtorizable potential, withf;=g,=1 andn=1. The nearest-
bard model obtained by the real-space DMRG method as theeighbor Coulomb potential is also a factorizable potential:
true value of the ground-state energy, we estimate that th¢(q—q')~cos@—q’)=cosjcosy’ +singsing’.  For  this
relative error for the ground-state energy obtained by th@earest-neighbor Coulomb potential, the total number of
momentum-space DMRG method witl= 1000 is 5% when  composite operators needed isl &n 1D and N in 2D if
U=4, which is higher than the corresponding value in 2D.fermions are spinless.
Thus the momentum-space DMRG method works better for | conclusion, we have generalized successfully the

the Hubbard model in 2D than in 1D. Physically this is be-ppMRG method to momentum space and studied ground-
cause the contribution of the kinetic energy term {0 thegiaie properties of the Hubbard model. Our results show that
ground state, which is (|gorously treated m_the momentumspe momentum-space DMRG method is a powerful numeri-
space DMRG method, is larger in 2D than in 1D. cal method for studying the Hubbard model in 2D. There is

The above discussion for the momentum-space DMRG,, reas0n to believe that this is the only model for which the
method has been focused mainly on the Hubbard model,omentum-space DMRG method can work. For any finite
However, it can be easily generalized to apply to severalyngeqd potential, if it is factorizable, we believe that the
other physically interesting models, such as the A”derso'ﬂwomentum-space DMRG should work even better than for
lattice model and the interacting fermion model with nearestihe Hubbard model.

neighbor Coulomb potentials. For the Anderson lattice The nymerical calculations reported here were performed
model, the composite operators defined(® can be used o5 5 HP735/99 workstation. In the DMRG iteration, all in-

without modification. In other cases we need to generaliz@smediate data were stored in a hard disk. For the calcula-
the definitions of the composite operatorg 2 [for example tion on an 8<8 (12x 12) lattice with 1000 states kept the

az in (3) should be defined as computer memory space needed is(86) Mb in RAM and
200 (5000 Mb in hard disk.

a = V(g;—0g,)ak(gq0)a '
o(Po)= 2 V(4:-0p) o d17")8o(dz20") We would like to thank G.A. Gehring and R.J. Bursill for
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fruitful discussions and Xiaoqun Wang for supplying the
Xap(P+0d1—=020) d(py) e A real-space DMRG results in Table I.
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